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Dear colleagues and friends, 

International Symposium on Applied Geoinformatics (ISAG2019) was held in Istanbul on 7-9 November 2019. 

The symposium is organized with the aim of promoting the advancements to explore the latest scientific and 

technological developments and opportunities in the field of Geoinformatics.  

The symposium was jointly organized by the Department of Geomatics Engineering, Yıldız Technical 

University, Istanbul, Turkey and the Institute of Geodesy and Geoinformatics, University of Latvia, Riga-

Latvia. 

Our main aim was to bring researchers to share knowledge and their expertise about state-of-art developments in the 

field of Geoinformatics. We wish to discuss the latest developments, opportunities and challenges that can help the 

Geoinformatics community to solve many real-world challenges. Although this forum is initiated by two countries, 

Turkey and Latvia, it has a global perspective to promote technologies and advancements that would help us live in 

a better world. 

290 participants and scientists from 27 countries were attended to the ISAG2019. 118 oral and 16 poster 

presentations were presented by 45 international and 89 Turkish presenters in 29 sessions between 7-9 

November 2019.  

We are much thankful to our supporting institutions Turkish General Directorate of Mapping, The Embassy of 

Latvia in Turkey, General Directorate of Geographical Information Systems/Turkey, Fatih Municipality. 

The presentation "XXX" was presented at the ISAG2019 and was proposed by our scientific committee for 

evaluation in the International Journal of Environmental and Geoinformatics (IJEGEO).  

The next ISAG symposium will be organized in Riga, Latvia on 16-17 November 2021. I do really hope to see 

you all in Latvia at the 2
nd

 ISAG Symposium. 

On behalf of ISAG-2019 Organization Committee 

Conference Chair 

Prof. Dr. Bülent Bayram 
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Abstract 

Building extraction from high-resolution aerial imagery plays an important role in geospatial applications such as urban planning, 

telecommunication, disaster monitoring, navigation, updating geographic databases, and urban dynamic monitoring. Automatic 

building extraction is a challenging task, as the buildings in different regions have different spectral and geometric properties. 

Therefore, the classical image processing techniques are not sufficient for automatic building extraction from high-resolution aerial 

imagery applications. Deep learning and semantic segmentation models, which have gained popularity in recent years, have been 

used for automatic object extraction from high-resolution images. U-Net model, which was originally developed for biomedical 

image processing, was used for building extraction. The encoder part of the U-Net model has been modified with Vgg16, 

InceptionResNetV2, and DenseNet121 convolutional neural networks. Therefore, building extraction was performed using Vgg16 U-

Net, InceptionResNetV2 U-Net, and DenseNet121 U-Net models. In the fourth method, the results obtained from each U-Net model 

were combined in order to obtain the final result by maximum voting. This study aims to compare the performance of these four 

methods in building extraction from high-resolution aerial imagery. Images of Chicago from the Inria Aerial Image Labeling Dataset 

were used in the study. The images used have 0.3 m spatial resolution, 8-bit radiometric resolution, and 3-band (red, green, and blue 

bands). Images consist of 36 tiles and they were divided into image subsets of 512x512 pixels. Thus, a total of 2715 image subsets 

were formed. 80% of the image subsets (2172 image subset) were used as training and 20% (543 image subset) as testing. To 

evaluate the accuracy of methods, the F1 score of the building class was employed. The F1 scores for building class have been 

calculated as 0.866, 0.860, 0.856, and 0.877 on test images for U-Net Vgg16, U-Net InceptionResNetV2, U-Net DenseNet121, and 

majority voting method, respectively. 

Keywords: building extraction, deep learning, remote sensing, semantic segmentation, U-Net 

Introduction 

Automatic object extraction using remote sensing 

technology has become a popular research topic. 

Nowadays, the importance of automatic object extraction 

has increased with the availability of high spatial 

resolution images (Cheng and Han, 2016; Dervişoğlu et 

al., 2020). Building extraction from high-resolution 

aerial imagery plays an important role in geospatial 

applications such as urban planning, telecommunication, 

disaster monitoring, navigation, updating geographic 

databases, and urban dynamic monitoring (Ghanea, et 

al., 2016). Building extraction can be done by manual 

digitization techniques by experts. However, this process 

requires a lot of time and experience. Besides, manual 

digitization may lead to inattention errors. 

