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Abstract: In this paper, a five phase model is proposed for early detection of communicable and non-communicable 

diseases like Haemoprotozoan and breast cancer using pathology images. At first, color normalization technique is 

utilized to improve the visual quality of the collected histology images. Next, edge boost curve transform is employed 

to segment nuclei and non-nuclei cells from the enhanced images. The developed segmentation methodology delivers 

good results in overlapped database. Further, the segmented image is converted into one dimensional vectors and then 

modified reliefF algorithm is applied to choose the active feature vectors to achieve better classification. Finally, deep 

neural network is accomplished to classify the Haemoprotozoan images as anaplasmosis, babesiosis and theileriosis, 

and breast images as malignant or benign. From the experimental result, the proposed model; modified reliefF-deep 

neural network obtained maximum classification accuracy of 97.6% in Haemoprotozoan disease detection and 95.94% 

in breast cancer detection, which are better related to other comparative techniques like Random Forest, Multi Support 

Vector Machine and K-Nearest Neighbor. 

Keywords: Breast cancer detection, Canny edge detection, Circular hough transform, Color normalization, Deep 
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1. Introduction 

In recent times, breast cancer has a higher 

mortality and morbidity among women according to 

the world cancer report. In India, breast cancer is the 

2nd largest chronic disease, approximately 300,000 

people get affected each year [1, 2], so early detection 

is essential to diminish the mortality rate of breast 

cancer (non-communicable disease). Additionally, 

Haemoprotozoan disease (communicable disease) is 

very common in tropical and sub-tropical regions, 

which causes economic losses to the livestock 

industry [3]. Haemoprotozoan disease is mainly 

transmitted by blood transfusion and occasionally 

through ixodid tick. The two most important 

Haemoprotozoan diseases transmitted of cattle are 

theileriosis and babesiosis, which are caused by 

Theileria spp and Babesia spp. The rickettsial disease 

caused by Anaplasma spp is named as anaplasmosis 

[4, 5]. Though, Haemoprotozoan tick not only 

transmit the diseases to the animals and also causes 

hide damage, anaemia and tick paralysis [6]. The 

Haemoparasitaemic animals are emaciated with poor 

reproductive and productive performances, anaemic 

and reduced working capacity in bullocks [7, 8]. So, 

early diagnosis and an effective treatment are 

compulsory to prevent the animals from death that 

improves the production ratio of a country [9]. 

Recently, histopathological image analysis is an 

effective imaging modality technique for cancer 

diagnosis and recognition. Histopathological image 

analysis assists clinicians in diagnosing the tumor and 

its sub-types, where the two basic types of tasks in the 

pathology image analysis are image segmentation 

and classification [10]. In this paper, a deep learning 

based model is proposed to perform pathology cell 

segmentation and classification for early diagnosis of 

Haemoprotozoan disease and breast cancer. 
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Initially, the Haemoprotozoan disease related to 

pathology images is collected from a real time 

database and breast cancer pathology images is 

collected from BreaKHis dataset. Next, a color 

normalization technique is used to improve the 

visibility level of the collected images by altering the 

range of pixel intensity values. Then, the nuclei and 

non-nuclei cell segmentation is performed using edge 

boost curve transform. In this technique, canny edge 

detection is applied to obtain edge images and it is 

fed to circular Hough transform to redefine the 

images as circles, and ellipses for better cell 

segmentation. Further, the cell regions are precisely 

separated from the segmented images based on the 

radius and center location of each cell and then the 

separated cells are resized as 32 × 32. The obtained 

2D pathology image is converted into 1D vectors, and 

then modified reliefF algorithm is applied to select 

the active feature vectors from the total vectors. 

Modified ReliefF algorithm reduces the “curse of 

dimensionality” problem that results in better disease 

classification. The obtained features are fed to Deep 

Neural Network (DNN) classifier to classify 

Haemoprotozoan images as anaplasmosis, babesiosis 

and theileriosis, and breast images as malignant or 

benign. In the experimental section, the proposed 

modified reliefF-DNN model performance is 

validated by means of accuracy, balanced accuracy, 

sensitivity, specificity and f-score. 

This research article is prepared as follows: In 

section 2, a few recent research papers on the topic 

“pathology image segmentation and classification” 

are surveyed. The detailed explanation about the 

proposed modified reliefF-DNN model is given in the 

Section 3. The experimental analysis of the proposed 

modified reliefF-DNN model is stated in the Section 

4. Conclusion of the present research is given in the 

Section 5. 

