
Received: October 29, 2020. Revised: January 13, 2021. 334

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.30

Performance Evaluation of Various Heuristic Algorithms

to Solve Job Shop Scheduling Problem (JSSP)

Admi Syarif1* Ade Pamungkas1 Renaldi Kumar1 Mitsuo Gen2

1Department of Computer Science, Faculty of Mathematics and Sciences, Lampung University, Indonesia

2Deparment of Computer Science, Tokyo University of Science, Tokyo, Japan
* Corresponding author’s Email: admi.syarif@fmipa.unila.ac.id

Abstract: Scheduling is a famous optimization problem that seeks the best strategy of allocating resources over time

to perform jobs/tasks satisfying specific criteria. It exists everywhere in everyday life, particularly in manufacturing

or industrial applications. An essential class of scheduling problems is a job shop scheduling problem (JSSP), an NP-

hard optimization problem. Several researchers have reported the use of heuristic methods to solve JSSP. This paper

aims to investigate the performance of various heuristic algorithms to solve JSSP. Firstly, we developed a Genetic

Algorithm (GA and compared the performance of some heuristic algorithms, including Particle Swarm Optimization

(PSO), Upper-level algorithm (UPLA), Differential-based Harmony Search (DHS), Grey Wolf Optimization (GWO),

Ant Colony Optimization (ACO), Bacterial Foraging Optimization (BFO), Parallel Bat Optimization (PBA), and Tabu

Search (TS). The experimental results of the 28 benchmark test problems validated that the algorithms, except ACO,

can provide the optimal solution of JSSP. PBA delivers the most impressive performance that solves 26 cases optimally,

with the average error equal to 0.05%. Among those 28 test problems, TS, DHS, and PBA can solve 26 instances

optimally, followed by GA that solves 21 cases.

Keywords: Combinatorial optimization, Job shop scheduling problem (JSSP), Artificial intelligence, Heuristic

algorithms, NP-hard problem.

1. Introduction

Scheduling is one of the most essential and

commonly encountered classes of optimization

problems. Scheduling problems exist everywhere in

everyday life, particularly in industrial or

manufacturing applications. What makes scheduling

problems important is that many manufacturing

companies or industries have limited resources and

have to satisfy specific criteria. Determining an

excellent strategy to schedule tasks will reduce

production costs or improve profitability.

There are many variations of scheduling

problems for several real-world uses. There are, in

general, two classes of fundamental scheduling

problems discussed in many pieces of literature.

Those are the Job Shop Scheduling Problem (JSSP)

and the Flow Shop Scheduling Problem (FSSP).

Among them, JSSP has been the most widespread

and complex problem. The JSSP model has been vital

and practical and challenges many researchers in

engineering, computing, and operational [1]. It

represents a problem of allocating a set of resources

(machine) to perform tasks (job) that consists of m

different operations, and the separate device has the

other processing time. The main objective is to

determine the best machine schedule to do all job

with the best objective value, i.e., minimizing

makespan (Cmax), mean flow time, mean tardiness,

earliness, maximum lateness, etc. [2]. The JSSP with

𝑛 job and 𝑚 machine will have (𝑛!)𝑚 possible

solutions. Thus, for the relatively large size problem,

it will be computationally expensive to solve

scheduling problems optimally [3].

Generally, there are two classes of methods for

solving JSSP; exact and heuristic methods [4]. The

first-class methods include: integer programming [5]

[6], Lagrangian relaxation [7], dynamic

Received: October 29, 2020. Revised: January 13, 2021. 335

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.30

programming [8], and Branch and bound [9]. Another

class is called heuristic algorithms, first introduced in

early 1960. It was initially concerned with increasing

the effectiveness of the problem-solving process.

Although those methods do not guarantee the finding

of an optimal solution, those have been reported

useful in solving many challenging optimization

problems within a reasonable computational time.

The term heuristic is usually related to the

methods or algorithms for solving problems

intelligently. Over the last few decades, with the rapid

increase of computer technology, we have seen

enormous growth in heuristic approaches to various

hard and challenging optimization problems, such as

Simulated Annealing (SA), Ant Colony Optimization

(ACO), Genetic Algorithm (GA), Branch-and-Bound,

Tabu Search (TS), and so on.

Among the heuristics algorithms, GA probably

has been the most popular approach [10]. Aided by

GAs, researchers evolve solutions to complex

combinatorial optimization problems easily and

rapidly. Our past researches reported the excellent

performance of GA in solving various combinatorial

optimization problems [11, 12], and [13]. In contrast

to other heuristics methods, it utilizes a set population

of solutions in its search. It makes GA more robust to

solve many real-world problems [10].

For solving JSSP, several researchers have

reported the robustness of heuristics methods. These

include the TS algorithm by Mauro [14], Ant Colony

Optimization (ACO) by Flórez [15], Bacterial Foraging

Optimization (BFO) by Zhao [16], Bat Optimization

algorithm by Dao [17], and so on. Despite these

interests, however, no researcher said the best method

to solve JSSP all-time optimally. This fact shows that

researches on the performance evaluation of the

heuristic algorithms for JSSP are very crucial.

This paper aims to investigate the performance of

heuristic algorithms for solving JSSP. First, we

developed a GA approach and conducted intensive

numerical experiments on a set of Benchmark test

problems (3 test problems of Fisher dan Thompson

[18], and 25 instances of Lawrence [19]). Further;

we compared the results to those of some heuristic

algorithms, including Particle Swarm Optimization (PSO),

Upper-level algorithm (UPLA), Differential-based

Harmony Search (DHS), Grey Wolf Optimization (GWO),

Ant Colony Optimization (ACO), Bacterial Foraging

Optimization (BFO), Parallel Bat Optimization (PBA),

and Tabu Search (TS). The comparison is made based

on the solution's quality, the relative error, and the

number of instances solved (NIS) optimally for each

test problem

The organization for the remainder of the paper is

as follows: the next section describes the formulation

of JSSP. In the third section, we concern ourselves

with some essential discussions of several heuristic

algorithms, including GA's working mechanisms.