Automatic building extraction is a challenging task, as 

the buildings in different regions have different spectral 

and geometric properties. Also, various complex factors 

like various scales, shadow, man-made non-building 

features, and heterogeneity of roof make automatic 

building extraction from high-resolution aerial imagery 

quite a challenging task (Yang, et al., 2018). Therefore, 

classical image processing techniques are not sufficient 

for automatic building extraction applications. Deep 

learning and semantic segmentation models, which have 

gained popularity in recent years, have been used for 

automatic object extraction from high-resolution images. 

Unlike other methods, deep learning methods are 

capable of extracting low-level and high-level features 

automatically (Patterson and Gibson, 2017; Esetlili et al., 

2018; Çelik and Gazioğlu, 2020). The feature extraction 

process is performed manually by the data scientist in 

traditional machine learning algorithms, while this 

process is automatic in deep learning algorithms. Deep 

learning models like Convolutional Neural Networks 

(CNNs) use convolutions for automatic feature 

extraction. In 2014, pixel-based classification was made 

possible by adapting the CNN model to a fully 

convolutional neural network (Long, et al., 2015). Since 

then, deep learning models have been frequently used in 

semantic segmentation and object extraction studies 

(Lin, et al., 2019). 

In recent years, studies using deep learning methods 

have been conducted in the fields of remote sensing such 

as image preprocessing (Huang, et al., 2015), target 

detection (Chen, et al., 2014), pixel-based classification 

(Hu, et al., 2015) and scene understanding (Zhang, et al., 
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2016). Various studies have also been carried out in the 

field of automatic building extraction. Yang et al. (2018) 

proposed a novel network depend on DenseNets and the 

attention mechanism for utilizing different level features 

rationally. X. Li et al. (2018) designed a new deep 

adversarial network called Building-A-Nets which uses 

the adversarial structure as robust segmentation of 

building rooftops. L. Li et al. (2018) presented a novel 

CNN model called multiple-feature reuse network 

(MFRN) for reducing the GPU memory requirements. 

Lu et al. (2018) used a richer convolutional features 

(RCF) to detect building edges from high spatial 

resolution remote sensing imagery. Bittner et al. (2018) 

performed a Fully Convolutional Network (FCN) that 

effectively combines the high-resolution imagery with 

normalized DSMs and automatically generates building 

predictions. Xu et al. (2018) extracted buildings from 

high-resolution remote sensing imagery using Res-U-Net 

deep learning architecture and guided filters. Boonpook 

et al. (2018) applied SegNet deep learning architecture 

for building extraction from very high-resolution 

Unmanned Aerial Vehicle (UAV) images. H. Liu et al. 

(2019) proposed a fully convolutional network (DE-Net) 

which is created for information preservation through 

network computation, especially in downsampling, 

encoding, and upsampling procedures. Yi et al. (2019) 

compared the building extraction performance of 

proposed DeepResUnet with other semantic 

segmentation architectures which are FCN-8s, SegNet, 

DeconvNet, U-Net, ResUNet, and DeepUNet. Ji et al. 

(2019) presented a robust FCN which consists of Atrous 

convolutions and multi-scale aggregation to extract 

buildings from an open aerial and satellite dataset. Hui et 

al. (2019) designed a multitask driven deep neural 

network to extract unique features of buildings like 

shape and boundary. Pan et al. (2019) used a generative 

adversarial network model with spatial and channel 

attention mechanisms for selecting more useful features 

for building extraction. P. Liu et al. (2019) proposed 

SRI-Net which can capture and aggregate contexts from 

multi-scales. Schuegraf and Bittner (2019) designed a U-

shaped neural network, which efficiently merges depth 

and spectral information within two parallel networks. 

Sun et al. (2019) used multiscale deep features, Support 

Vector Mechanism (SVM) based fusion strategy, and the 

superpixels refinement for building extraction. Lin et al. 

(2019) developed a deep learning architecture called 

ESFNet which consists of residual blocks and dilated 

convolutions for computational efficiency. Y. Liu et al. 

