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ABSTRACT  
Water erosion is one of the main forms of soil degradation, causing economic, 

environmental, and social damage. This study evaluated the effects of different formation stages 

of gullies (initial - IG; juvenile- JG; mature - MG; and senile - SG) on the chemical, organic 

carbon and microbiological attributes of soil, using a secondary forest (SF) and two areas of 

pasture as references in the “Mar de Morros” environment of the Brazilian Atlantic Forest 

biome. Soil samples (depth 0–0.05 m) were collected at the end of the rainy and dry seasons. 

Gullies in different stages of formation promote a decrease in soil fertility and modification of 

microbiological attributes, particularly when compared with secondary forest areas. Reductions 

of over 60% in total organic carbon (TOC), oxidizable organic carbon (POXC), FDA activity, 

β-glycosidase, acid phosphatase, C and N from microbial biomass, basal soil respiration (BSR) 

and glomalin-related soil protein (GRSP) were observed in gullies in early (IG) and 

intermediate (JG and MG) stages when compared to SF. It was found that the effect of erosion 

on soil chemical and microbiological attributes is more intense in gullies in the initial and 

intermediate stages compared with those in the senile stage (SG). Using multivariate PCA, the 

microbiological and chemical attributes of the soil are discriminated between gullies with 

distinct formation stages. Chemical attributes, TOC, POXC, FDA activity, β-glycosidase, acid 

phosphatase, MBC and MBN, BSR, and GRSP are good indicators for evaluating the process 

of erosion stabilization in gullies.  
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Atributos do solo como indicadores do processo de estabilização da 

erosão em voçorocas em diferentes estágios de formação na região 

sudeste do Brasil 

RESUMO 
A erosão hídrica é uma das principais formas de degradação do solo, causando danos 

econômicos, ambientais e sociais. O objetivo deste estudo foi avaliar o efeito de diferentes 

estágios de formação de voçorocas (inicial - IG; juvenil - JG; maduro - MG; e senil - SG) nos 

atributos químicos, matéria orgânica e microbiológicos do solo, utilizando uma floresta 

secundária (SF) e duas áreas de pastagem como referência no ambiente “Mar de Morros” do 

bioma Mata Atlântica brasileira. Amostras de solo (profundidade 0–0,05 m) foram coletadas 

no final das estações chuvosa e seca. As voçorocas em diferentes estágios de formação 

promoveram diminuição da fertilidade do solo e modificação dos atributos microbiológicos, 

principalmente quando comparados com a área de floresta secundária. Reduções de mais de 

60% no carbono orgânico total (TOC), carbono orgânico oxidável (POXC), atividade da FDA, 

β-glicosidase, fosfatase ácida, C (MBC) e N (MBN) da biomassa microbiana, respiração basal 

do solo (BSR) e proteína do solo relacionada à glomalina (GRSP) foram observados em 

voçorocas nos estágios inicial (IG) e intermediário (JG e MG) quando comparados ao SF. 

Verificou-se que o efeito da erosão sobre os atributos químicos e microbiológicos do solo é 

mais intenso em voçorocas nos estágios inicial e intermediário em comparação com ao senil 

(SG). Usando a multivariada PCA, os atributos microbiológicos e químicos do solo 

discriminaram as voçorocas com distintos estágios de formação. Os atributos químicos, TOC, 

POXC, atividade FDA, β-glicosidase, fosfatase ácida, MBC and MBN, SBR e GRSP são bons 

indicadores para avaliar o processo de estabilização da erosão em voçorocas. 

Palavras-chave: atividade enzimática, biomassa microbiana do solo, carbono orgânico do solo, erosão 

hídrica, glomalina, latossolos. 

1. INTRODUCTION 

The Atlantic Forest biome has been subjected to strong anthropic pressure, to include 

intense deforestation since the discovery of Brazil (SOS Mata Atlântica, 2018). This region is 

characterized by a variable relief, with flat areas and many valleys and hills. Removal of the 

original forest intensified erosion and reduced plant-growth capacity (Landeros-Sánchez et al., 

2009). In the state of Rio de Janeiro, particularly in the Pinheiral area, there has been a high 

degree of erosion due to uneven relief, removal of vegetation cover, and inappropriate practices 

of land use and management in agricultural crops and, mainly, pastures. A study carried out by 

the Paraíba do Sul River Basin Committee (CEIVAP) indicates that the stretch between the 

sediment stations of Volta Redonda and Barra do Piraí, in which lies the municipality of 

Pinheiral, has the second largest specific sediment production (588.8 Mg km-2 year-1) (CEIVAP, 

2006). Large portions of the soils have a high erosion potential (Gaia-Gomes et al., 2018; 2020), 

and high levels of rainfall increase water erosion. Water erosion is one of the main forms of soil 

degradation, causing economic, environmental, and social damage. This type of erosion leads 

to the emergence of gullies, which are formed by the processes of soil runoff and high soil loss 

(Vanwalleghem et al., 2005).  

Gullies represent the most severe form of erosion and can be classified into their formation 

stages (initial, juvenile, mature, and senile) based on morphological characteristics. These 
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include the development of channels, their cross-section, bed profile, walls, branches, and ducts 

(Oka-Fiore and Soares, 1976), and the presence or absence of vegetation. Although some 

studies have characterized the formation stages of gullies (Oka-Fiore and Soares, 1976; Dobek 

et al., 2011), few have evaluated soil attributes (physical, chemical, and biological) in these 

environments (Machado et al., 2010; Gomide et al., 2011; Gaia-Gomes et al., 2018; 2020), 

especially in relation to their microbiological attributes. 

