
Revista de Sistemas de Informação da FSMA
n. 26 (2020) pp. 10-30 http://www.fsma.edu.br/si/sistemas.html

A Survey on Solutions for Planted Motif Search
Challenging Instances

Deiviston S. Aguena, Câmpus de Coxim
Henrique Mongelli, Faculdade de Computação
Nalvo F. Almeida, Faculdade de Computação

UFMS – Universidade Federal de Mato Grosso do Sul

Abstract—In the gene expression process, a transcription
factor molecule will bind to a short substring in the promoter
region of a gene in order to start the transcription process.
This short substring, called motif, appear imperfectly conserved
over several genes promoter regions. The discovery of motifs
over a set of sequences representing the promoter regions is an
important problem in Bioinformatics. Pevzner and Sze, in 2000,
have introduced the planted (l, d)-motif search (PMS) problem
to find motifs in a set of sequences where l is the motif length
and d is the maximum difference between the motif found and its
occurrences in the set. Burlher and Tompa, in 2001, studied this
problem and, based on their studies, it was possible to classify
certain instances of the problem, considered more difficult, as
challenging instances. Since then, many approaches have been
proposed to solve PMS challenging instances, but there are still
limitations on the maximum size of instances supported by these
approaches. In this work we present a review of solutions for
PMS challenging instances.

Index Terms—PMS, Motif-discovery, PMS Challenging
instances, Motifs

I. Introduction

MOTIFS are short recurring patterns of biological
interest and they are found in genome sequences of

numerous species. They occur in regulatory regions such
as promoters and are related with the gene expression
process. In this gene expression process, a transcription
factor molecule will find a motif in the promoter region
to start the mechanism of gene expression. The motif
discovery plays an important role in gene expression
studies [73, 22].

The way motifs are conceptually modeled is the basis
for definition and formalization of search algorithms. For
example, a motif can be conceptually modeled as a simple
word, i.e, a string of symbols. The algorithm searches for
occurrences of a substring of the same size in a set of
biological sequences to verify if this word is a motif.

Another way would be to model the motif as an matrix
of dimensions Σ x l, where Σ is the alphabet size and l is
the motif length. The search algorithm fills the matrices
with the frequency of each symbol found in substrings of
the set of biological sequences. A function is used to score
and classify the matrices and the algorithm tries to locate
the motif from the matrices with higher scores.

Corresponding Author: deiviston.aguena@ufms.br

Previous reviews

Due to the importance of the motif search problem,
numerous approaches have been proposed. In order to
improve the understanding of these approaches, several
survey papers have been published, each one covering
different aspects of the approaches.

In 1997, Brazma et al. [7] presented a survey on methods
for motif search in biological sequences. They proposed to
include these methods in a set of formalisms of the motif
search problem, evaluations and classifications of pattern
languages and algorithms approaches.

A very comprehensive review on the initial development
of motif models and motif search problems is given by
Storno (2000) [70].

In 2005, Hu, Li and Kihara [38] presented a set of
prediction performance measures for five motif discovery
algorithms to conduct an comparative evaluation in terms
of their prediction accuracy, scalability and the reliability
of their significance score, using datasets from Escherichia
coli RegulonDB1.

Tompa, Li, et al. [75], in 2005, performed an assessment
of 13 computational tools for discovery of transcription
factor binding sites. Experts were chosen to test each tool
with data sets created from known binding sites. In this
way each tool could be tested with a good setting of
parameters.

In 2006, another survey on motif search methods was
presented by Sandve and Drabløs [67]. This survey also
uses an integrated framework to classify the algorithms,
according to the organization of the genome in four
hierarchical levels: single motifs, composite elements, genes
and genomes.

Das and Dai [14], in 2007, reviewed the existing
algorithms to motif finding and classified them into three
classes: i) algorithms based on promoter sequences of
coregulated genes; ii) algorithms based on phylogenetic
footprinting; and iii) algorithms based on promoter
sequences of coregulated genes and phylogenetic
footprinting.

1RegulonDB is the primary database on transcriptional regulation
in Escherichia coli K-12 containing knowledge manually curated
from original scientific publications. RegulonDB is available at
http://regulondb.ccg.unam.mx/.

10

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

All surveys presented between 2014 and 2018, addressed
motif find tools for detecting binding site motifs in
Chromatin Immunoprecipitation Sequencing (ChIP-Seq)
data. Tran and Huang [76], in 2014, provided a review
and comparison of nine motif search Web tools that
are capable of detecting binding site motifs in ChIP-Seq
data. In their work were presented capabilities, advantages
and limitations of these tools. Lihu and Holban [49],
in 2015, reviewed seven ensemble tools designed to
process ChIP-Seq data and observed their limitations and
strengths. Liu et al. [50], in 2018, provided an algorithmic
perspective of de novo cis-regulatory motif finding tools
based on ChIP-seq data. In that study they reviewed
existing motif-finding methods for ChIP-seq data from
an algorithmic perspective to provide new computational
insight into this field.

The most recent reviews address motif search algorithms
in general and attempt to classify them into different
groups, as well as to categorize different aspects among
them. Hashin et al. [33], in 2019, presents a general
classification of motif discovery algorithms in four
approaches: enumerative, probabilistic, combinatorial and
nature inspired. Mohanty and Mohanty [53], in 2019,
presents a general review of the genetic algorithms used
by researchers in the last decade to search for motifs in
biological sequences, their strengths and weaknesses, and
the progress in this domain.

The common points observed by most of the authors of
these surveys were that, each of the reviewed algorithms,
when published, used very different computational
experiments. The input set, the models used, and the
ways in which the results were presented varied greatly,
making it difficult to compare different implementations
and provide an effective guidance to their readers.

Planted Motif Search Problem

In this work we focus on a variant of motif search
problem called planted motif search problem (PMS
for short), also known in the literature by (l, d)-motif
search. For PMS some input instances are considered
more difficult to solve. These instances are know on
literature as challenging instances. Specifically, we present
a review focused mainly in algorithmic solutions that offer
guarantees of finding all motifs in challenging instances.
We also use the challenging instances as benchmark to
compare the algorithmic solutions presented.

PMS was introduced by Pevzner and Sze in 2000 [58].
The authors stimulated searching solutions by observing
that none of the best existing algorithms, at that time,
was able to find a motif of length l = 15, with d = 4
random mutations in a set of t = 20 sequences of DNA
with m = 600 nucleotides each. They used an independent
and identically distributed (i.i.d.) synthetic sample data
where, in each sequence, the nucleotides were equally likely
to occur. Then, instances of a motif with length l and
d random mutations were planted at random positions
in each of these sequences. Considering these variables l

and d, we call this input as (l, d) instance of PMS. The
specific (15, 4) instance of problem proposed by Pevzner
and Sze [58], became known in the literature as a Challenge
Problem. Pevzner and Sze’s strategy, using this synthetic
sample data with a planted signal, created a controlled
testing environment to compare the pros and cons of
different algorithmic approaches for PMS.

For the sake of simplicity, in the remainder of the text,
we will use the Sp notation to refer to a sample set (i.i.d.)
containing 20 sequences of 600 nucleotides in length and
with the l-length motif instances planted with d random
mutations. Also, if there will not be an explicit mention of
the input set, we will always refer to an input sample like
Sp.

In 2001, through the probabilistic analysis of Buhler and
Tompa [8], it was possible to have a more comprehensive
notion regarding of PMS instances. According to them,
for certain instances, considering the same input set, but
for small values of d, the problem was quantitatively
different. The probabilistic analysis allowed to classify
certain instances, considered more difficult, as challenging
instances. The basis for classifying an instance as
challenging is related to the expected number of random
(or spurious) patterns that can occur in the sequence
set of this instances. Buhler and Tompa describe that
if the values for t, m and l are fixed, then there is an
upper limit value for d, for which it is unlikely that any
algorithm can distinguish a motif planted from a motif
found by chance (or spuriously). Thus, the concept of
challenging instance can be described as follows (adapted
from Nicolae, 2016 [54]):

Definition 1.1: Challenging instance: Given t m-length
sequences over the Σ alphabet. An (l, d) instance is a
challenging one if d is the largest integer for which the
expected number of l-length motifs that would occur in the
input randomly (or spurious) does not exceed the value of
a constant.

The expected number of l-length spurious motifs, with
at maximum d mismatches, which can occur, at least
once, in each of the t DNA m-length sequences, can be
determined by the following equation (Bulher and Tompa,
2001 [8]):

E(l, d) = 4l(1− (1− pd)m−l+1)t, (1)

where pd is the probability that an l-length string occurs,
with at most d mismatches, at a given position of a random
sequence. The value of pd can be calculated as (Bulher and
Tompa, 2001 [8]):

pd =

d∑
i=0

(
l

i

)(
3

4

)i(
1

4

)l−i

. (2)

Thus, for a sample Sp, that have t = 20 nucleotide
sequences (thus |Σ| = 4) of length m = 600 each,
and for a constant equal to 500, some examples of
challenging instances are: (9,2), (11,3), (13,4), (15,5),
(17,6), (19,7), (21,8), (23,9), (25,10), (26,11), (28,12),
(30,13) and (32,14). The values t = 20, m = 60 and

11

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

the constant 500 have been used by several authors in
the literature allowing a basis for comparison of their
algorithms.

Definition 1.2: A string x = x[1] ... x[l] of length l, over
an alphabet Σ, (x[i] ∈ Σ, 1 ≤ i ≤ l), is an l-mer.

Definition 1.3: Given two l-mers x and y, the Hamming
distance between x and y, denoted by dH(x, y), is the
number of positions at which the symbols in x and y differ.

Definition 1.4: Given an l-mer x, we define the
d -neighborhood of x, denoted by Bd(x), to be
{y | dH(x, y) ≤ d}. We refer to an individual l-mer
x′ ∈ Bd(x) as d -neighbor of x. The number of d-neighbors
of x can be calculated by |Bd(x)| =

∑d
i=0

(
l
i

)
(|Σ| − 1)i.

We also write V(l, d) to refer to |Bd(x)|.
Formally the PMS can be defined as follows:
Definition 1.5: PMS: Given a set of sequences S =
{S1, ..., St} over an alphabet Σ such that |Si| = m, 1 ≤ i ≤
t, and two positive integers l and d, that 0 ≤ d ≤ l ≤ m,
the Planted (l,d)-Motif Search problem is to find all l-mers
M such that exists, at least one occurrence M ′ of M in
each Sk, 1 ≤ k ≤ t, where dH(M ,M ′) ≤ d. The string
M is called (l, d)-motif of S and M ′ is called an instance
of M . We refer to an instance of the problem as (l, d)
instance.

PMS is known to be NP-hard [24]. The most
common approaches to NP-hard problems use from exact
algorithms developed for small and specific instances,
for which the solution can be found in a reasonable
computational time, to approximate algorithms, where
it is guaranteed that the solution found approaches the
optimum by a determinate factor, or heuristics, which are
strategies for which neither guarantees to find the optimal
solution, nor its proximity with the optimal solution,
but the computational time is quite reasonable and the
solution is empirically acceptable.

There are many heuristic algorithms for the PMS
problems. For instance, GibbsDNA by Lawrence et
al. (1993) [47], MEME by Bailey and Elkan (1994) [2],
CONSENSUS by Hetz and Storno (1999) [35],
WINNOWER and SP-STAR by Pevzner and
Sze (2000) [58], PROJECTION by Buhler and
Tompa (2001) [8], MULTPROFILER by Keich
and Pevzner (2002) [41], PatternBranching and
ProfileBranching of Price et al. (2003) [61], VINE
by Huang et al. (2011) [39] and CEN by Zhang et
al. (2013) [80]. However, they do not offer guarantees
that they find all motifs and had shown historically low
performance with challenging instances.

Exact algorithms have exponential execution time in
the worst case, due to the complexity of PMS. However
the great advantage of these algorithms is that they
always find all motifs. For this reason, they may be
preferred by biologists, since for them, the motifs found
may be much more important than the algorithm runtime.
Over time, several exact algorithms have been proposed,
solving challenging instances increasingly larger. However,
there are still limitations in the maximum size of the
instances that these algorithms are able to solve in an

acceptable amount of time. Thus, for larger instances,
these algorithms need to be improved or new ones must
be developed.

In this paper we describe exact algorithmic solutions
that were able to solve increasingly larger challenging
instances. The main contribution is to summarize and
present chronologically the evolution of the solutions used
for PMS challenging instances. We also hold a discussion
about the main methods used. At the end, we present
a conclusion about this theme. The historical review is
presented in Section II, the discussion and conclusion are
presented in the Section III and Section IV, respectively.

II. Historical review

ACCORDING to Abbas et al. [1] there are two
combinatorial formulations involving the problem of

identifying motifs. The first is known in the literature by
Consensus Motif and was first appeared in 1984 in the
work of Waterman et al. [77]. The second was presented
in 2000 by Pevzner and Sze [58], which deals with the
problem of finding the planted (l, d)-motifs, as described
in Section I.

In this section we describe, in chronological order, the
main results presented to solve ever greater challenging
instances in the literature. In these results, unless
otherwise described, we will always refer to exact
algorithms and the sample Sp as an input set.

An important data structure used in the algorithms
is the tree. Two types of trees are used by some of
the PMS algorithms, the Lexicographic Tree and the
d-neighborhood Tree.

A Lexicographic Tree, denoted by T , is a rooted tree
whose nodes, except leaves, have exactly |Σ| branches.
Each branch, from the root to the leaves, is labeled with
a symbol of Σ and is ordered lexicographically from the
parent node. A tree, with depth p, has exactly |Σ|p leaves.
A path, from the root to the leaf, lists a string of symbols
with length p, consisting of the symbols labeled by the
branches in the path. There are |Σ|p distinct paths that
uniquely enumerate |Σ|p strings of length p. Figure 1
presents a lexicographic tree T with alphabet Σ = {0, 1}
and depth = 3. This tree has 23 distinct paths, each one
enumerating a distinct string of symbols with length = 3.
In the figure, the path highlighted by dashed lines lists the
string ‘010’.