2. Literature survey 

C. Zhu, F. Song, Y. Wang, H. Dong, Y. Guo, and 

J. Liu, [11] developed a hybrid Convolutional Neural 

Network (CNN) model for breast cancer 

histopathology image classification. The hybrid CNN 

model contains a local model and a hybrid model 

branch, where the developed model has strong 

representation ability by merging two branch 

information and local voting. Additionally, the 

redundant channels were removed from the hybrid 

CNN model by including squeeze excitation pruning 

block in the embedding layer. This procedure 

decreases the overfitting problem and also helps in 

delivering a higher classification accuracy. The 

simulation result showed that the developed hybrid 

CNN model outperformed the existing models in 

breast cancer histopathology image classification. Y. 

Xu, Z. Jia, L.B. Wang, Y. Ai, F. Zhang, M. Lai, I. 

Eric, and C. Chang, [12] developed leveraging deep 

CNN activation features to perform visualization, 

segmentation and classification in the large scale 

tissue histopathology images. In this study, ImageNet 

was utilized to transfer the extracted features from 

trained image databases to histopathology images. By 

visualizing the neuron components in the hidden 

layers, the properties of CNN features were explored. 

However, CNN is a region based pixel labeling, so it 

cannot explicit the higher level dependency between 

the points on the object boundaries to preserve the 

overall smoothness. In addition, CNN model is 

highly expensive in real time applications, because it 

needs computing hardware like neuromorphic chips 

and graphics processing units. 

A. Chakravarty, and J. Sivaswamy, [13] 

developed a Recurrent Neural Network (RNN) based 

solution named as RACE-net for bio-medical image 

segmentation. In this literature, the developed 

RACE-net model performance was validated on three 

segmentation tasks like left atrium in cardiac MRI 

scans, cell nuclei in histopathology images, and optic 

cup and disc in fundus retinal images. The 

experimental results showed that the RACE-net 

model achieved better segmentation performance 

compared to existing U-net model. Hence, the 

developed RACE-net model mitigate the vanishing 

gradients concerns, so it cannot incorporate with high 

level features to achieve better classification 

accuracy. Further, X. Li, Y. Wang, Q. Tang, Z. Fan, 

and J. Yu, [14] developed a dual U-Net structure to 

segment the overlapped glioma nuclei from the 

histology images. The developed dual U-Net 

structure use both region and boundary information 

to enhance the segmentation accuracy of glioma 

nuclei. A new regression methodology was used to 

predict the distance map in order to refine the 

segmentation and the final segmentation was 

achieved using the fusion layers. The dual U-Net 

structure overcomes the issues faced by the 

researchers in the existing studies like touching or 

overlapping nuclei, irregular shapes, and intra or inter 

color variations. Hence, dual U-Net structure 

achieved a good performance in glioma cases, since 

the accuracy of touching nuclei with serious 

deformations are less which leads to over-

segmentation problem. 

A. Albayrak, and G. Bilgin, [15] developed a two 

phase segmentation method to segment the cell 

structures from the histology images. Initially, a 

simple linear iterative clustering method was applied 

to segment the super-pixels from the images and then 
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a global clustering methodology was used to cluster 

the same super-pixels that contains cell nuclei. The 

simple linear iterative clustering method was 

effective in eliminating the image artifacts and 

smoothening the local variance of the neighborhood 

pixels. The experimental results showed that the 

developed two phase segmentation method achieved 

better histopathological cell segmentation 

performance by means off-measure, true positive rate, 

precision, computation time and true negative rate. 

The performance of the developed method 

completely depends on the quality of pre-computed 

boundary maps. H. Jiang, S. Li, W. Liu, H. Zheng, J. 

Liu, and Y. Zhang, [16] developed a Geometric 

Feature Spectrum Extreme-Net (GFS Extreme-Net) 

model for cell detection. The developed model 

showed a promising and broader application potential 

in microscopic image analysis. Hence, the developed 

GFS Extreme-Net model consumes more time for 

labeling, and also it is very difficult to identify the 

specific extreme points that reflects the best 

geometric features of a target. Additionally, H. Li, X. 