Soil attributes, such as microbial biomass and enzymatic activity, are influenced by many 

factors and have been suggested as appropriate indicators for assessing soil quality (Maurya et 

al., 2020; Tiwari et al., 2019; Zhou et al., 2018). Estimates of soil microbial biomass may 

indicate changes in the total organic matter of the soil long before changes in total soil C and N 

levels are detectable (Babur and Dindaroglu, 2020). Moreover, this can provide an index of soil 

fertility, because it represents an important labile reservoir of soil nutrients, playing an active 

role in preventing nutrient loss (Yang et al., 2010).  

The enzymatic activity of the soil, in turn, plays a critical role in the cycles of soil elements 

and how they are synthesized by organisms. The conditions that favor microbial activity, such 

as the presence of vegetation (rhizosphere), also lead to higher enzyme activity (Zhang et al., 

2018). Enzymes participate in the catabolism of organic and mineral soil components, and their 

activity correlates with organic matter, physical and chemical properties, and with the microbial 

biomass (Maurya et al., 2020; Tiwari et al., 2019; Yuan and Yue, 2012). 

The soil microbial community has long been recognized for its involvement in the 

biogeochemical transformation of carbon, nitrogen, phosphorus, and sulfur in soil, which 

directly influences the structure and productivity of the plant community (Elliot et al., 2015). 

Furthermore, bacteria and fungi promote improvements in soil structure that favor aggregation 

and porosity (Hashim et al., 2020; Muchane et al., 2018). For example, when associated with 

plant roots, arbuscular mycorrhizal fungi (AMF) improve soil aggregation via hyphae and the 

production of glomalin (Parihar et al., 2020). This glycoprotein is important for the aggregation 

and storage of soil carbon and nitrogen (Sekaran et al., 2021, Wang et al., 2017). Glomalin is 

positively correlated with the stability of aggregates and carbon. The response of these 

components to changes in land use suggest that glomalin may be used as an indicator of 

ecosystem degradation/recovery (Liu et al., 2020).  

The hypothesis of this study was that the chemical attributes, organic carbon, and soil 

microbiological attributes change in gullies at different stages of formation (initial, juvenile, 

mature, and senile) and can be used as indicators of erosion stabilization. Thus, the objective of 

this study was to evaluate the effect of gully formation stage (initial, juvenile, mature, and 

senile) on soil chemical, organic carbon, and soil microbiological attributes using a secondary 

forest area and two areas of regenerating pasture (initial and medium stage) as references in 

"Mar de Morros" in the Atlantic Forest biome, Brazil. 

2. MATERIAL AND METHODS 

The study was conducted in the municipality of Pinheiral - RJ, in the Sub-basin of the 

Ribeirão Cachimbal, which is located in the region of the Middle Paraíba Fluminense and 

comprises the hydrographic basin of the Paraíba do Sul River (Figure 1). It is located between 

latitudes 22°29'03'' S and 22°35'27'' S, and longitudes 43°54'49" W and 44°04'05" W. The 

climate of the region, according to Köppen (1936) is Am, with a tropical rainy climate, 

monsoon, and dry winter. The area forms part of the ecological area of the Atlantic Forest, 

whose original vegetation is identified as Baixo Montana Atlantic Rainforest, and is 

characteristic of areas with altitudes of 300–800 m. The region presents various forms of relief 

with different degrees of dissection. The altitude varies from 360 m in the large floodplain of 

Paraíba do Sul, at the mouth of the Cachimbal Stream, to 720 m in the Arrozal mountain range 

in the south of the Cachimbal River Basin (Machado et al., 2010). In the area covered by the 
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Cachimbal Stream, hillsides with varied slopes predominate; 35% are classified as strong wavy, 

28% wavy, 17% soft wavy, 10.5% flat, 9% mountainous, and 0.5% steep (Santos et al., 2017). 

 
Figure 1. Study area map, municipality of Pinheiral – RJ, Brazil.  

The current soil coverage of the region is composed by pastures, both managed (mainly 

Brachiari sp.) and non-managed (molasses grass – Melinis minutiflora, Hyparrhenia rufa, sapê, 

Imperata brasiliensis, Andropogon bicornis; bahia grass - Paspalum notatum, other grasses; 

and six native legumes). These pastures are in various stages of degradation, level of use and/or 

abandonment, and give rise to other forms of vegetation in the area, such as shrubby pastures 

and shrubs. The distribution of land in the sub-basin is distinct in its different portions of the 

slopes, with a predominance of large (over 150 ha) and medium properties on its upper and 

middle thirds, where the main activities are dairy farming and cattle breeding.  

In the entire region of the Médio Vale of the Paraíba do Sul River, the first type of use was 

extractivism, which was subsequently replaced by coffee cultivation in the colonial period. 

Progressively, the coffee plantations were replaced by livestock farming, and inadequate 

management has contributed to the formation of the landscape that dominates the region today. 

The remaining forest fragments are small and located on the interfluves of the main 

hydrographic basins and in areas that are difficult to access, whose relief has prevented 

agricultural use.  