0

0

0 1

1

0 1

1

0

0 1

1

0 1

Fig. 1. Tree T with alphabet Σ = {0, 1}. The Tree have depth
= 3 and 23 distinct paths from the root to the leaves. The path
highlighted by dashed lines lists the string ‘010’.

12

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

A d-neighborhood Tree of an l-mer x, denoted by Td(x),
is a rooted tree of depth p = d, where each node, with
depth p′, 0 ≤ p′ ≤ p, represents an l-mer x′ neighbor
of x, such that dH(x, x′) = p′. Thus, the root and its
descendants form the set Bd(x). Formally, Td(x) can be
constructed by the following rules (adapted from Dinh et
al., 2011 [21]):

1. Each node in Td(x) is a pair (s, i) where s = s[1] ...
s[l] is an l-mer and i is an integer, 1 ≤ i ≤ l, such
that s[i] 6= x[i].

2. The root of Td(x) is (x, 0) and the depth of Td(x) is
d;

3. A node (s, i) ∈ Td(x) is the parent of node (s′, i′) ∈
Td(x) if and only if

(a) i′ > i.
(b) s[i] 6= s′[i′].
(c) s[j] = s′[j] for any j 6= i.

Figure 2 illustrates the tree Td(x), with alphabet Σ =
{0, 1}, x = 1010 and d = 2. The value i is represented
on each node by the highlighted symbol. It is easy to see
that each node on the second level contains exactly two
differences from the l-mer of the root, which are exactly
the symbols highlighted in the path from these nodes to
the root.

1010

0010

0110 0000 0011

1110

1100 1111

1000

1001

1011

Fig. 2. Tree T2(1010) with alphabet Σ = {1, 0}. The value i
is represented on each node through the highlighted symbol. For
example, i = 2 at node 1110, i = 3 at node 0000. Adapted from
Dinh et al., 2011 [21].

In the following subsections, a short title will highlight
the size of the most challenging instance solved to date
and the corresponding year or period. If the instance size
is omitted in the title, it means that there has been no
significant improvement over the previous period.

(6,2) Instance - Consensus sequence (1975)

The first work we highlight is the publication presented
by Pribnow in 1975 [60]. Pribnow was able to visually
determine, from a few sequences, a well-conserved ‘TATA
box’ sequence centered around 10 base-pairs (bp),
upstream of the transcription initiation site of Escherichia
coli promoters. It was a six-base long consensus sequence
with no more than two substitutions for each occurrence in
the set, i.e., a typical (6,2) instance. Pribnow observations
were only possible because there were a small number
of sequences and they could be approximately aligned
because the start of the transcription was known. However,
more sequences became available and less information was
available about them, so it became very difficult to visually

determine the consensus sequence (or motifs), making
computational algorithms essential [70].

Computer analysis origins (1977–1982)

There are mainly two works to be highlighted in
the period from 1977 to 1982. The first one, in 1977,
by Korn et al. [43], as far as we know, was the first
paper describing a computer program that helps to find
over-represented substrings with possibly local mutations
(or motifs). The second, by Queen et al. [62], in 1982,
describes a computational routine to be added to Korn et
al. program [43]. This routine performs an algorithm that,
as far we know, is the first exact algorithm to search
(l, d)-motifs in a set of sequences. This algorithm tries to
find motifs in a set of sequences S = {S1, ..., St} where
|Si| = m, 1 ≤ i ≤ t, searching for l-length patterns p,
such that at least q of the sequences contain an l-mer
p′, occurrence of p, not differing from p by more than d
symbols. The algorithm finds the motifs using an array Ri

of size |Σ|l, for each sequence Si, 1 ≤ i ≤ t, to represent
all possible l-mers. Then the algorithm selects every l-mer
x ∈ Si and, in the corresponding array Ri, increases
the value of all indices referring to the d-neighbors of
x. The algorithm uses an additional array A of size |Σ|l
to construct the final result list. The array A is filled
simultaneously with the others arrays Ri. An index in the
array A has the value incremented by 1 if the same index in
another array Ri receives a value greater than 1. When an
index in the array A becomes equal to q, the corresponding
l-mer of this index is added to a result list. The time
complexity is O(tmlV(l, d)) and space is O((t + 1)|Σ|l),
becoming prohibitive for large values of l.

Index Based (1985)

Galas et al. [30], in 1985, have presented an exact
algorithm to search (l, d)-motifs. This algorithm tries
to find motifs searching for common words and their
neighbors, which are approximate correspondences of
these words over a window of possible alignments.
This is an implementation and application of the work
published previously [77], when the authors presented a
mathematical method to solve in general the problem of
detecting small unknown patterns in a set of sequences.
To extract the motifs, the algorithm uses one array of
integers A with size |Σ|l to represent all d-neighbors. Each
index of A corresponds to a possible l-mer of Σ and the
value at the index corresponds to the number of sequences
that contain at least one d-neighbor of this l-mer. The
algorithm reads each index i of A and applies a function
that computes the d-neighborhood of the l-mer referenced
by i and the number of sequences that contains at least
one occurrence of an d-neighbor of this d-neighborhood. At
the end, an scan in A reveals which indices had value equal
to t, i.e., which are (l, d)-motifs of the input sample. The
time complexity is O(|Σ|ltmV(l, d)) and space is O(|Σ|l),
becoming prohibitive for large values of l.

13

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

Storno [70] describes the algorithm of Galas et al. to
be the first algorithm for (l, d)-motifs finding, however,
according to our research we believe that the first
algorithm for (l, d)-motifs finding is due to Queen et
al. (1982) [62].

Heuristic and Enumerative methods (1985–1997)

From 1985 to 1997, while more DNA sequences
became available, other methods have emerged [70],
most of which were heuristics employing statistical or
combinatorial tools, e.g., Bailey and Elkan (1994) [2],
Roytberg (1992) [64], Frech et al. (1993) [28], Lawrence et
al. (1993) [47]. These methods look for subtle patterns in
unaligned DNA sequences allowing, but not necessarily
setting, a maximum number of mismatches present in
the model. In addition, methods based on enumeration
have also been proposed, e.g., Pesole et al. (1992) [57],
Staden (1989) [69], Tompa et al. (1999) [74]. Algorithms
based on these methods offer guarantees of finding the
motifs with the highest score in the input set, but
unfortunately they became impractical for long motifs
or when many mutations are allowed as in challenging
instances. A good review on approaches with motif search
in this period can be find in Brazma et al. (1998) [7].

Suffix tree (1998)

In 1998, Sagot [65] have presented an exact algorithm
named SPELLER that extracts motifs from a set of
sequences S, with |S| ≥ 2, and these motifs must occur,
with at most d mismatches, in 1 ≤ q ≤ |S| distinct
sequences of the set. The SPELLER tries to find the
(l, d)-motifs by increasing lengths of a simulated traversal
of a virtual lexicographic tree T . The virtual term was used
because this tree was not properly maintained in memory,
but only a traversal that uses recursion. This traversal was
limited to the l depth and by the validations performed
to prune branches that do not list a valid motif. These
validations were performed using a generalized suffix tree
GT , previously constructed from the sample sequences,
and occurrences stored during the traversal. The traversal
in T , in the worst case, explores all d-neighborhood in
S. In traversal, the main operations performed were the
query and maintenance of GT . In this way, the algorithm
complexity time becomes O(mt2V(l, d)). In terms of space
requirement, only very little sequence information was
stored on each node of GT . If a bit vector with the same
size w of a word machine was used for this storage, then
the space complexity will be bounded by O(mt2/w).

(15,4) Instance - Challenge Problem (2000)

In 2000, Pevzner and Sze [58] have introduced the
Planted (l, d)-motif Problem (PMS for short), to find
similar patterns in sequences which represent the promoter
region of co-regulated genes, where l was the length
of the pattern and d was the maximum Hamming
distance around the similar patterns. This patterns in
DNA sequences are know on biology field as motifs.

The authors also defined the Challenging Problem, a
specific (15,4) instance of the PMS as: “find a signal
in a sample of sequences, each 600 nucleotides long
and each containing an unknown signal (pattern) of 15
length with 4 mismatches”. They observed that, at that
time, the best available algorithms, like CONSENSUS by
Hetz and Storno (1999) [35], GibbsDNA by Lawrence et
al.(1993) [47] and MEME by Bailey and Elkan (1994) [2],
have failed to find such signal planted in an i.i.d. sample
even with nucleotides with the equal probabilities to
occur. Pevzner and Sze have presented two heuristic
algorithms that successfully solved the (15,4) instance, the
WINNOWER and the SP-STAR.

Briefly, WINNOWER represents all l-mers as vertices
of the input sample in a t-partite graph G. Each
partite contains m − l + 1 representing all l-mers in an
input sequence. Two vertices from different partites, and
consequently from different input sequences, are linked
if the Hamming distance between them is at most 2d.
The key observation is that all vertices that are motifs
instances of a motif M form a clique. A clique in a
graph is a set of vertices any two of which are connected
by an edge. WINNOWER tries to retrieve the planted
(l, d)-motif looking for a click of size t. The strategy is
systematically to delete spurious links between the vertices
to find the cliques.

The SP-STAR treats every l-mer in the sample as
potential motif. In order to construct an initial model, it
selects every l-mer x in the sample and finds the closest
match of x from every l-mer y belonging to other input
sequences, using a sum-of-pairs scoring function. Then, the
initial model was refined iteratively to converge on a good
motif.

(14,4) Instance - Probabilistic Analysis (2001)

In 2001, Buhler and Tompa [8] presented a heuristic
algorithm called PROJECTION. This algorithm improved
the scoring strategy of existing algorithms using random
projections of the input to find the motif.

Random projection is an approach to partitioning and
indexing the input. According with authors, this approach
had been used in previous work, in vision and geometry,
and in bioinformatics fields, both focused on the detection
of similarity of pairs of sequences. In PROJECTION, these
approach was extended to address the multiple sequence
alignment problem.

Briefly, PROJECTION randomly chooses k from the l
positions of the l-mers of input, to group them into 4k

buckets, according to the similarity of the projections, i.e.,
according to the similarity of the bases of the l-mers in
these k positions. For large enough buckets, the motif
is found by using an expectation maximization (EM)
step, according to the idea given by Lawrence and Reilly
(1990) [46]. The idea of the algorithm is that buckets
with large numbers of l-mers have a high probability of
containing the desired motif.

PROJECTION was able to successfully solve the
instances (14,4), (16,5), and (18,6), which the algorithm

14

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

of Pevzner and Sze (2000) [58] failed to solve, and
all considered more difficult than the (15,4) instance.
However, they observed that PROJECTION was not able
to retrieve motifs in very similar instances, such the
instances (13,4), (15,5) and (17,6). In order to investigate
these fails, they performed a probabilistic analysis on
different instances to calculate the expected number of
motifs that could occur by random chance (or spurious)
E(l, d) (see Equation 1). Then, they concluded that,
considering the same input set, for example, for the sample
Sp, and for small values of d, the problem involving planted
motifs on certain instances was quantitatively different
from others. For example, for the instances (l + 1, d) and
(l, d + 1), as we can see on Table I, while the expected
number of spurious motifs for the instance (l + 1, d) is
insignificant, the expected number of spurious motifs for
the (l, d + 1) instance is high, each one so well preserved
as the planted motif. This means that if the expected
number of spurious motifs is too small, it is likely that the
planted motif stands out in the input sample sufficiently
to be found with less difficulty. On the other hand, if
the expected number of spurious motifs is too high, then
any algorithm will probably not distinguish a spurious
motif from a planted motif. In this way, the challenging
instances can be considered as a limit between these two
scenarios. Table I presents, for the input sample Sp, some
(l, d) challenging instances (see definition in Section I) and
the expected number of spurious motifs for them. For
comparison purposes, the expected numbers of spurious
motifs for instances (l, d + 1) and (l + 1, d) are also
presented.

TABLE I
Comparison Between the Number of Expected Spurious

Motifs E(l, d + 1), E(l, d) and E(l + 1, d).

(l, d) E(l, d + 1) E(l, d) E(l + 1, d)
(9,2) 2.4x105 1.6 6.1x10−8

(11,3) 3.3x106 4.7 3.2x10−7

(13,4) 3.2x107 5.2 4.2x10−7

(15,5) 1.8x108 2.8 2.3x10−7

(17,6) 4.8x108 0.88 7.1x10−8

(9,2) Instance - NP-hardness of PMS (2002-2004)

With the work of Buhler and Tompa (2001) [8] it
was possible to have a better understanding about the
instances of PMS, in particular, regarding challenging
instances. In the period from 2002 to 2004, new algorithms
were proposed, some as extensions of existing algorithms
and others combining different approaches. However, only
the challenging instance (9,2) was solved in this period.
Briefly, we report the main occurrences, including the work
of Evans et al. (2003) [24] regarding NP-completeness of
PMS.

In 2002, Keich and Pevzner [41] presented the heuristic
algorithm called MULTIPROFILER. This algorithm has
a hybrid approach that combines the use of pattern-driven
and sample-driven techniques.

In the pattern-driven approach all 4l patterns of size l
are tested with the input sample. The problem with this
approach is the cost associated with exhaustive search in
4l patterns. To avoid this prohibitive set of 4l patterns,
other algorithms generates a smaller set of seeds patterns
whose neighborhood are then explored by local searches.

In the sample-driven approach the motif is found
directly in the sample. Algorithms, that use the
sample-driven approach, select l-mers from different
sample sequences, then construct a multiple alignment to
evaluate the similarities among them.