Zhao, A. Su, H. Zhang, J. Liu, and G. Gu, [17] 

developed a weight map on the basis of distance 

transformation weight and class weight to improve 

the ability of loss function in U-Net for effectively 

learning the cell border feature. The experimental 

results showed that the developed model achieved 

better performance in white blood cell segmentation 

on the ALL-IDB1 database. However, the developed 

model is not suitable to solve the segmentation 

problem on small medical data sample that is a major 

problem in this literature. P. Alirezazadeh, B. Hejrati, 

A. Monsef-Esfahani, and A. Fathi, [18] developed a 

new unsupervised system for histopathological breast 

cancer detection. Initially, correlation metric was 

used to overcome the mismatch between the test and 

trained feature values into a domain invariant space. 

Then, an adaptation approach was developed based 

on representation learning to improve the detection 

rate of malignant images from the benign images. 

Finally, classification was carried out using decision 

tree, random forest, nearest neighbor, SVM and 

Quadratic Linear Analysis (QLA). In that, QLA 

attained better classification accuracy of 88.50% on 

BreaKHis database. Major issue with the adaptation 

approach was the registration of multiplexed images, 

because the physical displacements were occurred 

easily during the sequential image of the similar 

individual. In order to address the aforementioned 

problems, modified reliefF-DNN model is proposed 

to improve the histopathological cell segmentation 

and classification performance in communicable and 

non-communicable diseases. 

 

 
Figure. 1 Workflow of proposed system 

3. Methodology 

The proposed system includes five phases such as 

data collection: real time and BreaKHis datasets, 

data pre-processing: color normalization, cell 

segmentation: edge boost curve transform, feature 

selection: modified reliefF algorithm, and 

classification: DNN. The work flow of the proposed 

system is graphically indicated in Fig. 1. 

3.1 Data collection and pre-processing  

In this research study, real time and BreaKHis 

datasets are used for experimental investigation. The 

real time dataset comprises of 98 pathology images, 

11 anaplasmosis images, 60 babesiosis images, and 

27 theileriosis images. At the border of the cell, a rink 

link occurrence will be there in anaplasmosis images, 

and a cell with two dual structure is called as 

babesiosis images. In addition, a cell with circular big 

dot or rod like structure is called as theileriosis 

images. The graphical depiction of anaplasmosis, 

babesiosis and theileriosis images are indicated in Fig. 

2. BreaKHis dataset comprises of 7909 image 

samples with two major classes such as malignant 

and benign. The malignant subset consists of 5429 

samples, and the benign subset consists of 2440 

samples, and it is graphically stated in Fig. 3. After 

data collection, color normalization technique is 

undertaken for enhancing the visible level of the 

collected pathology images [19]. General formula of 

color normalization technique is defined in Eq. (1). 
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                  (a)                                              (b) 

 

 
(c) 

Figure. 2 Collected haemoprotozoan images: (a) 

anaplasmosis, (b) babesiosis, and (c) theileriosis 

 

 
(a) 

 

 
(b) 

Figure. 3 Sample breast images: (a) malignant class and 

(b) benign class 

 

 

𝐼𝑛𝑜𝑟𝑚 = (𝐼 − 𝑀𝑖𝑛) ×
𝑛𝑒𝑤𝑀𝑎𝑥−𝑛𝑒𝑤𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
+

𝑛𝑒𝑤𝑀𝑖𝑛                 (1) 

 

Where, 𝐼 is indicated as collected pathology images, 

𝐼𝑛𝑜𝑟𝑚 is denoted as normalized images, and 𝑀𝑎𝑥 −
𝑀𝑖𝑛 is specified as minimum and maximum range of 

image pixel intensity value that ranges  

 
    (a)                                         (b) 

 
(c) 

Figure. 4 Normalized images: (a) anaplasmosis, (b) 

babesiosis, and (c) theileriosis 

 

 
(a) 

 
(b) 

Figure. 5 Normalized breast images: (a) malignant class 

and (b) benign class 

 

 

between 0 to 255. The graphical representation of 

normalized anaplasmosis, babesiosis and theileriosis 

pathology images are indicated in Fig. 4. Hence, the 

normalized breast images are indicated in Fig. 5. 
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3.2 Cell segmentation 

After improving the visibility level of images, 

edge boost curve transform is applied to segment the 

nuclei and non-nuclei cells. In this technique, canny 

edge detector is an effective edge detection operator, 

which is used to detect the extensive range of edges 

in the enhanced histology images [20]. Steps 

involved in canny edge detector are given as follows: 

Step 1: Initially, Gaussian filter [21] is used to 

remove noise from the enhanced histology images. 