Four gullies were selected (Figure 2), which were previously classified based on their stage 

of formation (initial, juvenile, mature, and senile) as described by Oka-Fiori and Soares (1976) 

and Dobek et al. (2011), from Google Earth images, and validated through field trips. The initial 

stage (IG) gully has channels and the bed has an irregular profile with a “V” cross-section and 

rectilinear walls, without ramifications. The juvenile stage (JG) gully has been subjected to a 

more intense erosive process with the formation of ducts, causing elongation, broadening, and 

deepening of the main channel. The mature gully (MG) has ramifications with jagged lines and 

a “U” cross section, with movement of earth on the walls, enlargement, vertical erosion in the 

ramifications, development of vegetation (grasses) at the bottom and consolidation of erosive 

processes in the channel. Finally, the senile gully (SG) presents a “U” cross section, a slightly 

irregular contour line, smooth sloping walls, vegetation cover, predominantly Embaúba 

(Cecropia sp.), grasses, and bamboo (Phyllostachys sp.) throughout the area, and a bed covered 

with alluvial deposits. Three areas were selected next to the gullies, one area under secondary 
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forest (SF), one area under initial regeneration pasture (ISR), and one area under regeneration 

in the medium stage (MSR), which was adopted as a reference. In all study areas, the soil was 

identified as Latossolo Vermelho-Amarelo (Oxisol).  

 
Figure 2. Gullies in different stages of formation. (a) Gully in the initial stage; (b) gully in the 

juvenile stage; (c) gully in the senile stage; (d) gully in the mature stage.  

Source: Gaia-Gomes et al. (2020) adapted. 

To evaluate the chemical, physical, and microbiological attributes of the soil, samples were 

collected at the 0–5 cm depth in two distinct seasons (end of the rainy season and dry season) 

in each gully and in the SF, MSR, and ISR areas. The samples were collected within the gullies 

in an irregular grid covering its extension. For SF, PRI, and PRM, 20 × 20 m plots were selected 

in each area, and 16 simple samples were collected to make four composite soil samples.  

Physical analysis (granulometry), chemical analysis (pH, Ca, Mg, Ca, P, H+Al, K, N), and 

soil organic carbon determination were performed according to Teixeira et al. (2017). 

Oxidizable carbon (POXC) was evaluated with the use of permanganate as described by Weil 

et al. (2003). 

To assess enzyme activity, collected samples were stored at 4°C until processing. 

Activities of β -glucosidase and acid phosphatase were assessed according to the method 

described by Eivazi and Tabatabai (1988); and fluorescein diacetate (FDA) hydrolysis as 

describe by Schnürer and Rosswal (1982). 

Total soil microbial activity was quantified immediately after sampling using the basal soil 

respiration method, as described by Jenkinson and Powlson (1976), while the microbial 

biomass carbon (MBC) was assessed via fumigation-incubation as described by Vance et al. 

(1987) and Tate et al. (1988); microbial biomass nitrogen (MBN) was determined as described 

by Brookes et al. (1985).  

Glomalin-related soil protein (GRSP; easily extractable-GRSP and total-GRSP) was 

extracted from the samples as described by Wright and Updahyaya (1998). GRSP-easily 

extractable fractions (EE-GRSP) were obtained via autoclave extraction using 20 mM sodium 

citrate solution, pH 7.4, at a temperature of 121°C for 30 min. The total-GRSP fraction (T-

GRSP) was obtained using 50 mM sodium citrate, pH 8.0, at 121°C, for 60 min. When 

necessary, more than one autoclave cycle was performed to extract this fraction until samples 
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were light-yellow in color. Both fractions were quantified by the Bradford method (1976) 

modified by Wright et al. (1996).  

2.1. Statistical analysis  

The results were analyzed by Lilliefors test for normality (test of Lillifors/ STATISTIC 

8.0) and homogeneity of variances (Levene/STATISTIC 8.0). When this premise was met, the 

averages were compared by the Bonferroni t parametric test and, when this did not occur, the 

means were compared by the non-parametric Kruskall Wallis test (P < 5%). To better 

understand the different environmental quality conditions of the study units, some parameters 

of each study unit were selected for multivariate statistical analysis by way of principal 

component analysis (PCA) and clustering (Paired group; Similarity measure: Gower), in 

addition to a correlation analysis with the PAST statistical program. For these analyses, the 

variables were grouped according to the number of replicates used for the statistical analysis 

(ANOVA and means test).  

3. RESULTS AND DISCUSSION 

There was no significant difference in the levels of clay and sand (coarse and total) in 

gullies at different formation stages (initial - IG; juvenile - JG; mature - MG; and senile - SG) 

and areas of secondary forest (SF), initial-stage regenerating pasture (PRI), and medium-

regeneration stage pasture (MSR); however, variation was observed in the textural class (SF - 

clay-loam; ISR - sandy-loam; MSR, IG, JG, MG, SG - sandy clay loam) (Table 1).  

Higher levels of fine sand were observed in ISR, in contrast to SF, MSR, and SG. No 

differences were observed between the gullies, nor between the SF and MSR areas. The highest 

levels of silt were observed in the SF and differed only from those in MSR and IG. Variable silt 

plus fine sand, an indicator of soil erodibility (Silva et al., 2003), was higher in SF and ISR, 

differing from MSR and IG, indicating that these fractions were removed by the erosive process 

in the latter two areas. This may be because superficial and subsurface water flow is more 

intense during the initial stage of gully formation. The other gullies (JG, MG, SG) presented 

intermediate values of silt plus fine sand (Table 1).  