In general, these algorithms use some strategy to
limit the search space and avoid the test of all (m −
1 + 1)t possible alignments (considering a sample with
t sequences of size m). The problem is that if the
strategy used is too restrictive, it may fail to find subtle
patterns, otherwise it may turn the search space as
impractical as pattern-driven approaches. Then, because
the pattern-driven approach uses high time consumption
and the sample-driven approach often fails to find subtle
patterns, they have developed a combinatorial algorithm
MULTIPROFILER that extends the search capabilities of
the sample-driven approach and avoids the computational
complexity of the pattern-driven approach.

The authors highlighted two new ideas behind
MULTIPROFILER. The first was to use the neighborhood
of each l-mer in the sample with a possible dictionary that
suggested how to ‘spell’ the motif. The second was the use
of multi-positional profiles to improve the filtering between
random words and possible motif occurrences in sample.

The authors have used the best algorithm at the time,
the PROJECTION by Buhler and Tompa (2001) [8],
to compare with MULTPROFILER. In the tests
performed, MULTIPROFILER achieved better results
than PROJECTION on searching for (15,4)-motifs in
an input set containing 20 sequences of 2000 and
3000 bases length, finding the planted motif respectively
99% and 98% of the time. The authors also report
that MULTIPROFILER was able to find the planted
(9,2)-motif, 100% of the time, in a set of 20 sequences
containing 600 bases length, becoming the first algorithm
capable of finding (l, d)-motifs in a challenging instance. A
more general analysis of MULTIPROFILER can be found
in Keich and Pevzner (2002) [42].

In other work, in 2002, Eskin and Pevzner [23]
have proposed a new exact algorithm called MITRA
(MIsmatch TRee Algorithm), and two implementation
versions, the MITRA-Count and MITRA-Graph. The
MITRA-Count uses similar strategy to that employed by
Sagot (1998) [65] for SPELLER and the MITRA-Graph
uses similar techniques to those used by Pevzner and
Sze (2000) [58] for WINNOWER.

In general, MITRA tries to find (l, d)-motif using
simulated traversals in a virtual tree T , where the branches
are labeled with symbols of Σ = {A,C,G, T} and the
nodes are used to store information about occurrences in
traversal.

15

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

In MITRA-Count, the idea is that all l-mers in the
sample could be indexed by the arrays representing the
nodes in T . At the beginning, each node immediately
linked with the root stores an array that indexes all l-mers
of the input. In this array, each index is set with 0 value
if the first symbol of the l-mer indexed by the index is
equal to the labeled symbol in the branch, and 1 otherwise.
Then, a node is selected and expanded into |Σ| children
nodes, each one linked with parent by a branch labeled
by distinct symbols of Σ. Each child node stores a copy of
the array (of the parent node). The indices of this copied
array are updated by checking the branch symbol with
the p-th symbol of the l-mers referenced by these indices,
such that p was the level of the child node. If the symbols
are equal then the index value is maintained, otherwise it
is incremented by one. Each index that reached value v,
where v > d, is eliminated from the array. This exploration
process in depth is finalized when one of the two situations
occurs: if the level l is reached, and in this case the motif is
found; or if there is no l-mer of any sequence being indexed
by the array.

MITRA-Graph, instead of using an array for counting
mismatches as in MITRA-Count, on each node of T a
graph G is implicitly constructed. In these graphs, it
performs checks to try to remove spurious edges in a
process similar of WINNOWER. The main innovation is
that MITRA knows the prefix of the motif it is looking
for, while WINNOWER did not. In MITRA-Graph, as
the depth advances in T , it uses p, the prefix formed in
the path, to extend the pairwise filter of WINNOWER
and remove larger amounts of spurious edges in G.
The MITRA filter extension works as follows. Given α
substitutions that occurs from position k+1 to position l,
k ≤ l, between two l-mers x and y, and dx the number
of substitutions between p and x, from position 1 to
position k, and dy the number of substitutions between
p and y, from position 1 to position k. The extended filter
consists of removing any edges between {x, y}, such that
dx+ dy + α ≥ 2d.

Although the complexity of time and space has not
been discussed for MITRA, as well as SPELLER, the
time complexity was proportional to neighborhood size,
O(tmlV(l, d)), because of the exhaustive enumerative
approach. The space complexity was proportional to the
input set O(tml), since only information about the l-mers
of the input set was stored.

In tests reported by authors, both variants of MITRA
were able to solve difficult instances such as (14,4),
(16,5) and (18,6). In addition, the graph-based variant
MITRA-Graph was able to solve larger instances such
as (28,8) and (30,9). In this period, others graph-based
approaches have been proposed, e.g., Liang et al.
(2004) [48], Sze et al. (2004) [71]. However, only
improvements in the average runtime of the same instances
reported by MITRA-Graph were obtained and no solution
was reported for more difficult instances.

MITRA algorithm was also able to find structured
motifs2, also known as compound motifs. Marsan and
Sagot (2000) [52] were one of the first authors to
address the problem of extracting structured motifs.
Other approaches have been proposed by several authors,
e.g., Helden et al. (2000) [34], Liu et al. (2000) [51],
GuhaThakurta and Storno (2001) [31], Favorov et
al. (2005) [26], Carvalho et al. (2005) [9], Pisanti et
al. (2006) [59], Zhang and Zaki (2006) [81], Zhou et
al. (2006) [82], Federico et al. (2009) [27]. The problem
of searching for structured motifs will not be covered in
this work, however the works referenced above constitute
a good initial basis.

Evans, Smith and Wareham [24], in 2003, have used
techniques from parameterized complexity to assess
non-polynomial time algorithmic options and complexity
for the Common Approximate Substring (CAS) Problem.
Through their analyses it was possible to identify which
parameters of the problem should be restricted and which
non-polynomial time algorithms can be used, in addition
to parameterized reductions to prove the inclusion of the
problem as a member of the NP-hard class.

The CAS problem is essentially the PMS problem when
Σ = {A,C,G, T}. The PMS is also very similar to the
Closest Substring problem, also NP-hard [45, 44]. Some
authors refer to Closest Substring problem to relate the
PMS to the NP-hard class. The Closest Substring problem
is essentially the PMS problem where the aim is to find
the smallest d for which there exists at least one motif.
In this way, the Closest Substring problem can be solved
by a linear number of calls to PMS. Therefore, there is a
polynomial time reduction from Closest Substring to PMS,
which means that the PMS problem is also NP-hard.

(15,5) Instance - Voting (2005)

Chin and Leung [12], in 2005, presented the exact
algorithm VOTING. We highlight this algorithm because
it was the first to report the solution of the challenging
instances (11,3), (13,4) and (15,5). VOTING was designed
with the following observation. Assume that Nd(S1) is
the set of all d-neighbors of l-mers in S1, then note that
any (l, d)-motif of S is necessarily contained in Nd(S1),
as well in Nd(Si) ∀i, 1 < i ≤ t. The idea is to explore the
d-neighbors of all input sequences, then determine through
votes the common elements among them.

Briefly, the algorithm iteratively explores each
d-neighbor of each l-mer in each sequence to compute
the votes. Two hash tables are used to control the votes.
The hash table R stores, for each d-neighbor, if it has
already received a vote from the Si, 1 ≤ i ≤ t. The hash
table V store, for each d-neighbor, the total number of
sequences that has voted for it. Finally, a scan verifies
which d-neighbor has received votes from all t sequences.

2Structured motifs as described by Sagot [52], are ordered
collections of p ≥ 1 “boxes” (each box corresponding to one part
of the structured motif), substitution rates (one for each box) and
one interval of distance (one for each pair of successive boxes in the
collection).

16

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

The time complexity was O(tmV(l, d)) since all
d-neighbors of the sample were explored. The space
complexity was O(mV(l, d)) since all d-neighbors of (m−
l + 1) l-mers of the first sequence required to be stored.
Considering that each entry in V and R tables stores
an integer of 2 bytes, for instance (15,5) it would
require approximately 2 GB of memory, just to store
the two tables. For the instance (17,6) it would require
approximately 12 GB of memory, makes the memory
requirement not practical.

To improve space complexity, a proposed approach was
to split all l-mers of the sample into groups, where all
l-mers that shared the same suffixes with size l′, l′ ≤ l,
were stored into the same group. Then, each group could
be processed separately. With this approach, the space
complexity would be reduced to O(tmV(l−l′, d)), while the
time complexity would increase to O(tmV(l, d) + tm4l

′
).

Note that, the total neighborhood generated will be the
same, but the l-mers in input sequences will be read
4l

′
times. The authors tested VOTING algorithm with

this approach and reported that it is able to solve the
challenging instances (9,2), (11,3), (13,4) and (15,5), with
execution time, respectively, 0.4 seconds, 8.6 seconds, 108
seconds and 22 minutes, using a computer with 2.4 GHz
processor and 512 Mb RAM.

Another approach described by the authors involved
the use of projections, where instead of considering all
positions of the l-mers, the algorithm considered only l′

of the l positions of the l-mers to find motif (similar
method as the used by Buhler and Tompa (2001) [8]).
The computation of votes was modified to considering
only these l′ positions. Based on these votes the modified
algorithm could with high probability find the motif of
length l. This version of VOTING was able to solve
the same instances reported for the previous version. In
addition, it was reported the solution of non-challenging
instances (20,7), (30,11) and (40,15) with success rate over
95% and execution time of maximum one day.

Rajasekaran, Balla and Huang [63], in 2005, presented
the exact algorithms PMS1 and PMS2. The observation
is that both algorithms are designed to search instances
M ′ of the (l, d)-motif in the sample, such that the
dH(M ′,M) is exactly d instead at most d. Then we use the
d∗-neighborhood instead of d-neighborhood (as described
in Section I, Definition 1.4) to refer that restricted
neighborhood where only neighbors that has exactly d
mismatches from the l-mers in the sample are considered.

Briefly, PMS1 worked as follows. First, all the
d∗-neighborhood of S1 are generated and stored into set
M , then M are lexicographically ordered (in time O(l) as
presented by Horowitz et al. (1998) [37]) and the duplicates
are removed. Then, the d∗-neighborhood of Si, 1 < i ≤ t,
are iteratively generated into set Ci and, taking advantage
of the ordering, it makes M = M∩Ci. After t−1 iterations,
the intersection operation maintains in M only the
common (l, d)-motifs of t sequences. The time complexity
of PMS1 was O(tmlV(l, d)), proportional to the size of
d-neighborhood of the input. The space complexity was

also proportional to common d∗-neighborhood of (m−l+1)
l-mers of first sequence, O(mV(l, d)) in worst case. So
PMS1 is impractical depending on the values of l and d.

The authors described an implementation that
considered each l-mer as a 4-byte integer. Thus, in the
worst case, for the instance (15, 5) the estimated use of
memory would be approximately 1.9 GB just to store the
d-neighborhood of the first sequence.

PMS2 explored the observations that: i) given an
(l, d)-motif x of S, at least l − k + 1 substrings of x,
with size k, or k-mers, should occur in each sequence
of input; ii) there should be at least one position ij in
each input sequence, such that successive k-mers of x
would occur at the positions ij , ij + 1, ...ij + l − k. In
this way, the k-mers could be used to find the motifs.
PMS2 uses a modified version of PMS1 that explores the
common d-neighborhood (instead of d∗-neighborhood) of
S, to find all (k, d)-motifs M ′ of S, where k = d + c.
Then, selects an arbitrary sequence, for example S1, and
for each k-mer y that occurs in the i-th position of S1,
such that dH(y,M ′) ≤ d, for an arbitrary M ′ of S, the
respective k-mer y of S1 is stored in the i-th position
of the list L. If there are {y1, y2} ∈ L, respectively at
the positions Li and Li+l−k, such that the last 2k − l
symbols of y1 are equal to the first 2k − l symbols of
y2, then an l-mer l1 could be formed by appending the
last (l − k) symbols of y2 to y1. The l-mer l1 is stored
in the list M ′, a set of possible motif candidates, if
dH(l1, l2) = d, where l2 was the l-mer found at the
i-th position of S1. Finally, PMS2 checks the candidates
from M ′ to the sequences of input in time O(|M ′|tml).
The total time of PMS2 is proportional to the size of
d-neighborhood of the k-mers of sample O(tmkV(k, d)),
plus the time of generating motif candidates based on L,
O(
∑l−k+1

1 |Li||Σ|(l−k)l), and the verification of candidates
in the sample in time O(|M ′|tml).

The authors ran PMS2 using a computer Pentium IV
with 2.4 GHz processor and 1 GB RAM. They reported
that PMS2 was able to solve the challenging instances
(9,2), (11,2) e (13,4). However, they did not perform tests
with d = 5 and d = 6 due to insufficient memory in the
computational environment used. The authors compared
the results obtained with the results reported, using
a 750 MHz processor and 1 Gb RAM, by Eskin and
Pevzner (2002) [23] for MITRA, the best exact algorithm
at the time according to them. For instances (11,2), (12,3)
and (14,4) it was reported that PMS2 had used only a
fraction of the time used by MITRA.

We show runtimes reported by PMS2 in Table II
and add in this table the results reported by Chin and
Leung (2005) [12] for VOTING. Note that both algorithms
were presented in same year and have tested by their
authors in similar computational environment, a 2.4 GHz
processor with 1 GB RAM for PMS2 versus a 2.4 GHz
processor with 512Mb RAM for VOTING. In this table,
‘-’ means that the algorithm uses too much memory in the
instance, took too long or its time was not reported. Time
in seconds s and minutes m.

17

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

TABLE II
Comparison of Runtimes for PMS2 and VOTING

(l, d) PMS2 VOTING
(9,2) 1.44 s 0.4 s
(11,3) 19.84 s 8.6 s
(13,4) 228.94 s 108 s
(15,5) - 22 m

According to results presented in Table II, we can
conclude that VOTING was more efficient than PMS2.

(17,6) Instance - PMSP (2006)

Davila, Balla and Rajasekaran [19], in 2006, presented
the exact algorithm PMSP. This algorithm was the first
to report the solution for the challenging instance (17,6).