Step 2: Then, sobel operator is used to identify 

the image gradients for highlighting the nuclei and 

non-nuclei cells.  

Step 3: Next, suppress the image pixels that are 

not at the maximum (non-maximum suppression). 

Step 4: Hysteresis is applied to track the residual 

image pixels that are not suppressed. Further, the 

double thresholding technique utilizes 2 thresholds 

T1 and T2 for classifying the gradients into 3 groups. 

• Gradients<T1 is a non-edge point. 

• Gradients>T2 is an edge point. 

• Or-else, the decision is taken based on the 

existing edge paths and direction of the 

point. The output image of the canny edge 

detector is fed to circular Hough transform 

to segment the cell regions. 

Circular Hough transform is utilized to locate the 

regular curve in the output images of canny edge 

detector. This circular Hough Transform re-defines 

the images as circles, ellipses and expressions with 

powers of three and above. In this transformation 

technique, circle candidates are generated by voting 

in the Hough parameter space and then select local 

maxima in the accumulator matrix [22]. The output 

image of canny edge detector and circular Hough 

transform is represented in Figs. 6 and 7. By using 

bounding box, cell regions are separated based on 

center location and radius of every cell. Next, the cell 

size is fixed as  32 × 32 , and the respective two 

dimensional histology image is converted into one 

dimensional vector. 
 

 
(a)                               (b) 

Figure. 6 Segmented haemoprotozoan images: (a) canny 

edge detection and (b) circular hough transform 

 
Figure. 7 Segmented breast images: (a) canny edge 

detection and (b) circular hough transform 

3.3 Feature selection 

After obtaining the one dimensional feature 

vectors 𝑥 , modified reliefF algorithm is applied to 

select the optimal or relevant feature vectors for 

better classification [23]. Generally, reliefF algorithm 

is an extension of relief algorithm, where the 

conventional algorithm can able to deal with 

numerical and nominal attributes.  But it is ineffective 

in unstructured or incomplete data and also it is 

limited to binary class issues. The reliefF algorithm 

resolves the aforementioned problems and effectively 

deals with noisy and incomplete data. As similar to 

relief algorithm, the reliefF randomly chooses the 

instances 𝑟𝑖 and then search for 𝑘-nearest neighbors 

from the different classes is named as nearest miss 𝑀𝑖 

instances and the 𝑘-nearest neighbors searched from 

similar classes is named as nearest hit 𝐻𝑖 instances. 

Generally, Manhattan distance is used to identify the 

nearest miss and hit instances. In modified reliefF 

algorithm, Chebyshev distance is used instead of 

Manhattan distance to identify the nearest miss and 

hit instances. Major benefit of Chebyshev distance is 

it needs only limited time to decide the distances 

between the instances. Although, Chebyshev distance 

uses only limited number of features to represent the 

data that is enough to attain precise neighbourhood 

selection and better prediction and also it completely 

reduces the “curse of dimensionality” problem. 

In modified reliefF algorithm, the searched 

nearest miss 𝑀𝑖 and nearest hit 𝐻𝑖 instances updates 

the quality estimation 𝑊[𝑥] for all attributes 𝑥 [24], 

as indicated in the Eqs. (2) - (4). 

 

𝑊[𝑥] =
𝑀̅+𝐻̅

𝑞
                             (2) 

     

Where,   

 

 𝐻̅ = − ∑ 𝐷 (𝑥, 𝑟𝑖 , 𝐻𝑖)/𝑘𝑘
𝑖=1           (3) 

 

𝑀̅ =                                                                          

∑ [(
𝑃(𝐶)

1−𝑃(𝑐𝑙(𝑟𝑖))
) ∑ 𝐷 (𝑥, 𝑟𝑖 , 𝑀𝑖(𝐶))] /𝑘𝑘

𝑖=1𝐶≠𝑐𝑙(𝑟𝑖)  

(4) 
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Where, 𝑞 = 25  is represented as user defined 

parameter, 𝐷  is represented as Manhattan distance 

between the selected instances 𝑟𝑖, 𝐶 = 3 is indicated 

as total classes (Anaplasmosis, Babesiosis, and 

Theileriosis), 𝑐𝑙(𝑟𝑖) is stated as class of 𝑖𝑡ℎ sample, 

and 𝑃(𝐶)  is represented as previous class. After 

applying reliefF algorithm, actual features 𝑥 is 3072 

and the selected features 𝑊[𝑥] is 922. Finally, the 

selected features 𝑊[𝑥] are fed to DNN classifier. 