(2019) examined the loss of information caused by the 

use of pooling operations and suggested a light-weight 

deep learning model for its solution. Ji and Lu (2019) 

proposed a novel FCN based Siamese architecture and 

tested the architecture using their dataset which contains 

images from different sources. Zhang et al. (2020) 

improved the building extraction efficiency of well-

known deep learning model Mask R-CNN using Sobel 

edge detection algorithm. 

In this study, the results obtained from various U-Net 

models were compared and a new majority vote-based 

method was proposed. Accuracy analysis was performed 

with the F1 score method and the results were discussed. 

Materials and Methods 

Data Set 

In the present study, Inria Aerial Image Labeling Dataset 

(Maggiori, et al., 2017) which is publicly available data 

set was used for comparing the performance of different 

deep learning models. Images in the dataset have 0.3 m 

spatial resolution and three spectral bands (red, green, 

and blue). Although the data set contains images from 

various cities, only the Chicago images were used in the 

study presented. These images consist of 36 tiles and 

cover an area of 81 km
2
 in total. Each tile covers an area 

of 2.25 km
2
 and tile sizes are 5000 x 5000. 

The ground truth data are available for each image. 

Ground truth data is prepared in binary format and it 

shows the building and its building classes. A sample 

image in the dataset and its ground truth data is given in 

Figure 1. Labeled images cover dense urban areas and 

contain a variety of man-made or natural objects. 

Therefore, it is a suitable data set for testing algorithms. 

Figure 1. a) Sample image in the dataset. b) ground truth 

of the sample image. 

Method 

Original U-Net model is a fully convolution network 

developed for biomedical image segmentation 

(Ronneberger, et al., 2016). The architecture consists of 

two parts: (1) contracting path, and (2) expansive path. 

The contracting path, which is similar to a standard 

CNN, has layers to extract low- and high-level features. 

In this study, various architectures are used for the 

contracting path. In the expansive path, the upsampling 

layers are used for pixel-based classification. The feature 

maps extracted in the encoder section are copied to the 

scale to which they belong in the upper scaling process, 

which is called concatenate. In the last layer, the 

probability of the class (building and nonbuilding) to 

which each pixel belongs is calculated using the sigmoid 

function. Illustration of the U-Net network structure is 

given in Figure 2. 

In this study contracting path of the U-Net model was 

modified with different feature extraction deep learning 

algorithms. VGG16, InceptionResNetV2 and 

DenseNet121 models were used for contracting path. 

Finally, a new method is proposed by combining the 

results obtained from the U-Net VGG16, U-Net 

InceptionResNetV2, and U-Net DenseNet121 models 

with the majority voting principle. 
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Figure 2. Illustration of U-Net network structure. 

U-Net VGG16 

U-Net VGG16 is a combination of VGG16 (Simonyan 

and Zisserman., 2014) and U-Net architectures. In the 

contracting path of the U-Net architecture, other layers 

of the VGG16 architecture are used except for the fully 

connected layer. After that, VGG-16 layers are 

concatenated with a basic U-Net model which is 

composed of convolutional and upsampling layers. The 

layers of VGG16 architecture used in the study are given 

in Table 1. 

Table 1: Contracting path of U-Net VGG16 (Simonyan 

and Zisserman., 2014). 

Layer 

Convolution 
3x3, 64 

3x3, 64 

Pooling 2 x2 Max Pooling, Stride 2 

Convolution 
3x3, 64 

3x3, 64 

Pooling 2 x2 Max Pooling, Stride 2 

Convolution 

3x3, 256 

3x3, 256 

3x3, 256 

Pooling 2 x2 Max Pooling, Stride 2 

Convolution 

3x3, 512 

3x3, 512 

3x3, 512 

Pooling 2 x2 Max Pooling, Stride 2 

Convolution 

3x3, 512 

3x3, 512 

3x3, 512 

Pooling 2 x2 Max Pooling, Stride 2 

U-Net InceptionResNetV2 

U-Net Inception-Resnet-v2 is a combination of 

Inception-Resnet-v2 and U-Net architectures. Inception-

Resnet-v2 is developed based on a fusion of the 

Inception structure and the Residual connection 

(Szegedy, et al., 2017). In the Inception-Resnet block, 

multiple sized convolutions are merged by using residual 

connections. With the residual connections, the 

degradation problem was avoided, and the training time 

was reduced. In U-Net Inception-Resnet-v2 architecture, 

Inception-Resnet-v2 architecture was used as a 

contracting path of U-Net. The layers of the Inception-

Table 2. Contracting path of Inception-Resnet-v2 

(Szegedy, et al., 2017). 