PMSP was designed using similar ideas of PMS1 by
Rajasekaran et al. (2005) [63]. However it added strategies
that made it more efficient in both time and space. It
generated all the d-neighborhood of the first sequence,
then it tried to find the (l, d)-motifs directly from this
d-neighborhood by checking the occurrences of them in
the remaining sequences.

In short, PMSP selects each l-mer x ∈ S1 and generates
the set Ni = {y ∈ S1 : dH(x, y) ≤ 2d}, 2 ≤ i ≤ t. Then,
for each x′ ∈ B∗d(x), it verifies the existence of at least one
occurrence of the l-mer y′, in each Ni, 2 ≤ i ≤ t, such that
dH(x′, y′) = d. If it exists, then x′ is an (l, d)-motif of S
and it is added into M , the output set.

Note that, we use the B∗d(x) instead Bd(x) (as described
in Section I, Definition 1.4), because the authors refer
to a restricted neighborhood set, where only neighbors
that has exactly d mismatches from the l-mers of interest
are considered. The observation is that this algorithm,
as well as the PMS1 and PMS2, is designed to search
instances M ′ of the (l, d)-motif in the sample, such that
the dH(M ′,M) is exactly d instead at most d.

The space complexity was O(tm2), because only the set
N was stored for each l-mer x ∈ S1. The time complexity
was O(tm2V(l, d)), proportional to the size of the B∗d(x)
of l-mer x ∈ S1 and size of N .

In experimental tests, the authors used a computer
with 2.4 GHz processor and 1 GB RAM to execute
PMSP. Table III summarizes the results obtained. In this
table, for comparison, we also added results reported by
Rajasekaran et al. (2005) [63] for PMS2 using a computer
with 2.4 GHz processor and 1 GB RAM and results
reported by Chin and Leung (2005) [12] for VOTING using
a computer with 2.4 GHz processor and 512 MB RAM.
In this table, ‘-’ means that the algorithm uses too much
memory in the instance, took too long or its time was not
reported. Time in seconds s, minutes m and hours h.

We can see on Table III, that the PMSP was clearly
more efficient than PMS2 and competitive when compared
to VOTING. However, the improved memory management
of the PMSP has made it able of solving the challenging
instance (17,6).

TABLE III
Comparison of Runtimes for PMSP, VOTING and PMSP

(l, d) PMS2 VOTING PMSP
(9,2) 1.44 s 0.4 s 0.6 s
(11,3) 19.84 s 8.6 s 6.9 s
(13,4) 228.94 s 108 s 152 s
(15,5) - 22 m 35 m
(17,6) - - 12 h

(19,7) Instance - PMSPrune (2007)

Davila, Balla and Rajasekaran [17], in 2007, presented
the exact algorithm PMSPrune, reporting for the first
time the solution of the challenging instance (19,7). The
strategy used by PMSPrune was similar to that used
by Davila et al. (2006) [19] for PMSP. It explored the
d-neighborhood of all l-mers x ∈ S1 to find the motif.
In this strategy, the Bd(x) is generated using a Td(x) tree
in a branch and bound method to prune possible branches
that did not list a motif. For each l-mer x′ represented
by a child node of Td(x) with depth p, the algorithm
incrementally calculates the value D(x′) = d̄H(x′, S),
which corresponds to a minimum dH between x′ and any
l-mer of Si, 2 ≤ i ≤ t. Then D(x′) and p are used to decide
to prune each descendant node of x′. When D(x′) < d, x is
included into M , the output set. When D(x′)− d > d− p,
all descendants of x′ are pruned.

PMSPrune had theoretical time complexity similar to
PMSP. However, due to the pruning strategies used in
the search space, it is possible to obtain better results
than PMSP. For comparison, the authors ran PMSP and
PMSPrune algorithms in the same machine, a computer
with 2.4 GHz processor and 1 GB RAM. Table IV
summarizes the results. In this table, the results reported
by Chin and Leung (2005) [12] for VOTING using a
computer with 2.4 GHz processor and 512 MB RAM was
also added. In this table, ‘-’ means that the algorithm uses
too much memory in the instance, took too long or its time
was not reported. Time in seconds, minutes and hours.

TABLE IV
Comparison of Runtimes for VOTING, PMSP and PMSPrune

(l, d) VOTING PMSP PMSPrune
(11,3) 8.6 s 6.9 s 5 s
(13,4) 108 s 152 s 53 s
(15,5) 22 m 35 m 9 m
(17,6) - 12 h 69 m
(19,7) - - 9.2 h

According to the results in Table IV, we can see
that PMSPrune was more efficient than PMSP and
VOTING. We also highlight the solution reported for the
challenging instance (19,7). Other comparative results by
Sharma et al. (2011) [68] indicate that PMSPrune was
more time efficient than other algorithms. However, years
later of publication of PMSPrune, in 2011, Z. Chen et
al. (2011) [11] found that PMSPrune contained bugs and
failed to find the correct solution for certain instances.
They pointed out that once the bug is fixed, PMSPrune
will run significantly slower than the bugged version.

18

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

Davila, Balla, and Rajasekaran [18], in 2007, presented
the exact algorithm Pampa. This algorithm extended and
improved the ideas used by Davila et al. (2007) [17] for
PMSPrune by exploring the search space generation more
efficiently. The key idea was to use extended l-mers in
the form of wildcards symbols representing any symbol
of the alphabet Σ. For example, the 5-mer {A****}
abbreviated all 5-mers started with the symbol ‘A’. In this
way, an adaptation of the computation of original D(x′)
value of PMSPrune was performed, and the generation
of Bd(x) was made more efficiently. The theoretical time
complexities was similar to the PMSPrune, however the
authors reported that Pampa outperforms the PMSPrune
by a factor close to 2 in instances such as (15,5), (17,6)
and (19,7).

For comparison, the authors ran Pampa, PMSP by
Davila et al. (2006) [19], PMSPrune by Davila et
al. (2007) [17] in the same machine, a computer with 2.4
GHz processor and 1 GB RAM. Table V summarizes the
results obtained. In this table, were also added the results
reported by Chin and Leung (2005) [12] for VOTING using
a computer with 2.4 GHz processor and 512 MB RAM.
In this table, ‘-’ means that the algorithm uses too much
memory in the instance, took too long or its time was not
reported. Time in seconds s, minutes m and hours h.

TABLE V
Comparison of Runtimes for VOTING, PMSP, PMSPrune and

Pampa

(l, d) VOTING PMSP PMSPrune Pampa
(11,3) 8.6 s 6.9 s 5 s 4 s
(13,4) 108 s 152 s 53 s 35 s
(15,5) 22 m 35 m 9 m 5 m
(17,6) - 12 h 69 m 40 m
(19,7) - - 9.2 h 5.75 h

According to the results in Table V, we can see that
Pampa outperforms all algorithms for all tested instances.

MEME SUITE (2009)

Bailey et al. [4], in 2009, presented the web portal known
as MEME SUITE3, an online or standalone environment
that provides tools for discovery and analysis of sequence
motifs representing features such as DNA binding sites and
protein interaction domains. Although it is not directly
related to PMS and challenging instances, we highlight this
work since MEME SUITE contains tools that are often the
starting point for research involving motifs. One of these
tools, used to discover multiple (ungapped) motifs in a
set of sequences, is the MEME by Bayley et al. (1994) [2].
Another tool, for (gapped) motif search is GLAN2 by Frith
et al. (2008) [29]. Also included in the portal are tools
such as TOMTOM by Gupta et al. (2007) [32] to search
for motifs in a database of known motifs, e.g., JASPAR
by Sandelin et al. (2004) [66]. FIMO by Cuellar et al.
(2011) [13], GLAM2SCAN by Frith et al (2008) [29] and
MAST by Bailey and Gribskov (1998) [3] to search for

3More details about MEME-SUITE and others on line tools are
available at http://meme-suite.org/.

occurrences of motifs in a sequence database and GOMO
by Boden and Bailey (2008) [6] which provides associations
between motifs and genes linked with one or more Genome
Ontology (GO) terms.

(21,8) Instance - BitBased (2010)

Dasari, Desh and Zubair [16], in 2010, presented the
exact parallel algorithm BitBased. This algorithm have
used Open Multi-Processing4 (OpenMP) directives to
parallelize the code, reporting, for the first time, the
solution of the challenging instance (21,8). This was
not the first parallel approach to PMS. Other authors,
e.g., Faheem (2010) [25] and Ho et al. (2009) [36], have
investigated the use of parallelism, but without expressive
results in challenging instances such as BitBased.

The algorithm used similar ideas to those proposed by
Watterman et al. [77]. Briefly, the main idea of BitBased
was to divide the problem solution into two phases. In the
first phase, it constructed a vector of bits Bi of size |Σ|l,
for each sequence Si, 1 ≤ i ≤ t, which represented every
possible d-neighbor of the l-mers of Si. To fill this vector,
each l-mer x ∈ Si is selected and its d-neighborhood
generated, then each d-neighbor generated has its value
filled with 1 in the respective position in the vector Bi.
In the second phase, it performed a logical AND at the
vector positions, in order to find the motifs in the common
d-neighborhood.

With this approach the time complexity for the first
and second phases was O(tmlV(l, d) + t|Σ|l). The space
complexity was O(t|Σ|l), considering the t vectors used,
and there is one of the biggest problems of this approach,
even using binary coding. For example, in this approach,
for instances (15,5), (17,6) and (19,7), it would be required
2.5 GB, 40 GB and 640 GB of memory, respectively, only
for the vectors.

To reduce memory requirements, the authors described
three mechanisms for implementing BitBased. The
first, called Incremental support, was to first find the
(l′, d)-motifs, l′ ≤ l, then extend the (l′, d)-motifs to find
the (l, d)-motifs of S, in a similar idea to that described
by Rajasekaran et al. (2005) [63]. The second, called
Iterative approach, was similar to the idea used by Chin
and Leung (2005) [12], which consisted in splitting up the
l-mers in d-neighborhood into groups and processing them
iteratively. Each group would store only l-mers that shared
the same prefix of length p. With this approach, the bit
vector could be reduced to |Σ|l−p, adding |Σ|p processing
iterations, one for each group. The third, called Filtering,
was to consider initially only t′ of t sequences, t′ ≤ t, then
each motif found was considered a candidate that would
be validated in the t− t′ remaining sequences.

BitBased combined the iterative approach, filtering,
and incremental support as follows. In the beginning, it
computes the value of l′, l′ ≤ l, and the optimal value of
t′, t′ ≤ t, for instance (l′, d). So, if memory was available

4More information about OpenMP is available at
https://www.openmp.org/.

19

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

for t′|Σ|l′ vectors, it used a direct approach to generate
the (l′, d)-motifs candidates, apply the filter mechanism
and include them in the temporary set M ′. Otherwise, it
used the iterative approach, performing the same process,
but one group at a time, to generate the (l′, d)-motifs
candidates and include them in the temporary set M ′.
Then it used the set M ′ as input for the incremental
support to get the (l, d)-motifs. The time and space
complexity were respectively O(tmlV(l′, d) + t|Σ|l) and
O(t|Σ|l′) for direct approach, and O(tmlV(l′, d)|Σ|p+t|Σ|l)
and O(t|Σ|l′−p) for the iterative approach.

The parallelization consisted in splitting up the input
sequences to the available processors and processing them
independently. In the tests performed, an X5550 Xeon
computer with four quad-core processors of 2.67 GHz and
a maximum of 1 GB RAM was used. For comparison,
the authors used the results reported by Davila et
al. (2007) [17] for PMSPrune using a computer with a 2.4
GHz processor and 1 GB RAM. Table VI summarizes the
results obtained, where BitBased-n represents execution
with n cores. In table, ‘-’ means that the algorithm did
not return the response after 10 hours execution. Time in
seconds s, minutes m and hours h.

TABLE VI
Comparison of Runtimes for BitBased-n, using n cores, and

PMSPrune

(13,4) (15,5) (17,6) (19,7) (21,8)
BitBased-16 2 s 11 s 2.4 m 30.6 m 6.9 h
BitBased-8 2 s 16 s 3.5 m 42.3 m -
BitBased-4 4 s 29 s 6.5 m 1.3 h -
BitBased-1 9 s 1.8 m 2.6 m 4.7 h -
PMSPrune 53 s 9 m 69 m 9.2 h -

As we can see in Table VI, although they have used
different computational environments, we can verify that
BitBased, with a single processor, obtained better results
than those reported for PMSPrune. We also highlight the
solution of the instance (21,8) reported for the first time
with the execution of BitBased-16.

Dasari, Desh and Zubair [16], in 2011, after the success
obtained by BitBased, presented a similar version of the
algorithm based on parallel programming using GPU
devices. We will refer to this version of algorithm as
gBitBased. According to the authors, although GPU
utilization had already been employed for general motif
search in heuristics such as Gibbs sampling (e.g., Yu and
Xu, 2009 [79]) and MEME (e.g., Chen et al., 2008 [10]),
they reported that at the time there was no knowledge
about a specific approach for the PMS problem.

The authors performed experimental tests using an
NVidia Tesla S1070 computing system with 4 GPU devices
containing 240 cores of 1.5 GHz each. The results reported
with 1 and 4 GPU devices were compared with results
reported by BitBased with 1 and 16 cores. Table VII
summarizes this results and presents the speedup rates
obtained in comparison to the results reported for
BitBased using processors with 1 and 16 cores. In this
table, ‘-’ means that the algorithm did not return the

response after 10 hours execution. Time in seconds s,
minutes m and hours h.