Table 1. Soil granulometric analysis in gullies at different formation stages (IG – initial; 

JG - juvenile; MG – mature; SG - senile), secondary forest (SF), mid-stage regeneration 

pasture (MSR), and initial-stage regeneration (ISR), at a depth of 0–0.05 m, in Pinheiral 

(RJ). 

Areas 
Sand 

Clay Silt Silt + Thin sand Textural class 
Thin Coarse Total 

 g kg-1  

SF 129 b 283 a 412 a 283 a 304 a 434 a Clay-loam 

MSR 106 b 427 a 533 a 279 a 188 b 294 b Sandy clay loam 

ISR 179 a 418 a 597 a 185 a 217 ab 397 a Sandy-loam 

IG 141 ab 506 a 647 a 202 a 151 b 292 b Sandy clay loam 

JG 144 ab 403 a 547 a 238 a 212 ab 359 ab Sandy clay loam 

MG 131ab 323 a 454 a 328 a 218 ab 349 ab Sandy clay loam 

SG 109 b 387 a 496 a 295 a 208 ab 317 Sandy clay loam 

Means followed by equal letters in the column do not differ by the Bonferroni T or Kruskall 

Wallis test at 5%.   
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In relation to soil chemical attributes, the pH was lowest in the SF areas (dry season and 

rainy season) compared with the gullies and the pasture (MSR and ISR) (Table 2). This pattern 

can be explained by the greater deposition of plant litter in the SF area when compared with the 

gullies and pasture. This leads to a higher rate of decomposition and the release of high levels 

of acid, which reduces the soil pH. Rukshana et al. (2011) reported that decomposing organic 

matter, depending on its chemical nature, can provide H+, which acidifies the soil.  

Table 2. Chemical attributes and soil organic carbon in gullies at different formation stages (IG – initial; 

JG - juvenile; MG – mature; SG - senile), secondary forest (SF), mid-stage regeneration pasture (MSR), 

and initial-stage regeneration (ISR), at a depth of 0–0.05 m in two seasons (rainy season; dry season), 

in Pinheiral (RJ). 

Areas 

pH Ca Mg Al H+Al 

  cmolc Kg-1 

Rainy Dry Rainy Dry Rainy Dry Rainy Dry Rainy Dry 

SF 4.06 b* 3.68 c 0.75 b 1.00 ab* 0.42 a 1.27 ab* 2.36 a* 1.68 ab 8.95 a 9.98 a 

MSR 4.41 a* 4.10 b 1.32 a 1.17 a* 0.50 a 0.85 b* 2.18 ab 2.23 a 8.70 a 11.11 a* 

ISR 4.57 a 4.59 a 0.67 bc 1.07 ab* 0.62 a 1.50 a* 1.05 b* 0.50 b 5.16 b 5.53 b 

IG 4.55 a* 4.30 b 0.40 d 0.65 cd* 0.62 a 0.95 b* 1.19 ab 1.40 ab 3.88 b 4.29 b 

JG 4.38 a 4.31 b 0.47 cd 0.63 cd* 0.60 a 1.00 b* 1.53 ab 1.60 ab 4.83 b 5.28 b 

MG 4.52 a* 4.28 b 0.47 cd 0.60 d 0.60 a 0.97 b* 1.55 ab 1.52 ab 4.66 b 5.86 b* 

SG 4.49 a* 4.21 b 0.90 b 0.87 bc 0.77 a 1.20 ab* 1.50 ab 1.52 ab 4.46 b 5.73 b* 

Areas 

P K N TOC POXC 

mg L-1 g kg-1 

Rainy Dry Rainy Dry Rainy Dry Rainy Dry Rainy Dry 

SF 7.94 a* 1.17 b 2.07 a 8.20 ab* 2.65 a* 1.53 a 29.21 ab 38.00 a 0.68 a 0.57 a 

MSR 6.92 ab* 2.33 a 2.23 a 6.70 b* 2.42 ab* 1.13 b 30.58 a 24.28 ab 0.63 ab* 0.54 a 

ISR 6.43 ab* 2.43 ab 2.17 a 11.75 a* 1.58 bc* 0.70 c 21.24 abc 17.76 ab 0.44  abc 0.39 ab 

IG 6.33 ab* 1.15 b 2.22 a 6.23 b* 1.14 c* 0.26 d 5.91 bc 5.95 b 0.36 abc* 0.18 b 

JG 6.38 ab* 1.47 ab 1.27 b 5.30 b* 1.15 c* 0.39 cd 12.51 abc 10.07 ab 0.27c 0.31 ab 

MG 6.26 b* 1.84 ab 1.03 b 4.37 b* 0.89 c* 0.48 cd 4.12 c 6.50 b 0.26 bc 0.35 ab 

SG 6.40 ab* 1.28 ab 2.33 a 11.07 a* 1.02 c 0.59 cd 16.95 abc 11.27 ab 0.49 abc 0.39 ab 

Means followed by equal letters in the column do not differ by the Bonferroni T or Kruskall Wallis 

test at 5%. 

* Indicates a significant difference between seasons by the Bonferroni T or Kruskall Wallis test at 5%.  

TOC – Total organic matter; POXC – oxidizable carbono. 