3.4 Classification 

After selecting the optimal feature vectors 𝑊[𝑥], 
histopathological image classification is performed 

by utilizing stacked auto-encoder. It is an 

unsupervised deep learning algorithm, where the 

number of input nodes are lower than the number of 

hidden nodes. The number of output nodes in auto-

encoder is equal to the number of input nodes. During 

pathology image classification, the possibilities of 

missing value is low in stacked auto-encoder. 

Initially, it assigns a classification score 𝑓(𝑊[𝑥]) for 

the optimal features during prediction time. The 

function 𝑓 includes a sequence of layers for 

computation that is mathematically defined in Eq. (5). 

 

  𝑍𝑖𝑗 = 𝐼𝑖𝑃𝑖𝑗;  𝑍𝑗 = ∑ 𝑍𝑖𝑗𝑖𝑗 + ℎ𝑗;  𝑂𝑗 = 𝑔(𝑍𝑗)   (5) 

 

Where, 𝐼𝑖  is represented as input layer, 𝑃𝑖𝑗  is 

indicated as model parameter, 𝑂𝑗  is indicated as 

output layer, ℎ𝑗  is denoted as hidden layer and 

𝑔(𝑍𝑗) is stated as a mapping or pooling function. The 

layer wise relevance propagation in auto-encoder 

decomposes 𝑓(𝑊[𝑥]) into relevance attribute 𝑙𝑖 that 

plays a vital role in classification decision, which is 

mathematically defined in Eq. (6). 

 
    𝑓(𝑊[𝑥])  = ∑ 𝑙𝑖𝑖                                (6) 

                           

where  𝑙𝑖 = ∑
𝑧𝑖𝑗

∑ 𝑧𝑖𝑗𝑖
𝑗                                      

If 𝑙𝑖 < 0, it is a neutral or negative evidence, and 

if  𝑙𝑖 > 0 , it is a positive evidence that supports 

classification decision. In auto-encoder, the hidden 

layers are trained on the input data for learning the 

primary features. All the weight and bias parameters 

are learned during the pre-training process to reduce 

the cost function, as mathematically defined in Eq. 

(7). 
 

𝑐𝑜𝑠𝑡 =
1

2𝑛
∑ (𝐼𝑖 − 𝐼𝑖)

2
+ 𝛽 ∑ 𝐾𝐿 𝑚

𝑗=1
𝑛
𝑖=1 (𝑝|𝑝𝑗̂) +

𝜆

2
∑ ∑ 𝜃𝑖𝑗

2𝑚
𝑗=1

𝑛
𝑖=1                                  (7) 

 

Where, 𝑝 is indicated as sparsity parameter, 𝛽 is 

stated as weight of sparsity penalty, 𝜃 is indicated as 

weight of hidden layers, 𝜆  is indicated as weight 

delay, 𝐾𝐿  is represented as Kullback-Leibler 

divergence function, 𝑝𝑗̂ is represented as probability 

of firing activity, 𝑛 is represented as the number of 

input nodes and 𝑚 is indicated as hidden nodes. The 

parameter settings of auto-encoder is given as 

follows; input layer is 1, output layer is 1, hidden 

layer is 125 and 250, and learning rate is 0.1. 

Generally, the deep learning techniques like stacked 

auto-encoder requires more number of images to 

achieve better classification. Here, the experiment is 

carried out with and without augmentation, because 

the collected database contains minimum number of 

images. 

4. Experimental results 

In this research, the proposed modified reliefF-

DNN model is simulated using MATLAB (2018a) 

environment with the system requirements; RAM: 

16 GB, processor: Intel core i7, and Operating 

System: windows 10 (64 bit). In this scenario, the 

performance of modified reliefF-DNN model is 

analysed by means of sensitivity, specificity, 

accuracy, balanced accuracy, and f-score on real time 

and BreaKHis dataset. In histopathological medical 

diagnosis, specificity is defined as the test to correctly 

identify the regions without disease (true negative 

rate). Sensitivity is defined as the test to correctly 

identify the regions with disease (true positive rate). 