TABLE VII
Comparison of Runtimes (gBitBased time) and Speedups for
gBitBased related to Runtimes of BitBased (using 1 and 16

cores, respectively)

gBitBased BitBased-1 BitBased-16
(l, d) GPUs time speedup speedup
(15,5) 1 8.0 s 13.5 1.4
(15,5) 2 4.4 s 24.5 2.5
(15,5) 3 3.2 s 33.6 3.4
(15,5) 4 2.7 s 40.0 4.1
(17,6) 1 91.2 s 13.6 1.6
(17,6) 2 46.1 s 26.8 3.1
(17,6) 3 31.1 s 39.7 4.6
(17,6) 4 23.9 s 51.7 6.0
(19,7) 1 19.7 m 14.3 1.6
(19,7) 2 9.9 m 28.5 3.1
(19,7) 3 6.62 m 42.6 4.6
(19,7) 4 5.0 m 56.4 6.1
(21,8) 1 4.5 h - 1.5
(21,8) 2 2.3 h - 3.0
(21,8) 3 1.5 h - 4.6
(21,8) 4 1.1 h - 6.3

We can see in Table VII that gBitBased achieved better
results than the previous BitBased for all instances, even
though using a single GPU device. As reported by the
authors, a single GPU device was 13 to 14 times faster
than a single core. Four GPUs were 40-60 times faster than
a single core, and 4 to 6 times faster than 16 cores.

(23,9) Instance - ILP (2011-2012)

Dinh, Rajasekaran and Kundeti [21], in 2011, presented
the exact algorithm PMS5, reporting for the first time
the solution of the challenging instance (23,9). PMS5
worked similarly to PMSPrune by Davila et al. (2007) [17].
It explored the d-neighborhood of l-mers x ∈ S1 using
Td(x) to try to find the motifs. However, it innovated by
considering properties of the tuple of l-mers {x, y, z} from
distinct sequences of the input sample to prune branches
in Td(x).

Briefly, PMS5 works as follows. For each l-mer x ∈ S1,
the l-mers y ∈ S2k and z ∈ S2k+1, 1 ≤ k ≤ (t − 1)/2
are iteratively selected. Then, Bd(x, y, z) is computed, by
verifying that x′ ∈ Bd(x) was contained in Bd(y)∩Bd(z).
If positive, x′ ∈ Bd(x, y, z) and is added to the temporary
set Q. At the end of processing of the sequences S2k and
S2k+1, the intersection M ′ = M ′ ∩ Q, kept in M ′, only
the common d-neighborhood between x and the l-mers of
t sequences of the entry, and Q can be initialized. PMS5
still included a mechanism to interrupt the k iterations
if the size of the set M ′ (potentially large) reached a
threshold value, small enough to be directly verified in the
set S. After processing all l-mers of S1, M contains all
the (l, d)-motifs of S. To compute Bd(x, y, z) PMS5 uses
integer linear programming (ILP) to express constraints
on properties of the tuple {x, y, z} using ten variables5.

5For more details about variables and constraints of PMS5, we
recommend reading Section 2.2.2 of Dinh et al., 2011 [21].

20

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

PMS5 has space complexity O(max|M ′|) and time
complexity, in the worst case, O(tm3dV(l, d)), that occurs
in the extreme case if x = y = z, then |Bd(x, y, z)| =
|Bd(x)| = V(l, d), and |Bd(x, y, z)| would be computed at
most t/2(m− l+ 1)3 times. Although the time complexity
of PMSPrune is better than that of PMS5, experimental
tests performed by the authors demonstrated that PMS5
is more efficient.

The authors performed experimental tests with PMS5
using a Dual Core Pentium 2.4 GHz CPU with 3 GB
RAM and Windows XP operating system. For comparison,
the authors executed the algorithms Pampa by Davila et
al. (2007) [18] and PMSPrune by Davila et al. (2007) [17]
in the same machine. Table VIII summarizes the results
obtained. In addition, we also added in this table the
sequential runtimes reported by Dasari et al. (2010) [16] for
BitBased-1 using only one core. In table, ‘-’ means that the
algorithm did not run for lack of computational resource
or it took too long and was aborted. Time in seconds s,
minutes m and hours h.

TABLE VIII
Comparison of Runtimes for PMS5, Pampa, PMSPrune and

BitBased

(13,4) (15,5) (17,6) (19,7) (21,8) (23,9)
PMSPrune 45 s 10.2 m 78.7 m 15.2 h - -
Pampa 35 s 6 m 40 m 4.8 h - -
PMS5 117 s 4.8 m 21.7 m 1.7 h 9.7 h 54 h
BitBased-1 9 s 1.8 m 2.6 m 4.7 h - -

We can see from the results presented in Table VIII that
the PMS5 outperforms the others sequential algorithms
for all instances, except for (13,4). According to the
authors, PMS5 took extra time to load the tables that
store the ILP results, impacting on the time results of the
instance (13,4). However, this time became negligible, as
the instance size increased. We can also see that the PMS5
becomes more efficient than the execution of BitBased-1
from the instance (19,7) onwards. We also point out PMS5
because up to that moment it was the only one to report
the solution of the challenging instance (23,9).

Bandyopadhyay, Sahni and Rajasekaran [5], in 2012,
described the PMS6, an exact algorithm that extended
the PMS5 by Dinh et al. (2011) [21] and improved, by
more than twice, the runtime for the instance (23,9).
The PMS6 differed only from PMS5 in the way it
determined Bd(x, y, z). While PMS5 computed Bd(x, y, z),
by independently calculating each pair (y, z), y ∈ S2k, and
z ∈ S2k+1, the PMS6 grouped the l-mers {x, y, z} into
classes, gathering those whose d-neighbors shared similar
computation process.

The PMS6 determined the motifs corresponding to
tuple (x, y, z) using a two-step process. In the first
step, all tuples (x, y, z) were partitioned into classes
C(n1, ..., n5). To classify x, y, z, it first identified five types
of situations that occurred between indices i, 1 ≤ i ≤ l.
For example, the type 1 was x[i] = y[i] = z[i] and
the type 2, x[i] = y[i] 6= z[i]. Then, according to
the number of occurrences of each type, represented by

n1, n2, n3, n4 and n5, it decomposed into classes in the
form C(n1, n2, n3, n4, n5). In the second step, it computed
Bd(C(n1, ..., n5)). This was done most efficiently because
it simultaneously processed tuples(x, y, z) of the same class
by sharing the required computational processing.

The theoretical times of PMS6 were similar to those
of PMS5, but the authors reported that PMS6 was more
efficient for all challenging instances solved. The same
machine was used to perform these tests, a Dual Core
Pentium 2.4 GHz CPU and 3 GB RAM with the Windows
XP operating system. The results obtained are showed in
Table IX. Time in seconds s, minutes m and hours h.

TABLE IX
Comparison of Runtimes for PMS6 and PMS5

(13,4) (15,5) (17,6) (19,7) (21,8)
PMS5 117 s 4.8 m 21.7 m 1.7 h 9.7 h
PMS6 67 s 3.2 m 14 m 1.16 h 5.8 h

Dinh, Rajasekaran and Davila [20], in 2012, presented
the exact algorithm qPMS7. This algorithm extended the
ideas of d-neighborhood exploration used by Davila et
al. (2007) [17] for PMSPrune, combined with the central
idea of PMS5 by Dinh et al. (2011) [21]. qPMS7 considered
two l-mers, x ∈ Si and y ∈ Sj , 1 ≤ i ≤ j ≤ t, instead of
just one as in PMSPrune. Thus, the exploration method
of d-neighborhood Bd(x, y) has modified to use the tree
Td(x, y), where for each l-mer z represented by a node
n ∈ Td(x, y) with depth p, p ≤ d, both dH(z, x) ≤ p and
dH(z, y) ≤ p.

Briefly, to find the motifs, for every pair {x, y},
the exploring process of Td(x, y) is made as follows.
In depth-first manner, starting from the node n
= (x′, 0), compute the value D(x′) = d̄H(x′, Sk),
which corresponded to minimum dH between the l-mer
represented by x′ and any l-mer w of Sk, 1 ≤ k ≤ t,
k 6= i and k 6= j. During computation, an l-mer w of an
arbitrary sequence is eliminated if dH(x′, w) + p > 2d, n
stores the number of survivors l-mers for each sequence.
If the number of sequences in n with no surviving l-mers
are greater than t− 2, then n is discarded. If the number
of sequences in n, whose d̄H(x′, Sk) ≤ d is equal to t− 2,
then add the l-mer represented by n in M , the output set.

The qPMS7 had space complexity O(tm2) and time
complexity O(t3m2V(l, d)). The authors ran the qPMS7
using a Dual Core Pentium 2.4 GHz processor and 3 GB
RAM with Windows XP operating system. For comparison
the authors ran, using the same machine, the algorithms
PMSPrune by Davila et al. (2007) [17], Pampa by Davila et
al. (2007) [18], PMS5 by Dinh et al. (2011) [21] and PMS6
by Bandyopadhyay et al. (2012) [5]. Table X summarizes
the results. In this table we also added the sequential
results reported by Dasari et al. (2010) [16] for BitBased-1
using a single core. The value ‘-’ means that the algorithm
did not run for lack of computational resource or it took
too long and was aborted. Time in seconds s, minutes m
and hours h.

21

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

TABLE X
Comparison of Runtimes for qPMS7, PMSPrune, Pampa,

PMS5 and PMS6

(13,4) (15,5) (17,6) (19,7) (21,8) (23,9)
PMSPrune 45 s 10.2 m 78.7 m 15.2 h - -
Pampa 35 s 6 m 40 m 4.8 h - -
PMS5 117 s 4.8 m 21.7 m 1.7 h 9.7 h 54 h
PMS6 67 s 3.2 m 14 m 1.1 h 5.8 h -
qPMS7 47 s 2.6 m 11 m 0.9 h 4.3 h 24 h
BitBased-1 9 s 1.8 m 2.6 m 4.7 h - -

We can see in Table X that qPMS7 is more time efficient
than other sequential algorithms. It also obtained better
results than those reported for BitBased-1 from instance
(19,7) onwards. We also highlight the solution of the
instance (23,9) with runtime of 24 hours.

(26,11) Instance - The state of the art (2014)
In January 2014, Nicolae and Rajasekaran [55] presented

the exact algorithm PMS8. This algorithm, in essence,
represents the state of art for solution of challenging
instances of PMS. It was the first to sequentially solve the
challenging instance (25,10) with 15.45 hours of runtime
and, with 48 cores, the challenging instance (26,11) in 46.9
hours of runtime.

The main innovation of PMS8 was the balanced use of
phases using sample-driven and pattern-driven techniques
and a new filter mechanism based on the total consensus
distance (Cd), described later, which attempted to limit
the search space in the sample in the sample-driven
approach, and reduce the number of patterns generated
in the pattern-driven approach.

Basically PMS8 was divided into three phases:
sample-driven, pattern-driven and validation. In the
sample-driven phase, tuples Tk containing k l-mers of
distinct sequences were generated, 1 ≤ k ≤ t′ ≤ t,
where both k and t′ were defined heuristically with k =
max(2,

√
2(d+ 1) log |Σ| − logm) and t′ = min(t, k +

t/4 − log k). In the pattern-driven phase, (l, d)-motifs
for the l-mers ∈ Tk were enumerated, that we call as
(l, d)-motifs candidates. In the validation phase, each
(l, d)-motif candidate generated in the pattern-driven
phase, was checked with the t − k remaining sequences
of the input to find the (l, d)-motifs. We will now address
each of these phases in a little more detail.

In the sample-driven phase, PMS8 maintains a R table
with all l-mers of the sequences, where each line Ri of R
contains the l-mers of Si, 1 ≤ i ≤ t. Initially, the algorithm
chooses the first l-mer x ∈ Ri, with i = 1, and puts it into
Tk, then it filters all l-mers y ∈ Rj , where i < j ≤ t,
such that dH(x, y) > 2d. Then it sorts the Rj lines of
the table, in ascending order, according to the number of
l-mers survivors in each row. If any line is empty then the
l-mer x is replaced by the following one in Ri.

The process is repeated including in Tk an l-mer x ∈ Rj ,
i ≤ j ≤ k ≤ t′, and applying the filter on each l-mer y ∈
Rj′ , and by sorting the lines Rj′ , where j < j′ ≤ k ≤ t′,
with the same criterion used previously. However, this time
the filter process includes an additional criterion that also

filters all y whose value of the total consensus distance
Cd(Tk′) > d|Tk′ |, where Tk′ = Tk ∪ {y}, k′ = k + 1, and
Cd(Tk′) =

∑l
i′=1 k

′ − MaxFreq(Tk ′ [i ′]). The idea of this
additional filter was that if MaxFreq(Tk′ [i′]) = v, that
is, if the maximum frequency of i′-th column of Tk′ was v,
then the cumulative sum of k′−v can be used to eliminate
any y whose the cumulative sum exceeds k′∗d mismatches.
Note that, considering that every l-mer can accumulate at
most d mismatches, then the limit of mismatches between
Tk′ and an arbitrary motif M is k′ ∗ d.

The pattern-driven phase starts when a tuple reaches
size k. In this phase, simulated traversals in a virtual
lexicographic tree T were used to enumerate the motifs
of Tk. A motif was generated by adding the symbols of
the branches in the traversal to a partial motif p, until
p reached the length l. In the traversal, a branch labeled
with symbol s could be pruned, considering p′ = p′ ∪ {s},
if one of the situations occurred:

i) case dH(x′, p′) > d, where x′ = x[1]...x[|p′|] for any
x ∈ Tk;

ii) case dH(x′, p′) + dH(y′, p′) + α > 2d, as in Eskin and
Pevzner (2002) [23], where α was equal to the number
of substitutions that occurred from position |p′| + 1
until l, between any two l-mers x and y, such that
x 6= y and both {x, y} ∈ Tk, and x′ = x[1]...x[|p′|]
and y′ = y[1]...y[|p′|];

iii) if
∑|p′|

i′=1 Freq(p′[i′]) +
∑l

i′=|p′|+1 |Tk| −
MaxFreq(Tk[i′]) > d|Tk|, where Freq(p′[i′])
returns the frequency of i′-th symbol of p′ and
MaxFreq(Tk[i′]) returns the maximum frequency of
the symbols of the i′-th column of Tk.