For H+Al content, the gullies in the different formation stages followed the same pattern 

observed in the ISR, in both seasons (Table 2). For the Al, it was verified that the gullies 

presented intermediate values between the ISR area and the SF and MSR areas, with higher 

values in the last two areas (Table 2). Lower pH value in SF may have contributed to the 

increase in Al solubility. 

The nutrients most affected by the erosive process were Ca, K, and N, with the lowest 

values observed in gullies in the initial (IG) and intermediate (JG and MG) stages of formation 

(Table 2). In general, there was no difference in Mg and P content between the gullies and the 

SF and pasture areas (Table 2). No significant differences were observed between SG and the 

forest in relation to the nutrients Ca, Mg, P and K. It can be inferred that this pattern is related 

to the process of erosion stabilization in the gully, due, among other factors, to colonization by 

plant species (spontaneous regeneration) throughout its extension (Figure 2c), thus promoting 

the addition of plant litter and organic matter and the incorporation and maintenance of soil 

nutrients. Vegetation influences erosion by reducing its intensity and improving the capacity of 

soil infiltration (Jianbo et al., 2018). 

Gomide et al. (2011) noted that the reduced soil fertility in gullies was due to the decreased 
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organic matter contents resulting from the removal of vegetation in these environments, thus 

leading to reduced cycling of nutrients and increased losses through leaching. This pattern was 

confirmed by the analysis of total organic carbon (TOC) and oxidizable carbon (POXC) in the 

study areas. There were high positive correlations (r = >0.75, p<0.5) between TOC and Ca, P 

and N in the rainy season. Significant decreases in TOC (approximately 80% in IG) and POXC 

(approximately 67% in IG) were observed in gullies in the initial and mature stages 

(environments in which larger reductions in nutrient levels were observed) compared with 

pasture and/or SF areas. POXC is a labile fraction of organic carbon that is sensitive to soil use 

and management. It is highly informative for total soil organic matter, nutrients, soil structure, 

and microbial pools and activity; parameters commonly used as indicators of soil function, such 

as C sequestration, nutrient cycling, formation of soil structure, and biodiversity (Bongiorno et 

al., 2019).  

In the senile stage gully, with natural regeneration occupying its entire extension, TOC and 

POXC levels were observed that were statistically similar the reference areas (SF, MSR, and 

ISR). Although TOC values below those in the reference areas were observed, especially in 

relation to SF and MSR, TOC was approximately 180% higher in IG. Shi et al. (2019) noted 

that the restoration of vegetation promotes the addition of plant litter and increases the amounts 

of small roots, which results in the addition of higher levels of carbon to the soil. In addition, it 

can improve soil infiltration and reduce runoff and sediment transport, which reduces TOC 

losses. According to Rumpel et al. (2018), plants, bacteria, fungi, and soil fauna, such as 

earthworms, contribute to the addition of organic matter and nutrients, which promote soil 

aggregation, making it resilient to erosion and increasing its retention capacity.  

Regarding the influence of the sampling period on soil chemical attributes, there was 

greater variation in pH, Ca, Mg, P, K, and N. While high values for pH, P, and N were found 

in the rainy season, the highest levels of Ca, Mg, and K were generally recorded in the dry 

season. Of the evaluated organic matter fractions, the TOC did not vary between seasons in the 

reference areas and in the gullies. On the other hand, higher POXC values were observed in the 

rainy season compared to the dry season in the MSR area and in the initial gully. Significant 

change in TOC content in response to climate change is usually difficult to detect in a short 

time. In contrast, POXC is considered a labile fraction of SOM, and therefore may have an 

advantage over the TOC in detecting differences due to variations in temperature and 

precipitation (Culman et al., 2012).  

Changes in the microbiological attributes of the soil were observed across the gully 

formation stages (Table 3). Total enzyme activity, evaluated by fluorescein diacetate (FDA) 

hydrolysis, was 69% less in the mature stage gully, compared with the SF in the rainy season. 

In the dry season, there was a 90% reduction in gullies in the initial, juvenile, and mature 

formation stages. In the senile gully, during rainy and dry periods, FDA activity was 

intermediate (110.13 and 44.07 μgFluoresc g-1 SS hour-1, respectively) between the reference 

areas (SF, MSR, IRS) (average = 154.05 and 108.45 μgFluoresc g-1 SS hour-1, respectively) and 

the other gullies (IG, JG, MG) (average= 59.95 and 9.21 μgFluoresc g-1 SS hour-1, respectively) 

(Table 3). A similar pattern was observed for acid phosphatase and ß-glucosidase activity 

(Table 3). The reductions in acid phosphatase reached 77% in MG in the rainy season, and 62% 

in IG in the dry season compared with that in the SF area. ß-Glucosidase activity decreased by 

around 71 and 85% in IG in the rainy and dry seasons, respectively, compared with that in the 

SF. 

Thus, the effect of erosion on soil enzymatic activity is more intense in gullies in the initial 

(IG) and intermediate (JG and MG) stages compared with those in the senile stage (SG). This 

is possibly related to greater stability of erosive processes in SG, in addition to the positive 

effect of natural regeneration on enzymatic activity in SG. Silva et al. (2018) emphasized that 

the quantity and the quality of substrate added to the soil was important for increasing 
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enzymatic activity. This allows for greater incorporation of organic matter, soil protection 

(physical barrier) against erosive processes, and increased stimulation of microbial activity. The 

enzymatic activity has been considered a good indicator of soil quality, reflecting the degree of 

quality achieved by a solo in the rehabilitation process (Silva et al., 2018).  