Layer 

Stem block 

5 x Inception-Resnet-A 

Reduction-A 

10 x Inception-Resnet-B 

Reduction-B 

5 x Inception-Resnet-C 

U-Net DenseNet121 

U-Net DenseNet121 is a combination of DenseNet121 

and U-Net architectures. Block structures are used in 

DenseNet architectures. Within each block, there are 

convolution layers. Dense shortcut connections between 

these layers are used. Each layer in the block is 

connected to the previous layers. These shortcut 

connections are provided by transferring feature maps 

(Huang, et al., 2017). In the contracting path of the U-

Net architecture, other layers of the DenseNet121 

architecture are used, except for the fully connected 

layer. The layers of DenseNet121 architecture used in 

the study are given in Table 3. 

Table 3. Contracting path of U-Net DenseNet121 

(Huang, et al., 2017). 

Layer 

Convolution 7 × 7, Stride 2 

Pooling 3 × 3 Max Pooling, Stride 2 

Dense Block [
1 x 1
3 x 3

] x 6 

Transition Layer 
1 × 1 Convolution 

2 × 2 Average Pooling, Stride 2 

Dense Block [
1 x 1
3 x 3

] x 12 

Transition Layer 
1 × 1 Convolution 

2 × 2 Average Pooling, Stride 2 

Dense Block [
1 x 1
3 x 3

] x 24 

Transition Layer 
1 × 1 Convolution 

2 × 2 Average Pooling, Stride 2 

Dense Block [
1 x 1
3 x 3

] x 16 

Majority Voting Method 

The majority voting method was used to increase the 

accuracy of U-Net models. In this method, the results 

obtained by U-Net methods for each pixel were voted. In 

this way, the class which includes the majority of votes 

for the relevant pixel is selected. For example; if a pixel 

is classified as a building class by two models and 

classified as a non-building class by one model, then the 

building class is assigned to that pixel. The overall flow 

of the majority voting method for building extraction is 

given in Figure 3. 

Inception-Resnet-v2 architecture was used as a 

contracting path of U-Net. The layers of the Inception-
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Figure 3. The overall flow of the majority voting method 

for building extraction. 

Accuracy Assessment 

In the present study, F1 scores of building class 

calculated used for the accuracy assessment of the 

architectures. The F1 score method was implemented 

pixel-based. F1 score is calculated as in formula (1): 

𝐹1 = 2 𝑥 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙) / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) (1) 

where, 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑝), 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑛) (2) 

where tp, fp, and fn are true positive, false positive, and 

false negative, respectively. Precision indicates what 

percentage of the pixels detected as buildings are 

actually buildings. On the other hand, recall; indicates 

the correct detection rate of the building class. 

Results 

The dimensions of the images are 5000 x 5000. These 

dimensions are quite high because deep learning 

architectures require a lot of processing power. 

Therefore, images and labels were cut, and 512 x 512 

images were obtained. As a result of this process, a total 

of 2715 image subsets were obtained. 80% of the image 

subsets (2172 image subset) were used as training and 

20% (543 image subset) as testing. Examples of images 

used for training and testing purposes are given in Figure 

4. 

In this study, deep learning models were created using an 

open-source deep learning framework called Keras 

(Chollet, 2020). In the training phase, the Adadelta 

algorithm (Zeiler, 2012) was used as the optimizer with 

the learning rate of 1. Binary Crossentropy function was 

used for loss function. Minibatch size and number of the 

epoch were chosen as 4 and 50, respectively. All models 

trained on the Google Colaboratory platform which uses 

NVIDIA Tesla K80 GPU computing processors. 

After the training process, trained deep learning models 

were applied to test images. So, class probabilities for 

each pixel of test images were obtained. Then, binary 

images were obtained by applying the 0.5 threshold 

value to the class probabilities. Precision, recall, and F1 

scores of building class for all methods are given in 

Table 4. 

Figure 4. Examples of image subsets used for training 

and testing purposes. a) Sample image subsets b) ground 

truths of sample image subsets. 