The validation phase begins when a traversal reached
length l in the previous phase, thus building a candidate
motif c. At this phase, it is checked whether there is
at least one l-mer u in each Si, k < i ≤ t, such that
dH(u, c) ≤ d. If so, c is (l, d)-motif of S and it is added
in the output set M . After the end of the validation
phase, the algorithm returns to pattern-driven phase and
tries to find another path of length l. When there are no
more traversals to be explored the pattern-driven phase
would end and return to the sample-driven phase. When
returning, the sample-driven phase attempts to replace
the last l-mer added in Tk by the other, not already
chosen, l-mer of the same sequence. If there are no more
l-mers in this sequence, then it will remove the penultimate
l-mer added (from the previous sequence) and attempts to
replace by another one, using this approach successively
until all options are explored and the algorithm is finalized.

The authors also reported other techniques used in
PMS8, like the compression of l-mers, to work with
integers instead of symbols, the pre-processing of the
distance between the pair of l-mers of the input sample, the
exploration of the cache locality in the form like the table
R was allocated and maintained, and the use of parallel
computing with Message Passing Interface (MPI) library6.

6More information about MPI is available at
https://www.mpi-forum.org/.

22

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

The space complexity was O(tm), since only the R table
must be stored in memory. The complexity of time was
O(tm2kV(l, d)), in the worst case, considering the time
complexity of the first phase O(mk), proportional to the
maximum number of tuples of size k, the time complexity
of the second phase O(V(l, d)) proportional to common
d-neighborhood of Tk, and the complexity O(m(t − k))
of the last phase where, in the worst case, each motif
candidate was validated with each l-mer of the remaining
t− k sequences.

In experimental tests the authors ran PMS8 on a
maximum of 48 cores in 4 nodes, from a cluster consisting
of 64 nodes, each one equipped with a 12-core Intel Xeon
X5650 2.66 GHz and 48 GB RAM. Table XI summarizes
the results obtained by the PMS8-p with p cores. For
comparison, we also added in this table, results reported
by authors for qPMS7 by Dinh et al. (2012) [20] using
a single core execution in the same machine. We also
added the results reported by Dasari et al. (2010) [16] for
BitBased-16 with 16 cores and by Dasari et al. (2010) [15]
for gBitBased-4 using 4 GPUs. The value ‘-’ means that
the algorithm did not run for lack of computational
resource or it took too long and was aborted. Time in
seconds s, minutes m and hours h.

TABLE XI
Comparison of Runtimes Obtained by PMS8-p, with p Cores,
qPMS7 [20] with One Core, and BitBased-16 with 16 Cores

and gBitBased-4 Using 4 GPUs

(13,4) (15,5) (17,6) (19,7)
qPMS7 29 s 2.1 m 10.3 m 54.6 m
PMS8-1 7 s 48 s 5.2 m 26.6 m
PMS8-16 3 s 5 s 22 s 1.7 m
PMS8-32 2 s 4 s 12 s 52 s
PMS8-48 2 s 3 s 9 s 37 s

BitBased-16 2 s 11 s 2.4 m 30.6 m
gBitBased-4 2.7 s 23.9 s 5 m 1.1 h

(21,8) (23,9) (25,10) (26,11)
qPMS7 4.87 h 27.09 h - -
PMS8-1 1.64 h 5.48 h 15.45 h -
PMS8-16 6.5 m 21.1 m 1.01 h -
PMS8-32 3.3 m 10.7 m 30.4 m -
PMS8-48 2.2 m 7.4 m 20.7 m 46.9h

BitBased-16 6.9 h - - -
gBitBased-4 - - - -

We can see on Table XI that the single core execution
of PMS8 obtained better results than qPMS7 for all
tested instances. Although, using different computational
environment, PMS8 obtained significantly better runtimes
than BitBased-16 and gBitBased-4 in most of the tests,
both with 1 or 16 cores. The PMS8 still stood out since
it was the only one that solve the instances (25,10) and
(26,11).

In February 2014, Tanaka presented
TraverStringRef [72], an exact algorithm that extended
and added enhancements to the qPMS7 algorithm
by Dinh et al. (2012) [20]. The author highlighted
TraverStringRef as the first algorithm to solve the
instance (25,10) with a single computer (without using
multiple threads) using 15 hours or less. However, in

January of the same year, Nicolae and Rajasekaran
presented the PMS8 [55] which also solved the instance
(25,10) with a single core and in a similar runtime.
Apparently, Tanaka’s work was written at the same time
as the work of Nicolae and Rajasekaran, and by the fact
that it did not contain references about PMS8, we believe
that the author was not aware of it.

The key ideas behind TraverStringRef were based on
the following observations of authors: i) the algorithms
became more efficient if the size of the search trees are
reduced; ii) it was necessary to reduce processing time to
check whether a subtree could be pruned or not; and iii)
if two root nodes (l-length substrings) were similar, then
the search path in the tree would also be.

Based on these observations, improvements were
included in the common d-neighborhood verification. One
of these improvements was the incremental calculation of
some information, which was previously fully preprocessed
and stored. Unnecessary combinations of operations were
also eliminated to avoid redundant processing, and
elements in the lists of Td were sorted to make the
process of checking and pruning possible ramifications
more efficient.

The time and space complexities with the changes were
respectively O(t3m2(m + log t)V(l, d)) and O(tm2). To
verify the effectiveness of the algorithm, the author ran
experimental tests using a notebook with an Intel Core
i7-3610QM 2.3 GHz processor and 16 GB RAM. Table XII
summarizes the average times obtained in the experiments.
For comparison, we added the average times reported by
author for qPMS7 by Dinh et al. (2012) [20] using the same
computational environment. The value ‘-’ means that the
algorithm took too long and was aborted. Time in seconds
s, minutes m and hours h. Based on the results presented,
the TraverStringRef has been shown to be 3 to 4 times
faster than qPMS7. We also highlight the solution reported
by TraverStringRef for the instance (25,10).

TABLE XII
Comparison of Runtimes for TraverStringRef and qPMS7

(l, d) TraverStringRef qPMS7
(13,4) 10.9 s 39.4 s
(15,5) 46.5 s 2.21 m
(17,6) 2.99 m 5.49 m
(19,7) 12.4 m 37.34 m
(21,8) 51.64 m 3.05 h
(23,9) 3.61 h 15.59 h
(25,10) 14.93 h -

(30,13) Instance - State of art (2015)

Nicolae and Rajasekaran [56], in 2015, presented the
exact algorithm qPMS9. We highlight this algorithm for
having improved the runtime of all instances solved by
PMS8 (by the same authors [55]) and for having reported,
for the first time in the literature, the solution of the
instances (28,12) and (30,13), using 48 cores for both
instances.

23

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

The qPMS9 extended PMS8 algorithm including
modifications to support the qPMS problem and two
changes that made it in general more time efficient.
The first change was in the heuristic formula used
to calculate the value k, corresponding to the number
of l-mers contained in the tuple. In qPMS9, k =
max(3,

√
2(d) log |Σ| − logm+ 4). The effects of this

change are shown in Table XIII where the occurrences of
(k, t′) whose different values between qPMS9 and PMS8
are highlighted.

TABLE XIII
Comparison of the Heuristics Values Defined by PMS8 and

qPMS9 to (k, t′)

(l, d) PMS8 qPMS9
(k, t′) (k, t′)

(15,5) (3,6) (4,7)
(17,6) (4,7) (4,7)
(19,7) (4,7) (5,7)
(21,8) (5,7) (5,7)
(23,9) (5,8) (5,7)
(25,10) (5,8) (6,8)
(26,11) (6,8) (6,8)
(28,12) (6,8) (6,8)
(30,13) (6,9) (6,8)

The second change was in the sample-driven phase, in
the way the lines in R table were ordered after the filtering
process. While in PMS8, the R table was decreasingly
ordered according to the number of surviving l-mers in
each row, qPMS9, instead of considering only the number
of surviving l-mers, calculated a value relative to the line,
which would consider the weight of each surviving l-mer
u. This weight was calculated by computing the total
additional consensus distance (Cd) by including u in the
tuple Cd(T ∪ {u}) - Cd(T). The tuples were ordered in
decreasing order by the minimum additional Cd. If there
were a draw in the minimum additional Cd, then the line
containing the fewest surviving l-mers is prioritized.

The authors tested the qPMS9, using 48 cores in 4
nodes, from a cluster consisting of 104 nodes, each one
equipped with 12 Intel Xeon X5650 2.66 GHz cores and
48 GB RAM. Table XIV summarizes the results obtained
using 48 cores for the instances (26,11), (28,12) and (30,13)
and only one core for the others. In this table we also added
results reported by the authors for PMS8 by Nicolae and
Rajasekaran (2014) [55] and TraverStringRef by Tanaka et
al. (2014) [72]. The“-”value in table means that there is no
information on the execution of these instances reported
by the authors. Time in seconds s, minutes m and hours
h.

As we can see in Table XIV, the PMS8 achieved a better
result than the TraverStringRef for the most challenging
instance (25,10) and competitive results for the others.
The qPMS9 obtained better results than both in the same
instances. We also highlight the solutions reported by
qPMS9 for instances (28,12) and (30,13), both with 48
cores.

TABLE XIV
Comparison of Runtimes for qPMS9, PMS8 and

TraverStringRef

(l, d) TraverStringRef PMS8 qPMS9
(13,4) 14 s 7 s 6 s
(15,5) 55 s 48 s 34 s
(17,6) 3.5 m 5.2 m 2.7 m
(19,7) 14.5 m 26.6 m 13.4 m
(21,8) 59.8 m 1.64 h 45.4 m
(23,9) 4.08 h 5.48 h 2.26 h
(25,10) 17.55 h 15.45 h 6.3 h
(26,11) - 46.9 h 12.12 h
(28,12) - - 27.58 h
(30,13) - - 51.02 h

Recent improvements (2016-2018)

Since the qPMS9 was presented in 2015, there has
still been no publication reporting the solution of larger
challenging instances such as instance (32,14). There are
also no reports of algorithms capable of sequentially
solving the instance (26,11) and larger. In this period,
from 2016 to 2018, we only found publications that report
extensions of qPMS9 making it more efficient in terms of
execution time for the already reported instances. These
publications are presented below.

Kazemian, Fazlali, Katanforoush and Rezvani [40], in
2016, presented qPMS9-OMP a parallelized version of
qPMS9 by Nicolae and Rajasekaran (2015) [56] using
the OpenMP library. The main contributions were the
creation of a dynamic method of planning threads and the
parallelization of iterative loops in the source code that,
together, outperformed the original algorithm.

TABLE XV
Performance Comparison Between the qPMS9 and

qPMS9-OMP

(l, d) qPMS9-1 qPMS9-12 qPMS9-OMP-12
(13,4) 6.9 s 2.2 s (3.1) 2 s (3.4)
(15,5) 39.8 s 5.5 s (7.2) 5.1 s (7.8)
(17,6) 3.24 m 34.63 s (6.0) 18.8 s (10.5)
(19,7) 15.71 m 2.42 m (6.5) 1.35 m (11.5)
(21,8) 54.19 m 9.53 m (5.7) 4.56 m (11.8)
(23,9) 2.86 h 58.96 m (3.0) 14.49 m (11.9)
(25,10) 8.06 h 2.74 h (2.9) 40.63 m (11.9)

The results reported by authors are shown in Table XV.
The qPMS9-1 column displays the results obtained with
the sequential execution of qPMS9 and the column
qPMS9-MPI-12 displays the results obtained with 12
cores. The qPMS9-OMP-12 column displays the results
obtained with the execution of the OpenMP version of
qPMS9, qPMS9-OMP, also using 12 cores. The speedup
obtained in relation to sequential runtime of qPMS9 is
shown alongside the runtimes of the algorithms qPMS9-12
and qPMS9-OMP-12. All executions were performed in the
same machine, a computer with 12 Intel 2.8 GHz cores and
32 GB RAM. The time is in seconds s, minutes m and
hours h. As we can see on Table XV, the qPMS9-OMP-12
obtained better speedups than qPMS9-12 for all instances.

Xiao, Pal and Rajasekaran [78], in 2016, presented
the randomized algorithm qPMS10. The idea of the

24

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

algorithm was firstly to solve a PMS subproblem with
a random sample of the input with t′ sequences, where
t′ = t ∗ ε1, ε1 ∈ (0, 1], and a known deterministic
algorithm was used as subroutine. Then, the output of
the subroutine, which reported (l, d)-motifs of subproblem
with t′, requires was filtered to find the solution of the
original problem. The authors used the qPMS9 by Nicolae
and Rajasekaran (2015) [56] as a subroutine of qPMS10.

In tests carried out, they reported better results of
qPMS10 then those obtained by qPMS9, both algorithms
were tested in same machine, a MacBook Air computer
core with Intel Core i5 1.6 GHz processor and 8 GB RAM.
Table XVI summarizes the tests results. All experiments
were performed using a MacBook Air computer core with
Intel Core i5 1.6 GHz processor and 8 GB RAM. The time
is in minutes m and hours h.

TABLE XVI
Speedups obtained by qPMS10 in relation of qPMS9

(l, d) qPMS9 qPMS10 (speedup)
(17,6) 2.9 m t′=13 (1.13)
(19,7) 14.4 m t′=11 (1.18)
(21,8) 50.2 m t′=12 (1.20)
(23,9) 2.49 h t′=11 (1.15)

As we can see on Table XVI, the qPMS10 obtained
speedups in relation to qPMS9 varying between 1.13 and
1.20, using values between 11 and 13 for t′.