Table 3. Soil microbiological atributes in areas of gullies at different formation stages (IG – initial; JG 

- juvenile; MG – mature; SG - senile), secondary forest (SF), mid-stage regeneration pasture (MSR), 

and initial-stage regeneration (ISR), at a depth of 0–0.05 m in two seasons (rainy season, dry season), in 

Pinheiral (RJ). 

Areas 

FDA Acid phosphatase ß-Glucosidase BSR 

µgFluoresc g-1 SS hour-1 µmols pNP g-1 SS hour-1 µmols pNP g-1 SS hour-1 mg CO2  g-1 SS d-1 

Rainy Dry Rainy Dry Rainy Dry Rainy Dry 

SF 159.80 a* 115.81 a 7.19 a* 5.33 a 4.96 a 6.04 a 9.47 a 12.40 a 

MSR 152.92 ab* 119.05 a 5.67 ab 4.06 b 4.48 ab* 3.69 ab 7.74 a 8.45 abc 

ISR 149.43 ab* 90.49 b 4.15 ab* 3.04 bcd 2.23 cd 3.51 ab* 9.39 a 11.51 ab 

IG 64.86 b* 10.90 d 2.49 bc 2.03 d 1.43 d 0.92 b 8.99 a 5.23 abc 

JG 66.37 b* 7.28 d 4.15 ab* 2.33 cd 2.31 bcd 1.35 b 8.32 a 6.65 abc 

MG 48.61 b* 9.46 d 1.63 c 2.34 cd 1.62 cd 1.89 ab 4.37 a 4.45 c 

SG 110.13 ab* 44.07 c 2.63 ab 3.31 bc 3.66 abc* 2.28 ab 11.76 a* 6.73 abc 

Areas 

MBC MBN EE-GRSP T-GRSP 

mg Cmic kg-1 mg Nmic kg-1 mg g-1 soil 

Rainy Dry Rainy Dry Rainy Dry Rainy Dry 

SF 211.04 a 536.65 a* 211.04 a 536.65 a* 0.94 ab 1.86 a* 1.66 a 3.85 a* 

MSR 111.89 ab 312.33 ab* 111.89 ab 312.33 ab* 1.38 a 1.01 ab 2.84 a 1.77 ab 

ISR 48.46 ab 121.67ab 48.46 ab 121.67ab 0.63 abc 0.60 ab 1.44 ab 1.03 ab 

IG 45.54 b 79.29ab 45.54 b 79.29ab 0.31 abc 0.20 b 0.52 ab 0.22 b* 

JG 76.92 ab 52.31b 76.92 ab 52.31b 0.32 abc 0.22 b 0.68 ab 0.31 b* 

MG 37.86 b 67.13 ab* 37.86 b 67.13 ab* 0.08 c 0.28 b 0.16 b 0.35 b 

SG 66.74 ab 71.30 ab 66.74 ab 71.30 ab 0.19 bc 0.42 ab 0.78 ab 0.79 ab 

Means followed by equal letters in the column do not differ by the Bonferroni T or Kruskall Wallis test 

at 5%. 

* Indicates a significant difference between seasons by the Bonferroni T or Kruskall Wallis test at 5%.  

FDA - fluorescein diacetate hydrolysis; Basal soil respiration (BSR), microbial biomass carbon (MBC) 

and microbial biomass nitrogen (MBN); EE-GRSP = Easily extractable - Glomalin-related soil protein; 

T= Total - Glomalin-related soil protein. 

For all enzymes evaluated, there were strong positive correlations (r > 0.80, p < 0.01) with 

TOC and POXC. In general, the soil enzyme activities are strongly related to the content of 

organic matter and MBC (Maurya et al., 2020; Tiwari et al., 2019; Yuan and Yue, 2012; Gispert 

et al., 2013). Positive correlations were found between MBC (r > 0.70, p > 0.02) and the 

enzymes FDA, acid phosphatase, and β-glucosidase in both seasons. Silva et al. (2012), 

evaluated carbon and soil enzyme activity in soils under native vegetation, pasture, and 

agriculture in Pinheiral (RJ), and reported a significant positive correlation between the β-

glucosidase activity and the TOC of the soil; this pattern was confirmed in the present study. β-

Glucosidase activity is fundamental for the release of nutrients from organic matter, acting in 

the early stages of degradation of organic compounds, reducing molecular size and producing 

smaller organic structures (Tiwari et al., 2019; Tabatabai, 1994). β-Glucosidase activity has 

been used to evaluate soil quality under different management practices (Bhattacharyya et al., 

2021; Tiwari et al., 2019). 

Regarding the effect of the sampling period, FDA activity was higher in the rainy season 

compared with the dry season in all study units. Acid phosphatase activity varied between 
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seasons in the reference areas (SF and ISR) and in JG, with higher activity observed in the rainy 

season. Variation in ß-glucosidase activity was found in the MSR and SJ area, with higher 

activity in the rainy season, and ISR with higher activity in the dry season. Some studies have 

demonstrated that enzyme activity is also regulated by temperature, precipitation, and soil 

moisture content (Yang et al., 2017; Kittredge et al., 2018). 