Further, accuracy is the most important performance 

measure that utilized in medical diagnosis, where it is 

the ratio of correctly predicted observations from the 

total observations. Specificity, sensitivity, and 

accuracy are mathematically defined in the Eqs. (8)- 

(10). 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
× 100               (8) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
× 100               (9) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100          (10) 

 

F-score is determined as the harmonic mean of 

model’s recall and precision, and the balanced 

accuracy is defined as the harmonic mean of model’s 

sensitivity and specificity. The mathematical 

expressions of f-score and balanced accuracy are 

defined in the Eqs. (11) and (12). 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100        (11) 
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Table 1. Performance analysis of modified reliefF-DNN model without augmentation in light of sensitivity, specificity 

and accuracy 

Without Augmentation 

Feature selection Classifier Accuracy (%) Sensitivity (%) Specificity (%) 

Without feature selection 

MSVM 90.80 92.50 94.45 

Random forest 83.47 88.20 86.20 

KNN 89.67 95.50 82.80 

DNN 92.53 96.13 91 

Mutual information 

MSVM 88.93 88.20 96.20 

Random forest 85.60 90.90 89.20 

KNN 84.40 97.20 77.40 

DNN 92.27 98.40 97.40 

Correlation based feature 

selection 

MSVM 96.20 96.40 98.25 

Random forest 84.53 88.80 89.60 

KNN 93 95.60 93.80 

DNN 95.73 97.20 97 

Infinite 

MSVM 63.63 67.95 78.80 

Random forest 66.10 74.75 74.30 

KNN 56.67 77.90 54.60 

DNN 64.77 80.87 78.86 

ReliefF 

MSVM 93.47 97.80 92.01 

Random forest 87.87 90.80 91.80 

KNN 91.33 96.70 98.60 

DNN 96.73 98.80 98.80 

Modified ReliefF 

MSVM 94.49 98.50 92.74 

Random forest 89.90 90.88 92.91 

KNN 91.87 96.98 98.87 

DNN 97.90 98.98 98.92 

 

Table 2. Performance analysis of modified reliefF-DNN model without augmentation by means of balanced accuracy and 

f-score 

Without Augmentation 

Feature selection Classifier Balanced accuracy (%) F-score (%) 

Without feature selection 

MSVM 96.25 93.43 

Random forest 87.20 82.33 

KNN 89.15 86.12 

DNN 92.60 90.68 

Mutual Information 

MSVM 97.70 96.81 

Random forest 90.05 86 

KNN 87.30 84.30 

DNN 98.80 98.47 

Correlation based feature selection 

MSVM 98.20 96.89 

Random forest 89.20 84.89 

KNN 94.70 92.62 

DNN 98.10 97.67 

Infinite 

MSVM 73.38 64.65 

Random forest 74.53 66.15 

KNN 66.25 54.48 

DNN 74.23 67.25 

ReliefF 

MSVM 93.90 97.13 

Random forest 91.30 87.52 

KNN 91.65 96.23 

DNN 99 98.60 

 

Modified ReliefF 

MSVM 94 97.18 

Random forest 91.80 87.73 

KNN 92.35 96.80 

DNN 99.08 98.80 
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𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
× 100      (12) 

 
Where, True Positive is denoted as  𝑇𝑃 , False 

Positive is indicated as 𝐹𝑃, True Negative is denoted 

as 𝑇𝑁, and False Negative is represented as 𝐹𝑁. 

4.1 Analysis on haemoprotozoan disease 

In this section, the performance of modified 

reliefF-DNN model is analysed without 

augmentation on a real time database. Here, the 

performance analysis is carried-out with different 

feature selection techniques (mutual information, 

correlation based feature selection, infinite algorithm 

and reliefF algorithm) and classification techniques 

(Multi Support Vector Machine (MSVM), random 

forest, K-Nearest Neighbor (KNN) and DNN). The 

undertaken database contains 98 pathology images 

(11 anaplasmosis images, 60 babesiosis images, and 

27 theileriosis images) in that 80% of the images are 

used for training and 20% of the images are used for 

testing. By inspecting Table 1, the performance 

analysis is done with different feature selection and 

classification techniques by means of accuracy, 

sensitivity and specificity. Compared to other 

combinations, modified reliefF-DNN model 

achieved maximum accuracy of 97.90%, sensitivity 

of 98.98%, and specificity of 98.92%.  