Final comments

In this section, we presented the main results found in
the literature for PMS. We focus primarily on the exact
algorithms that have achieved success with challenging
instances. We try, as far as possible, to provide the reader
with a good level of detail of these algorithms and in the
results obtained by them.

According to our knowledge (disregarding algorithms
designed in specific architectures or hardwares), until the
moment of writing this material, we believe that qPMS9 is
the most efficient exact sequential and parallel algorithm
for PMS. In our point of view, the state of the art is
essentially represented by the algorithms PMS8 and its
extension qPMS9.

In Table XVII, we present the main results summary
for the PMS. Additional information about occurrences
in table has been described in the previous subsections.
For specific details, the original work, indexed in the last
column, could be consulted.

III. Discussion

ALTHOUGH the planted (l, d)-motifs search problem
(PMS) is NP-complete and so there is no exact

efficient algorithm to solve it, several (exact and heuristics)
algorithms have been proposed to solve it in acceptable
time for practical-sized instances. We have focused
the discussion, as in historical review, on the exact
algorithms for PMS and on a particular set of instances
that are probabilistically more difficult to solve. In the

TABLE XVII
Main Results for the PMS

(l, d) Year Description Reference

(6,2) 1975 Visual observation. Pribnow [60]
- 1982 First exact algorithm. Queen et al. [62]

Queen Algorithm.
- 1985 Waterman Algorithm. Waterman et al. [77]
- 1998 SPELLER Sagot [65]

(15,4) 2000 Origin of PMS. Pevzner
Challenge Problem. and Sze [58]
WINNOWER.
SP-STAR.

(14,4) 2001 Probabilistic analysis. Buhler and
Challenging Instances. Tompa [8]
PROJECTION

- 2003 NP-completeness class. Evans et al. [24]
(9,2) 2003 MULTIPROFILER. Keich et al. [41]
(15,5) 2005 VOTING. Chin and Leung [12]
(17,6) 2006 PMSP. Davila et al. [19]
(19,7) 2007 PMSPrune. Davila et al. [17]
(21,8) 2010 BitBased Dasari et al. [16]
(23,9) 2011 PMS5 Dinh et al. [21]
(25,10) 2014 PMS8 Nicolae and
(26,11) Rajasekaran [55]
(28,12) 2015 qPMS9 Nicolae and
(30,13) Rajasekaran [56]
(32,14) Not reported yet.

literature these instances are called challenging instances.
Table XVIII presents some of these instances, considering
the alphabet Σ = {A,C,G, T} and a input sample Sp.
To compare the instances with each other, table shows for
each instance, the total number of l-length patterns (or
l-mers), and the size of d-neighborhood, |Bd| of a single
l-mer.

TABLE XVIII
Comparison Between Challenging Instances for PMS

(l, d) 4l |Bd|
(15,5) 1.073.741.824 853.570
(17,6) 17.179.869.184 10.738.204
(19,7) 274.877.906.944 133.145.104
(21,8) 4.398.046.511.104 1.634.428.162
(23,9) 70.368.744.177.664 19.920.393.772
(25,10) 1.125.899.906.842.624 241.519.496.656
(26,11) 4.503.599.627.370.496 1.755.693.024.424
(28,12) 72.057.594.037.927.900 20.905.591.546.804
(30,13) 1.152.921.504.606.850.000 248.678.050.515.949
(32,14) 18.446.744.073.709.600.000 2.955.978.004.693.310

Several algorithms and techniques have been employed
in attempts to solve challenging instances. These
techniques varied according to the size of the instance and
the computational resources available at the time.

Algorithms based on index strategy, e.g, Queen et
al. (1982) [62], Waterman et al. (1984) [77], Chin and
Leung (2005) [12], Dasari et al. (2010) [16], construct
arrays to index a set of d-neighbors of a selected subset of
the input, then explore the d-neighborhood of this subset
of the input and store in these arrays the number of
occurrences of these d-neighbors. If a d-neighbor occurs
in all sequences of the subset, then this d-neighbor
is a motif of this subset. If this subset contains all
sequences of the input, then the motif has been found,

25

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

otherwise it is a motif candidate that should be checked
with the remaining input sequences. This technique was
successfully used for small instances, however as the size
of the instance increased, the amount of memory required
to store these arrays became insufficient, even with the
increase in memory supply that occurred over time. Trying
to attenuate this problem, techniques such as subdivision
of search space, e.g., Chin and Leung (1984) [12], and
binary encoding, e.g., Dasari et al. (2010) [16], were used.
These techniques were successful once they enabled the
processing of instances that were previously not possible,
but quickly proved to be insufficient with larger instances.

Other strategies were parallelized versions of known
sequential algorithms. These strategies were immediately
successfully for PMS, by they made the original
algorithms more efficient, e.g., Dasari et al. (2010) [16],
Faheem (2010) [25], Dasari et al. (2010) [15],
Bandyopadhyay et al. (2012) [5]. However, for larger
instances, the main idea of the sequential algorithms
needed to be reformulated, and then again it was
necessary to design new ones.

Historically, two approaches have been widely employed
by PMS algorithms, the pattern-driven and sample-driven
approaches. In pattern-driven all l-length patterns were
considered as potential motifs, then each pattern should
be generated and checked in the input sample to verify
whether was a motif, e.g., Pesole et al. (1992) [57],
Staden (1989) [69], Tompa (1999) [74]. In sample-driven,
motifs were searched directly in the sample, then all
possible alignments of l-length substrings (the l-mers)
of different sequences were considered as potential motif
instances, then each alignment should be generated and
checked whether it shared a motif. Some algorithms
used both approaches together, selecting one or more
l-mers of the sample, and generating only the patterns
with maximum Hamming distance d (which we call of
d-neighborhood) of these l-mers. The strategies employed
for the selection of l-mers and the generation of patterns
differed with the passage of time.

In the beginning, some algorithms generated the
d-neighborhood of all t input sequences, considering
l-mers of one sequence at a time, e.g, Queen et
al. (1982) [62], Pesole et al. (1985) [30], Rajasekaran et
al. (2005) [63], while others generated the d-neighborhood
of t/2 sequences, considering l-mers of two sequences
at a time, e.g., Davila et al. (2006) [19]. Strategies
were also designed to generates only the patterns
(d-neighbors) of the l-mers of the first sequence, e.g.,
Davila et al. (2007) [17], Davila et al. (2007) [18]. While
others generated only common patterns of l-mers of two
sequences at at time, e.g, Dinh et al. (2012) [20] and
three sequences at a time, e.g., Dinh et al. (2011) [21],
Bandyopadhyay et al. (2012) [5].

The state of the art algorithms, PMS8 by Nicolae
and Rajasekaran [55] and qPMS9 by Nicolae and
Rajasekaran [56] have innovated by not using a fixed
number of sequences. Instead, they analyzed the size of
the input instance and then, heuristically, decided the

number of sequences. In addition, they used strategies
to sort and choose sequences that could be processed
faster. In these strategies, sorting criteria were used to
carefully prioritize the sequences that could be processed
faster. Another innovation was the creation of a filtering
mechanism that analyzes the symbols frequency of the
selected l-mers of these sequences to eliminate possible
combinations of tuples of l-mers that do not share a motif.

Recent publications, e.g., as Kazemian et al. (2012) [40]
and Xiao et al. (2012) [78], demonstrated that it is possible
to improve the current algorithms so that new challenging
instances for PMS can be solved. It is difficult to answer
how much these algorithms must be improved to be able
to locate a pattern out of eighteen quintillion of patterns,
as presented in Table XVIII for the instance (32,14).

The objective of this work is to serve as a starting
point for the study of the PMS problem and the existing
solutions, aiming to help the research of new solutions for
challenging instances not yet reported in the literature.

IV. Conclusion

IN this work, we presented the PMS problem and
instances considered more difficult to solve, the

challenging instances. Then, we gathered and presented
the main results found in the literature. The focus
of the research were the publications, which at the
time, presented successfully algorithms for the challenging
instances. In this case, we focus mainly on exact algorithms
and the techniques used by them. Finally, we discussed
the evolution of these algorithms until the state of
the art algorithm. In this context, we discussed about
two approaches that have historically stood out. One
was an index based approach and its main problem
was the high memory requirement. It was continually
improved with the addition of strategies that attempted
to reduce memory usage. Another approach, tried to
have a balanced use of sample-driven and pattern-driven
approaches, and used filtering mechanisms to eliminate
part of the search space and pattern generation. This
approach has been successfully used by many algorithms
that reported solutions to challenging instances, including
the state of the art algorithms.

Nowadays, there are still limitations to solve larger
instances and new enhancements are needed to solve them.
We hope this work could be used as an initial support to
help future research in this field.

Acknowledgments

We are thankful to Dr. Ricardo Linden for the precious
suggestions on the final version of the manuscript.

Funding

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) – Finance Code 001. NFA also has grants from
CNPq (306624/2019-2) and Fundect-MS (TOs 141/2016,
007/2015).

26

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

References

[1] Mostafa M Abbas, Mohamed Abouelhoda, and
Hazem M Bahig. “A hybrid method for the
exact planted (l, d)-motif finding problem and
its parallelization”. In: BMC bioinformatics 13.17
(2012). Article number: S10.

[2] Timothy L Bailey and Charles Elkan. “Fitting a
mixture model by expectation maximization to
discover motifs in bipolymers”. In: Proceedings of
the Second International Conference on Intelligent
Systems for Molecular Biology. Menlo Park,
California: AAAI Press, 1994, pp. 28–36.

[3] Timothy L. Bailey and Michael Gribskov.
“Combining evidence using p-values: application to
sequence homology searches.” In: Bioinformatics
(Oxford, England) 14.1 (1998), pp. 48–54.

[4] Timothy L. Bailey et al. “MEME Suite: tools for
motif discovery and searching”. In: Nucleic Acids
Research 37.suppl 2 (May 2009), W202–W208. issn:
0305-1048. doi: 10.1093/nar/gkp335.

[5] Shibdas Bandyopadhyay, Sartaj Sahni, and
Sanguthevar Rajasekaran. “PMS6: A Fast
Algorithm for Motif Discovery”. In: Proceedings
of the 2012 IEEE 2Nd International Conference
on Computational Advances in Bio and Medical
Sciences. ICCABS ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 1–6. isbn:
978-1-4673-1320-9. doi: 10 . 1109 / ICCABS . 2012 .
6182627. url: https://doi.org/10.1109/ICCABS.
2012.6182627.

[6] Mikael Boden and Timothy L Bailey. “Associating
transcription factor-binding site motifs with target
GO terms and target genes”. In: Nucleic acids
research 36.12 (2008), pp. 4108–4117.

[7] Alvis Brazma et al. “Approaches to the automatic
discovery of patterns in biosequences”. In: Journal
of computational biology 5.2 (1998), pp. 279–305.

[8] Jeremy Buhler and Martin Tompa. “Finding motifs
using random projections”. In: proceedings of the
5th Intel Conference on Computational Molecular
Biology. 2001, pp. 22–25.

[9] Alexandra M Carvalho et al. “A highly scalable
algorithm for the extraction of cis-regulatory
regions”. In: Proceedings Of The 3rd Asia-Pacific
Bioinformatics Conference. World Scientific. 2005,
pp. 273–282.

[10] Chen Chen et al. “GPU-MEME: Using graphics
hardware to accelerate motif finding in DNA
sequences”. In: IAPR International Conference on
Pattern Recognition in Bioinformatics. Springer.
2008, pp. 448–459.

[11] Zhi-Zhong Chen and Lusheng Wang. “Fast exact
algorithms for the closest string and substring
problems with application to the planted (l,
d)-motif model”. In: IEEE/ACM Transactions on
Computational Biology and Bioinformatics 8.5
(2011), pp. 1400–1410.

[12] Francis YL Chin and Henry CM Leung. “Voting
algorithms for discovering long motifs.” In: APBC.
2005, pp. 261–271.

[13] Gabriel Cuellar-Partida et al. “Epigenetic priors for
identifying active transcription factor binding sites”.
In: Bioinformatics 28.1 (2011), pp. 56–62.

[14] Modan K Das and Ho-Kwok Dai. “A survey of DNA
motif finding algorithms”. In: BMC bioinformatics
8.7 (2007), p. 1.

[15] N Dasari, Ranjan Desh, and M Zubair. “Solving
planted motif problem on GPU”. In: International
Workshop on GPUs and Scientific Applications,
GPUScA 2010, Vienna, Austria, September 11.
2010.

[16] Naga Shailaja Dasari, Ranjan Desh, and
Mohammad Zubair. “An efficient multicore
implementation of planted motif problem”. In:
High Performance Computing and Simulation
(HPCS), 2010 International Conference on. IEEE.
2010, pp. 9–15.

[17] Jaime Davila, Sudha Balla, and
Sanguthevar Rajasekaran. “Fast and practical
algorithms for planted (l, d) motif search”. In:
IEEE/ACM Transactions on Computational
Biology and Bioinformatics 4.4 (2007), pp. 544–552.

[18] Jaime Davila, Sudha Balla, and Sanguthevar
Rajasekaran. Pampa: An improved branch and bound
algorithm for planted (l, d) motif search. Tech. rep.
Department of Computer Science and Engineering,
University of Connecticut, Storrs, CT, 2007.

[19] Jaime Davila, Sudha Balla, and
Sanguthevar Rajasekaran. “Space and time
efficient algorithms for planted motif search”.
In: International Conference on Computational
Science. Springer. 2006, pp. 822–829.

[20] Hieu Dinh, Sanguthevar Rajasekaran, and Jaime
Davila. “qPMS7: A Fast Algorithm for Finding
(l,d)-Motifs in DNA and Protein Sequences”. In:
PLOS ONE 7.7 (July 2012), pp. 1–8. doi: 10.1371/
journal.pone.0041425.