Basal soil respiration (BSR), indicative of total microbial activity, did not vary between 

the gullies and reference areas during the rainy season (Table 3), while in the dry season, 

sediment production decreased the BSR by around 60% in the MG compared with the SF. The 

carbon (MBC) of soil microbial biomass was higher in the SF area compared with IG and MG 

in the rainy season, and JG in the dry season (Table 3). The nitrogen (MBN) of soil microbial 

biomass was higher in the SF area compared with IG and MG in the rainy season (Table 3). 

This can be explained by the higher intake of plant material in this area, providing greater soil 

coverage. This results in the accumulation of more organic material and nutrients (Table 2) for 

development of the microbial community (Alves et al., 2011). In contrast, in the initial stage 

gully, the absence of vegetation (Figure 2) together with the low carbon content and N (Table 

2) may have contributed to the lower values of MBC and MBN in both seasons.  

Generally, similar MBC and MBN values were observed between the SF and the pasture 

areas (MSR and ISR) and the senile gullies (Table 3). In the pastures, the organic matter content 

and possible dense root mass may favor the presence of microbial biomass in the rhizosphere 

(Lopes et al., 2010). In the senile gully (SG), the presence of vegetation may improve the 

incorporation of carbon and nitrogen into microbial biomass, with minor losses by erosion.  

No variations were observed in the levels of MBC, MBN, and basal soil respiration 

between the rainy and dry seasons in most study units (Table 3).  

Regarding the glomalin-related soil protein, no significant differences were observed 

between areas, for both fractions (easily extractable and total) in the rainy season, except the 

MG, which presented values lower than SF and MSR (Table 3). In the dry season, the highest 

values of GRSP (EE and Total) were observed in the reference areas, followed by SG with 

intermediate values, and with lower values the other gullies (IG, JG and MG) (Table 3). 

Significantly reduced levels of GRSP were found in gullies at different stages of formation (IG, 

JG, MG) (Table 3), with a 94% reduction in T-GRSP observed in the initial stage gully 

compared with the SF. This pattern could be related to the negative impact of erosion on AMF 

structures (hyphae and spores: structures that present glomalin in their composition). 

Conversely, higher values of GRSP in SF may be related to higher microbial activity, which 

may have impacted the rate of hyphae and arbuscular mycorrhizal fungi spore decomposition, 

and the consequent higher deposition of glomalin fractions. High correlations were observed 

between the GRSP fractions and variables related to soil microbial activity, such as the FDA 

(GRSP -T: r = 0.84, p = 0.03; GRSP -FE: r=0.81, p = 0.02) (dry and rainy season) and BSR  

(GRSP -T: r = 0.79, p = 0.03; GRSP -FE: r = 0.79, p=0.03) (dry season). According to Lutgen 

et al. (2003), the decomposition of hyphae should be considered for the increase in GRSP. 

Positive and highly significant correlations were found between the GRSP and TOC 

fractions and N (GRSP -T: r=0.98, p = 0.00; GRSP -FE: r = 0.96, p = 0.00) in soil in the dry 

season. GRSP is an important form of accumulated carbon and nitrogen in soil, since it contains 

high levels of these elements and is strongly correlated with soil aggregation (Sekaran et al., 

2021). Thus, reductions in the soil content of this protein lead to reduced soil quality. Positive 

correlations between glomalin and carbon, nitrogen, and soil aggregation have been found in 

several studies, which assessed different conditions of soil use and management, as well as 

degraded areas and the recovery process (Sekaran et al., 2021; Liu et al., 2020; Dai et al., 2013).  

No differences in GRSP were observed between the rainy and dry seasons in most study 

units (Table 3). Variations were observed only in SF, IG and JG. In the SF area, the highest 

GRSP levels (both fractions) were observed in the dry season, and in IG and JG, in the rainy 
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season for T-GRSP fraction (Table 3). Nogueira et al. (2016) in a forest system in the Atlantic 

Forest biome observed a pattern similar to that of the present study for the EE-GRSP, whose 

contents were higher in the dry season compared to the rainy season. On the other hand, these 

authors, in the same area, observed that the T-GRSP was higher in the rainy season compared 

to the dry season, as observed in IG and JG. This shows that the dynamics of the GRSP fractions 

can vary depending on climate changes within the same environments, and also in different 

environments, as observed in the present study. 

Based on dissimilarity between study units in terms of chemical attributes, total and 

oxidizable organic carbon, and the microbiological attributes of soils in gullies of different 

formation stages (IG, JG, MG, and SG) and the reference areas (SF, MSR, and ISR) in the rainy 

and dry seasons, a multivariate cluster analysis was performed (Figure 3). Three large distinct 

groups were formed in both seasons, which were separated at a maximum distance of about 

58% in the rainy and dry seasons (Figure 3). In both seasons, a greater distance between SF 

(58%) and the other study units was observed. In both rainy and dry seasons, greater similarity 

was observed between early, juvenile, and mature gullies, with a distance of up to 24% in the 

rainy season and 15% in the dry season, i.e. 76 and 85% similarity, respectively (Figure 3a and 

3b).  

The senile stage gully, in turn, formed a group with the ISR area during the rainy season, 

with a distance of 32% from the other gullies (Figure 3a). In the dry season, the distance 

between the SG and the other gullies was 25% (Figure 3b). Thus, SG is more differentiated 

from other gullies in relation to these soil attributes, which may be due to their format (“U” 

cross section, slightly regular contour line, walls with gentle slope) and the presence of 

vegetation cover in its entire extension (Oka-Fiore and Soares, 1976).  