Table 4. Accuracy assessment results 

Model 
Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

U-Net VGG16 87.65 85.60 86.61 

U-Net Inception-

Resnet-v2 
88.10 84.07 86.04 

U-Net DenseNet121 84.27 86.97 85.60 

Majority Voting 88.40 86.99 87.69 

When the F1 Score values are analyzed, it is observed 

that the method with the highest value is the majority 

voting. Following the majority voting method, the model 

with the highest F1 Score was U-Net VGG16 with 

86.61. The model with the least F1 Score was the U-Net 

DenseNet121. 

As in the F1 Score, the majority voting method ranked 

first for both the precision and the recall metrics. It was 

concluded that the precision value of the U-Net 

Inception-Resnet-v2 model is high, but the recall value is 

low. On the other hand, in the U-Net-DenseNet121 

model, it is concluded that the precision value is low, but 

the recall value is high. In the U-Net VGG16 model, 

there is a balance between precision and recall values. 

Examples of binary images obtained as a result of 

applying the models to the test data set are given in 

Figure 5 and Figure 6. U-Net VGG16 and majority 

voting methods are the methods that give the closest 

results to the label image. U-Net DenseNet121 and U-

Net Inception-Resnet-v2 methods produced as a result of 

the binary images of the building's geometric structure 

could not be fully reflected. 

All models can extract discrete building but, if the 

distance between the buildings is less than 5 pixels, it is 

found that the models make a merging error. It can be 

seen in the blue circle in Figure 6. For discrete buildings, 

U-Net VGG16 and majority voting methods are the 

methods that give the closest results to the label image. 

U-Net DenseNet121 and U-Net Inception-Resnet-v2 
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methods produced as a result of the binary images of the 

building's geometric structure could not be fully 

reflected. 

Discussion and Conclusion 

In this study, the effectiveness of various deep-learning-

based U-Net models (U-Net VGG16, U-Net Inception-

Resnet-v2, U-Net DenseNet121) in building extraction 

from high-resolution aerial imagery was investigated and 

a majority voting method was proposed. Results were 

analyzed using precision, recall, and F1 score metrics. 

When the results were examined, it was found that the 

most successful method was the majority voting with 

87.69% F1 score. The majority voting method combines 

prediction results from U-Net VGG16, U-Net Inception-

Resnet-v2, and U-Net DenseNet121 models. Each of 

these models can have several advantages over each 

other. For example, the U-Net VGG16 model is a 

shallower model than other models and it has a basic 

network structure. On the other hand, dense connections 

and inception structures are used in the U-Net 

DenseNet121 and U-Net Inception-ResNet-v2 models, 

respectively. Thus, a wide variety of results can be 

obtained from various models. With the Majority voting 

method, the advantages of the models used are combined 

in a single method. Therefore, better prediction results 

can be obtained using this methodology compared to a 

single deep learning model. 

Figure 5. Binary classification results. a) Test image b) 

Ground truth c) U-Net VGG16 d) U-Net Inception-

Resnet-v2 e) U-Net DenseNet121 f) Majority voting 

Figure 6. Binary classification results. a) Test image b) 

Ground truth c) U-Net VGG16 d) U-Net Inception-

Resnet-v2 e) U-Net DenseNet121 f) Majority voting 

Following the majority voting method, the model with 

the highest F1 Score was U-Net VGG16 with 86.61%. 

U-Net VGG16 model is very similar to original U-Net 

architecture which is a successful architecture when 

using a small number of data (Ronneberger et al., 2015). 

The models with the least F1 Score were the Inception-

Resnet-v2 and U-Net DenseNet121. These models are 

deeper models than the VGG16 model. Therefore, more 

features are extracted in these models. However, 

considering the properties of the data set and the number 

of images in the training data set, more efficient results 

can be obtained with shallow models like U-Net 

VGG16. 

In addition to the F1 score metric, the resulting binary 

images were analyzed visually. As a result, Majority 

Voting and U-Net VGG16 methods were the best 

methods that reflect the building geometry. Furthermore, 

if the distance between the buildings is less than 5 pixels, 

it is found that the models make a merging error. 

The fact that the images have only RGB bands and the 

lack of Digital Elevation Model (DEM) makes the 

problem more difficult. In the next stage of this study, 

other deep learning models and different data sets which 

have DEM data are planned to be included in the study. 
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