[21] Hieu Dinh, Sanguthevar Rajasekaran, and Vamsi K
Kundeti. “PMS5: an efficient exact algorithm
for the (l, d)-motif finding problem”. In: BMC
bioinformatics 12.1 (2011), p. 410.

[22] Laurent Duret and Philipp Bucher. “Searching for
regulatory elements in human noncoding sequences”.
In: Current opinion in structural biology 7.3 (1997),
pp. 399–406.

[23] Eleazar Eskin and Pavel A Pevzner. “Finding
composite regulatory patterns in DNA sequences”.
In: Bioinformatics 18.suppl 1 (2002), S354–S363.

[24] Patricia A Evans, Andrew D Smith, and H Todd
Wareham. “On the complexity of finding common
approximate substrings”. In: Theoretical Computer
Science 306.1 (2003), pp. 407–430.

[25] HM Faheem. “Accelerating motif finding problem
using grid computing with enhanced brute force”.
In: Advanced Communication Technology (ICACT),

27

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

2010 The 12th International Conference on. Vol. 1.
IEEE. 2010, pp. 197–202.

[26] Alexander V Favorov et al. “A Gibbs sampler for
identification of symmetrically structured, spaced
DNA motifs with improved estimation of the
signal length”. In: Bioinformatics 21.10 (2005),
pp. 2240–2245.

[27] Maria Federico et al. “An efficient algorithm for
planted structured motif extraction”. In: Proceedings
of the 1st ACM workshop on Breaking frontiers of
computational biology. ACM. 2009, pp. 1–6.

[28] Kornelie Frech, Günter Herrmann, and
Thomas Werner. “Computer-assisted prediction,
classification, and delimitation of protein binding
sites in nucleic acids”. In: Nucleic acids research
21.7 (1993), pp. 1655–1664.

[29] Martin C. Frith et al. “Discovering Sequence Motifs
with Arbitrary Insertions and Deletions”. In: PLOS
Computational Biology 4.5 (May 2008), pp. 1–12.
doi: 10.1371/journal.pcbi.1000071.

[30] David J Galas, Mark Eggert, and Michael S
Waterman. “Rigorous pattern-recognition methods
for DNA sequences: Analysis of promoter sequences
from Escherichia coli”. In: Journal of molecular
biology 186.1 (1985), pp. 117–128.

[31] Debraj GuhaThakurta and Gary D Stormo.
“Identifying target sites for cooperatively
binding factors”. In: Bioinformatics 17.7 (2001),
pp. 608–621.

[32] Shobhit Gupta et al.“Quantifying similarity between
motifs”. In: Genome biology 8.2 (2007). Article
number: R24.

[33] Fatma A Hashim, Mai S Mabrouk, and Walid
Al-Atabany. “Review of different sequence motif
finding algorithms”. In: Avicenna journal of medical
biotechnology 11.2 (2019), pp. 130–148.

[34] Jacques van Helden, Alma F Rios, and Julio
Collado-Vides. “Discovering regulatory elements in
non-coding sequences by analysis of spaced dyads”.
In: Nucleic Acids Research 28.8 (2000), pp. 1808–18.

[35] Gerald Z Hertz and Gary D. Stormo. “Identifying
DNA and protein patterns with statistically
significant alignments of multiple sequences.” In:
Bioinformatics 15.7 (1999), pp. 563–577.

[36] Eric S Ho, Christopher D Jakubowski, and Samuel I
Gunderson. “iTriplet, a rule-based nucleic acid
sequence motif finder”. In: Algorithms for Molecular
Biology: AMB 4.14 (2009).

[37] Ellis Horowitz, Sartaj Sahni, and Sanguthevar
Rajasekaran. Computer algorithms. New York, NY,
USA: W.H.Freeman Press, 1998.

[38] Jianjun Hu, Bin Li, and Daisuke Kihara.
“Limitations and potentials of current motif
discovery algorithms”. In: Nucleic acids research
33.15 (2005), pp. 4899–4913.

[39] Chao-Wen Huang, Wun-Shiun Lee, and
Sun-Yuan Hsieh. “An improved heuristic algorithm
for finding motif signals in DNA sequences”.

In: IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB) 8.4 (2011),
pp. 959–975.

[40] Fazeleh Sadat Kazemian et al. “Parallel
implementation of quorum planted (l, d) motif
search on multi-core/many-core platforms”. In:
Microprocessors and Microsystems (2016).

[41] Uri Keich and Pavel A Pevzner. “Finding motifs in
the twilight zone”. In: Proceedings of the sixth annual
international conference on Computational biology.
ACM. 2002, pp. 195–204.

[42] Uri Keich and Pavel A. Pevzner. “Subtle motifs:
defining the limits of motif finding algorithms”. In:
Bioinformatics 18.10 (2002), pp. 1382–1390.

[43] Lawrence J Korn, Cary L Queen, and
Mark N Wegman. “Computer analysis of nucleic
acid regulatory sequences”. In: Proceedings of
the National Academy of Sciences 74.10 (1977),
pp. 4401–4405.

[44] J Kevin Lanctot et al. “Distinguishing string
selection problems”. In: Information and
Computation 185.1 (2003), pp. 41–55. issn:
0890-5401.

[45] J. Kevin Lanctot et al. “Distinguishing String
Selection Problems”. In: Proceedings of the Tenth
Annual ACM-SIAM Symposium on Discrete
Algorithms. SODA ’99. Baltimore, Maryland, USA:
Society for Industrial and Applied Mathematics,
1999, pp. 633–642. isbn: 0-89871-434-6.

[46] Charles E Lawrence and Andrew A Reilly. “An
expectation maximization (EM) algorithm for
the identification and characterization of common
sites in unaligned biopolymer sequences”. In:
PROTEINS: Structure, Function and Genetics 7.1
(1990), pp. 41–51.

[47] Charles E Lawrence et al.“Detecting subtle sequence
signals: a Gibbs sampling strategy for multiple
alignment”. In: SCIENCE-NEW YORK THEN
WASHINGTON- 262 (1993), pp. 208–214.

[48] Shoudan Liang, Manoj Pratim Samanta, and BA
Biegel. “cWINNOWER algorithm for finding fuzzy
DNA motifs”. In: Journal of bioinformatics and
computational biology 2.01 (2004), pp. 47–60.

[49] Andrei Lihu and Ştefan Holban. “A review of
ensemble methods for de novo motif discovery in
ChIP-Seq data”. In: Briefings in bioinformatics 16.6
(2015), pp. 964–973.

[50] Bingqiang Liu et al. “An algorithmic perspective
of de novo cis-regulatory motif finding based on
ChIP-seq data”. In: Briefings in Bioinformatics 19.5
(2018), pp. 1069–1081. doi: 10 .1093/bib/bbx026.
url: http://dx.doi.org/10.1093/bib/bbx026.

[51] Xiaole Liu, Douglas L Brutlag, and Jun S Liu.
“BioProspector: discovering conserved DNA motifs
in upstream regulatory regions of co-expressed
genes”. In: Biocomputing 2001. New Jersey, NJ,
USA: World Scientific, 2000, pp. 127–138.

28

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

[52] Laurent Marsan and Marie-France Sagot.
“Extracting structured motifs using a suffix tree -
Algorithms and application to promoter consensus
identification”. In: Proceedings of the fourth
annual international conference on Computational
molecular biology. ACM. 2000, pp. 210–219.

[53] Satarupa Mohanty and Suneeta Mohanty. “Genetic
Algorithm-Based Motif Search Problem: A Review”.
In: Smart Intelligent Computing and Applications.
Springer, 2020, pp. 719–731.

[54] Marius Nicolae. “Data Structures and Algorithms
for the Identification of Biological Patterns”.
PhD thesis. University of Connecticut - Storrs, 2016.

[55] Marius Nicolae and Sanguthevar Rajasekaran.
“Efficient sequential and parallel algorithms for
planted motif search”. In: BMC bioinformatics 15.1
(2014). Article number: 34.

[56] Marius Nicolae and Sanguthevar Rajasekaran.
“qPMS9: An efficient algorithm for quorum planted
motif search”. In: Scientific reports 5 (2015).

[57] Graziano Pesole et al. “WORDUP: an efficient
algorithm for discovering statistically significant
patterns in DNA sequences”. In: Nucleic Acids
Research 20.11 (1992), pp. 2871–2875.

[58] Pavel A Pevzner, Sing-Hoi Sze, et al. “Combinatorial
approaches to finding subtle signals in DNA
sequences”. In: International Conference on
Intelligent Systems for Molecular Biology, ISMB.
Vol. 8. 2000, pp. 269–278.

[59] Nadia Pisanti et al. “RISOTTO: Fast extraction
of motifs with mismatches”. In: Latin American
Symposium on Theoretical Informatics. Springer.
2006, pp. 757–768.

[60] David Pribnow. “Nucleotide sequence of an RNA
polymerase binding site at an early T7 promoter”.
In: Proceedings of the National Academy of Sciences
72.3 (1975), pp. 784–788.

[61] Alkes Price, Sriram Ramabhadran, and Pavel A
Pevzner. “Finding subtle motifs by branching
from sample strings”. In: Bioinformatics 19.suppl 2
(2003), pp. ii149–ii155.

[62] Cary Queen, Mark N Wegman, and Laurence Jay
Korn. “Improvements to a program for DNA
analysin: a procedure to find homologies among
many sequences”. In: Nucleic acids research 10.1
(1982), pp. 449–456.

[63] Sanguthevar Rajasekaran, Sudha Balla, and
C-H Huang. “Exact algorithms for planted motif
problems”. In: Journal of Computational Biology
12.8 (2005), pp. 1117–1128.

[64] Mikhail A. Roytberg.“A search for common patterns
in many sequences”. In: Computer applications in the
biosciences: CABIOS 8.1 (1992), pp. 57–64.

[65] Marie-France Sagot. “Spelling approximate repeated
or common motifs using a suffix tree”. In: Latin
American Symposium on Theoretical Informatics.
Springer. 1998, pp. 374–390.

[66] Albin Sandelin et al. “JASPAR: an open-access
database for eukaryotic transcription factor binding
profiles”. In: Nucleic acids research 32.suppl 1
(2004), pp. D91–D94.

[67] Geir Kjetil Sandve and Finn Drabløs. “A survey
of motif discovery methods in an integrated
framework”. In: Biology direct 1.1 (2006), p. 11.

[68] Dolly Sharma, Sanguthevar Rajasekaran, and Hieu
Dinh. “An Experimental Comparison of PMSPrune
and Other Algorithms for Motif Search”. In: arXiv
preprint arXiv:1108.5217 (2011).

[69] Rodger Staden. “Methods for discovering novel
motifs in nucleic acid sequences”. In: Bioinformatics
5.4 (1989), pp. 293–298.

[70] Gary D Stormo. “DNA binding sites: representation
and discovery”. In: Bioinformatics 16.1 (2000),
pp. 16–23.

[71] Sing-Hoi Sze, Songjian Lu, and Jianer Chen.
“Integrating sample-driven and pattern-driven
approaches in motif finding”. In: International
Workshop on Algorithms in Bioinformatics.
Springer. 2004, pp. 438–449.

[72] Shunji Tanaka. “Improved Exact Enumerative
Algorithms for the Planted (l, d)-Motif Search
Problem”. In: IEEE/ACM Transactions on
Computational Biology and Bioinformatics 11.2
(2014), pp. 361–374.

[73] Rie Terada et al. “A type I element composed of the
hexamer (ACGTCA) and octamer (CGCGGATC)
motifs plays a role(s) in meristematic expression of
a wheat histone H3 gene in transgenic rice plants”.
In: Plant Molecular Biology 27.1 (1995), pp. 17–26.

[74] Martin Tompa. “An exact method for finding short
motifs in sequences, with application to the ribosome
binding site problem.” In: International Conference
on Intelligent Systems for Molecular Biology, ISMB.
Vol. 99. 1999, pp. 262–271.

[75] Martin Tompa et al. “Assessing computational tools
for the discovery of transcription factor binding
sites”. In: Nature biotechnology 23.1 (2005), p. 137.

[76] Ngoc Tam L Tran and Chun-Hsi Huang. “A survey
of motif finding Web tools for detecting binding
site motifs in ChIP-Seq data”. In: Biology direct 9.1
(2014), p. 4.

[77] MS Waterman, R Arratia, and DJ Galas. “Pattern
recognition in several sequences: consensus and
alignment”. In: Bulletin of mathematical biology 46.4
(1984), pp. 515–527.

[78] Peng Xiao, Soumitra Pal, and
Sanguthevar Rajasekaran. “qPMS10: A randomized
algorithm for efficiently solving quorum Planted
Motif Search problem”. In: Bioinformatics and
Biomedicine (BIBM), 2016 IEEE International
Conference on. IEEE. 2016, pp. 670–675.

[79] Linbin Yu and Yun Xu. “A parallel gibbs sampling
algorithm for motif finding on GPU”. In: 2009
IEEE International Symposium on Parallel and

29

Aguena, Deiviston S., Mongelli, Henrique., Almeida, Nalvo F. / Revista de Sistemas de Informação da FSMA n. 26 (2020) pp. 10-30

Distributed Processing with Applications. IEEE.
2009, pp. 555–558.

[80] Yipu Zhang, Hongwei Huo, and Qiang Yu. “A
heuristic cluster-based EM algorithm for the planted
(l, d) problem”. In: Journal of bioinformatics and
computational biology 11.04 (2013). Articule ID
1350009.

[81] Yongqiang Zhang and Mohammed J Zaki.
“EXMOTIF: efficient structured motif extraction”.
In: Algorithms for Molecular Biology 1.1 (2006).
Article number: 21.

[82] Jianjun Zhou, Jorg Sander, and Guohui Lin.
“Efficient composite pattern finding from monad
patterns”. In: International journal of bioinformatics
research and applications 3.1 (2006), pp. 86–99.

30