In Table 2, the performance evaluation is done 

without augmentation by means of balanced accuracy 

and f-score. By investigating Table 2, the modified 

reliefF with DNN model achieved a maximum 

balanced accuracy of 99.08% and f-score of 98.80%. 

The deep learning algorithm eliminates the need for 

data labeling and has the ability to deliver high 

quality results compared to other machine learning 

algorithms. 

In Table 3, the performance evaluation is carried 

out with augmentation by means of sensitivity, 

accuracy and specificity. By inspecting Table 3, the 

undertaken models attained better classification 

performance with augmentation compared to with-

out augmentation. As similar to the Tables 1 and 2, 

the combination (modified reliefF-DNN) achieved a 

significant performance in Haemoprotozoan disease 

detection related to other combinations (dissimilar 

feature selection and classification techniques). In 

this section, modified reliefF-DNN model attained 

maximum classification accuracy of 97.6%, 

sensitivity of 98.92% and specificity of 98.70% in 

Haemoprotozoan disease detection. Modified ReliefF 

algorithm     effectively     detects     the     statistical  

 
Table 3. Performance analysis of modified reliefF-DNN model with augmentation by means of sensitivity, accuracy, and 

specificity 

With Augmentation 

Feature selection Classifier Accuracy (%) Sensitivity (%) Specificity (%) 

Without feature selection 

MSVM 90.73 91.15 94.50 

Random forest 90.30 92.85 93.10 

KNN 79.57 89.90 68.90 

DNN 93 96.33 86.40 

Mutual information 

MSVM 89 91.45 92 

Random forest 87.97 90.60 92.20 

KNN 74.37 91.90 59.70 

DNN 93.63 97.82 83.10 

Correlation based feature selection 

MSVM 93.77 95.25 95.30 

Random forest 91.10 92.80 94.80 

KNN 84.97 92.85 76.20 

DNN 95.60 97.53 91.60 

Infinite 

MSVM 90.93 91.80 97.20 

Random forest 86.13 87.90 91.80 

KNN 86.60 93.60 84.20 

DNN 92.40 96.30 94.20 

ReliefF 

MSVM 92 90 93.93 

Random forest 92.02 91.29 93.22 

KNN 91 90 88 

DNN 95.02 90 92.09 

Modified ReliefF 

MSVM 94.27 92.90 97.50 

Random forest 92.13 94.10 95.10 

KNN 92.90 95.85 90 

DNN 97.60 98.92 98.70 
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Table 4. Performance analysis of modified reliefF-DNN model with augmentation in terms of balanced accuracy and f-

score 

With Augmentation 

Feature selection Classifier Balanced accuracy (%) F-score (%) 

Without feature selection 

MSVM 92.83 89.19 

Random forest 92.98 89.84 

KNN 79.40 72.69 

DNN 89.40 87.45 

Mutual Information 

MSVM 91.73 88.03 

Random forest 91.40 87.53 

KNN 75.80 67.63 

DNN 86.53 85.21 

Correlation based feature selection 

MSVM 95.28 93.19 

Random forest 93.80 90.74 

KNN 84.53 79.81 

DNN 92.60 91.47 

Infinite 

MSVM 95.90 92.70 

Random forest 89.85 85.10 

KNN 88.90 85.21 

DNN 95.25 93.36 

ReliefF 

MSVM 96.20 93.36 

Random forest 94.60 92.07 

KNN 92.93 90.77 

DNN 96.82 97.26 

 

Modified ReliefF 

MSVM 97 94.96 

Random forest 95.90 94.77 

KNN 93 94 

DNN 97.80 98.16 

 

interactions from the histopathological images, so it 

can able to select the relevant feature subsets from the 

higher dimensional extracted features. This process 

completely reduces the “curse of dimensionality” 

problem that results in better classification. 

In Table 4, the modified reliefF-DNN model with 

augmentation achieved maximum balanced accuracy 

of 97.80% and f-score value of 98.16%. In this 

research study, modified reliefF algorithm plays a 

vital role in Haemoprotozoan disease detection, 

where the effect of modified reliefF feature selection 

is given in the Tables 1, 2, 3, and 4. The proposed 

modified reliefF-DNN model includes two major 

benefits like cost effective related to other machine 

learning algorithms, and assists clinicians in early 

diagnosis of Haemoprotozoan disease.  