 
Figure 3. Dendrogram of cluster analysis integrating the chemical attributes, total organic carbon, 

oxidizable organic carbon, and the soil microbiological attributes of gullies in different stages of 

formation (IG - initial; JG - juvenile; MG – mature; SG - senile), secondary forest (SF), mid-stage 

regeneration pasture (MSR), and initial-stage regeneration (ISR), at a depth of 0–0.05 m in two seasons 

(rainy season – ch; dry season - sc), in Pinheiral (RJ). 

Principal component analysis (PCA) revealed which variables contributed most to the 

grouping/separation of areas under study (Figure 4). Two main components for the chemical 

attributes, TOC and POXC, and the microbiological attributes (BSR, MBC, FDA, acid 

phosphatase, and β-glucosidase) of the soil were generated for both the rainy and dry seasons 

(Figure 4).  

In the rainy season, the distribution of the selected variables showed an accumulated 
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variance of 80.87% for axes 1 and 2; axis 1 was able to explain 63.80% and axis 2, 17.07% of 

this variance (Figure 4a). In the dry season, the accumulated variance was 81.71% for axes 1 

and 2. The first axis explained 62.90% and the second axis 18.81% of the variance (Figure 4b). 

 
Figure 4. Ordination diagram (A) rainy season; B) dry season; produced by principal component 

analysis of microbiological and chemical attributes of soil from gullies at different stages of 

formation (IG – initial; JI– juvenile; MG - mature, SG - senile), at a depth of 0–0.05 m in two 

seasons, in Pinheiral (RJ). MBC - microbial biomass carbon; MBN - microbial biomass nitrogen; 

BSR - basal soil respiration; T-GRSP – Total - glomalin-related soil protein; EE-GRSP – easily 

extractable - glomalin-related soil protein; FDA - fluorescein diacetate hydrolysis; TOC - total 

organic carbon; POXC - oxidizable carbon.  

As shown in Figure 4a and 4b (rainy and dry seasons, respectively), the areas presented 

different separations. In the rainy season the gullies and pasture were arranged in the lower (JG 

and MG) and upper (ISR, SG, and IG) left quadrants, while the SF and MSR areas were 

arranged in the lower and upper right quadrants, respectively. Most variables were positively 

correlated (r > 0.70) with axis 1, which was strongly related to the reference areas (MSR and 

SF). In the dry season, the IG, JG, and MG formed a group in the lower left quadrant, while the 

pastures and SF were arranged on the opposite side, correlating with most of the analyzed 

variables; this represents the changes that occurred in the chemical and microbiological 

properties of the soil during erosion. SG was close to axis 0, highlighting an intermediate pattern 

between the gullies in the earliest stages and the reference areas, suggesting that the 

rehabilitation of soil properties is more advanced.  

PCA was used to evaluate the distribution of gullies at different formation stages (Figure 

5) based on their chemical variables and the fractions of carbon and soil microbiological 

attributes evaluated in this study. During the rainy season, the distribution of the selected 

variables showed an accumulated variance of 76.01% for axes 1 and 2; axis 1 was able to 

explain 47.70% and axis 2, 28.31% of variance (Figure 5a). In the dry season, the accumulated 

variance was 84.96% for axes 1 and 2. The first axis explained 62.27% and the second explained 

22.69% of the variance (Figure 5b). In both seasons, the senile stood out from the other gullies 

and was located in the lower right quadrant. Conversely, gullies IG, JG, and MG were generally 

located in the left upper and lower quadrants (Figure 5a, b). Axis 1 was responsible for the 

separation between gullies, while most variables were positively correlated (r > 0.70) with this 

axis as well as the senile gully (SG). Thus, one can observe that SG is more stable, and thus the 

microbiological and chemical attributes of the soil differ from those in gullies at previous 

stages. This is probably related to the development of dense vegetation in SG, enabling 
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increased protection, soil carbon incorporation, and improved temperature and humidity 

conditions, which may stimulate the soil microbiota and the cycling of nutrients. 

 

Figure 5. Ordination diagram (a - rainy season; b - dry season) produced by principal component 

analysis of microbiological and chemical attributes of soil from gullies at different stages of formation 

(IG - initial; JG - juvenile; MG - mature, SG - senile), at a depth of 0–0.05 m in two seasons, in Pinheiral 

(RJ). MBC - microbial biomass carbon; MBN - microbial biomass nitrogen; BSR - basal soil 

respiration; T- GRSP – Total - glomalin-related soil protein; EE- GRSP - easily extractable - glomalin-

related soil protein; FDA - fluorescein diacetate hydrolysis; TOC - total organic carbon; POXC – 

oxidizable carbon. 

4. CONCLUSIONS 

Gullies in different stages of formation promote a decrease in soil fertility and modification 

of microbiological attributes, particularly when compared with secondary forest areas. 

Using multivariate PCA, the microbiological and chemical attributes of the soil were 

discriminated between gullies with distinct formation stages. Stabilization of erosion in SG 

favors the regeneration of these attributes when compared with gullies in the initial (IG) and 

intermediate (JG and MG) formation stages. 

The chemical attributes of total organic carbon; oxidizable organic carbon; FDA, β-

glucosidase, and acid phosphatase activity; MBC and MBN; BSR; and GRSP are good 

indicators for evaluating erosion stabilization in gullies. 
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