4.2 Analysis on breast cancer 

In this section, the classification performance of 

the proposed modified reliefF-DNN model is 

validated with dissimilar classification approaches 

such as MSVM, random forest and KNN, and also the 

effectiveness of the proposed modified reliefF-DNN 

model is analysed with and without augmentation. In 

Table 5, the performance validation of the proposed 

modified reliefF-DNN model is done in light of 

accuracy, sensitivity, and specificity. From the  

 
 

Table 5. Performance analysis of modified reliefF-DNN model with and without augmentation in terms of sensitivity, 

specificity and accuracy 
Cell separation Classifier Sensitivity (%) Specificity (%) Accuracy (%) 

 

Without 

Augmentation 

MSVM 79.09 88.43 83.04 

Random forest 76.63 80.90 79 

KNN 82.98 84.90 83 

DNN 91 90.52 94 

 

With 

Augmentation 

MSVM 78.90 89.92 84 

Random forest 80.90 84.22 82.18 

KNN 85.12 88.36 86.9 

DNN 92.90 94.39 95.94 
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Table 6. Comparative study of proposed and existing 

work 

Methodology Classification accuracy 

(%) 

QLA[18] 86.6 

Modified reliefF-DNN 95.94 

 

inspection, the classification accuracy of proposed 

modified reliefF-DNN model is 95.94%, which is 

higher compared to other classifiers. In this scenario, 

the proposed model almost showed 1.93% to 13.81% 

improvement in accuracy compared to other 

classifiers. In addition, the sensitivity and specificity 

of the proposed modified reliefF-DNN model are 

superior related to other comparative classifiers. 

Table 6 represents the comparative study of 

proposed and existing works. P. Alirezazadeh, B. 

Hejrati, A. Monsef-Esfahani, and A. Fathi, [18] 

developed a system for histopathological breast 

cancer image classification. Initially, correlation 

metric was used to reduce the mismatch between the 

test and trained feature values. Then, an adaptation 

method was utilized for enhancing the detection rate 

of benign and malignant pathology images. Finally, 

QLA classifier was used to classify malignant and 

benign images. In this developed work, an extensive 

experiment was performed on BreaKHis database, 

and the developed system achieved 86.6% of 

classification accuracy. Compared to this existing 

work, the proposed modified reliefF-DNN model 

achieved better performance in breast cancer 

detection. 

5. Conclusion 

In this research, modified reliefF-DNN model is 

proposed for early detection of communicable and 

non-communicable diseases like Haemoprotozoan 

disease and breast cancer. The modified reliefF-DNN 

model includes three major phases; segmentation, 

feature selection, and classification for disease 

detection. In the segmentation phase, edge boost 

curve transform is used for nuclei and non-nuclei cell 

segmentation. Next, modified reliefF algorithm and 

DNN classifier are used to select the optimal feature 

vectors and to classify the segmented images. Related 

to the comparative models like MSVM, KNN, and 

random forest, modified reliefF-DNN model 

achieved a maximum sensitivity of 98.92%, 

specificity of 98.70%, f-score of 97.26%, 

classification accuracy of 97.60%, and balanced 

accuracy of 96.82% in Haemoprotozoan disease 

detection. Similarly, modified reliefF-DNN model 

achieved maximum sensitivity of 92.90%, specificity 

of 94.39% and accuracy of 95.94% in breast cancer 

detection. In the future work, a hybrid clustering 

algorithm is included in modified reliefF-DNN 

model to improve the performance of 

histopathological cell segmentation and classification 

in both communicable and non-communicable 

diseases. 

 

𝐼 Collected pathology images 

𝐼𝑛𝑜𝑟𝑚 Normalized images 

𝑞 User defined parameter 

𝐷 Manhattan distance 

𝐶 Total classes 

𝑃(𝐶) Prior class 

𝑃𝑖𝑗 Model parameter 

𝑔(𝑍𝑗) Mapping or pooling function 

𝑝 Sparsity parameter 

𝛽 Weight of sparsity penalty 

𝜃 Weight of hidden layers 

𝜆 Weight delay 

𝐾𝐿 Kullback-Leibler divergence function 

𝑝𝑗̂ Probability of firing activity 
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