Furthermore, in the fourth section, some comparisons

of results from the numerical experiments on

Benchmark test problems are presented. We evaluate

the algorithms' performance based on the solution

quality, the relative error, and the number of instances

solved (NIS) optimally. In the end section, we

provide the conclusion of this study, showing the

approaches; remarkable effectiveness.

2. Mathematical model of JSSP

Consider the JSSP with m machines to perform n

jobs or tasks. Each job/task consists of m operations.

The order of operations for the machines is

predetermined. The different device is used for a

separate action to complete one job. The problem

involves designing an effective strategy (called

schedule) of assigning some activities to be done by

the devices by meeting constraints.

The main objective of JSSP is to determine the

best machine schedule to do all jobs with the best

objective function, i.e., minimizing makespan(Cmax),

mean flow time, mean tardiness, earliness, and

maximum lateness. The most common constraint of

the JSSP is as follows [20]:

1. A machine can process only a job or task at a

time.

2. The machine sequence of the machine to

process each job must be the same.

3. The process of a job cannot be interrupted.

Let 𝑡𝑖𝑗 and 𝑓𝑖𝑗 are the starting and the finishing

time of processing job 𝑗 at machine 𝑖 . 𝑃𝑖𝑗 Is the

processing time of machine 𝑖 to perform job 𝑗. The

makespan (𝐶𝑚𝑎𝑥) here represents the finishing time

of the last job. The mathematical model of JSSP is as

follows [21]:

𝐦𝐢𝐧 𝐶𝑚𝑎𝑥 (1)

s.t.

𝑡ℎ𝑗 − 𝑡𝑖𝑗 ≥ 𝑃𝑖𝑗 (2)

𝐶𝑚𝑎𝑥 − 𝑡𝑖𝑗 ≥ 𝑃𝑖𝑗 (3)

𝑡𝑖𝑗 − 𝑡𝑖𝑘 ≥ 𝑃𝑖𝑘 or 𝑡𝑖𝑘 − 𝑡𝑖𝑗 ≥ 𝑃𝑖𝑗 (4)

𝑡𝑖𝑗 ≥ 0 (5)

In this model, Eq. (1) is the objective function to

minimize the makespan. The constraint (2)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131930/#pone.0167427.e003

Received: October 29, 2020. Revised: January 13, 2021. 336

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.30

guarantees that the next step of machine ℎ for job 𝑗 is

started after finishing the step at machine 𝑖 for job 𝑗.
Next, the constraint (3) ensures the makespan is equal

to or greater than the finishing time of the last job. Eq.

(4) shows that only a machine processed a job at a

time. Finally, Eq. (5) is a non-negative constraint.

3. Heuristic approaches for JSSP

In this section, we shall describe clearly the

drawbacks of previous heuristic approaches used for

solving JSSP, including Particle Swarm Optimization

(PSO), Upper-level algorithm (UPLA), Differential-based

Harmony Search (DHS), Grey Wolf Optimization (GWO),

Ant Colony Optimization (ACO), Bacterial Foraging

Optimization (BFO), Parallel Bat Optimization (PBA),

and Tabu Search (TS). Next, we introduced the design of

the GA approach. We emphasize the difference

between the methods to clarify the position of this

works.

3.1 ACO (Ant colony optimization)

Ant Colony Optimization (ACO) is a heuristic

algorithm that combines concepts from Artificial

Intelligence and Biology, inspired by ants' collective

behaviour [15]. Dorigo first introduced ACO for

solving the Traveling Salesman Problem. Currently,

ACO has solved various fields of our daily life

applications. The ACO-based method, called Elitist

Ant System (EAS) for JSSP, has been carried out

among many by Florez in 2013. Each job consists of

a sequence of operations, and each process comes

with a determined machine and processing time.

They adopt the collective intelligence of many simple

agents to determine optimal solutions with minimum

makespan.

They presented the obtained results for each of

the JSSP instances by Lawrence [22]. They

compared the results with those of Tabu Search (TS)

and the best-known solution (BKS) taken from [23].

The algorithm implemented, Elitist Ant System, has

proven to be competitive by finding the more reliable

quality solutions for JSSP [15]. However, it also

requires more effort to obtain the best-known

solution for all LA instances.

3.2 Particle swarm optimization (PSO)

Particle Swarm Optimization (PSO) is a

population-based metaheuristic optimization

approach, introduced by Eberhart and Kennedy.

Animals' behaviour to search for food, such as birds

and fishes, inspires the PSO. Each flock of birds or

fishes tends to determine its speed based on personal

experience and information obtained through

interactions with other members. Pongchairerks and

Kachitvichyanukul reported the use of PSO to solve

JSSP (JSP-PSO) in 2009 [24]. This paper proposed

the GLN-PSO algorithm that allows the swarm to

explore the other parts of the search spaces

simultaneously. To evaluate the algorithm's

performance, they had numerical experiments on 33

well-known benchmark test problems from Fisher

and Thompson (FT06, FT10, FT20), and the rest

from Lawrence. Their computational results show the

algorithm can optimally solve the problem 17 times.

3.3 Tabu search (TS)

Another popular heuristic method for solving

combinatorial optimization problems is Tabu Search.

Since Glover originally introduced it in 1986,

hundreds of researchers reported the success of Tabu

Search (TS) applications to various combinatorial

optimization problems. It has been reported among

practical algorithms and provides optimal/near-

optimal solutions for many cases. TS searches for

the best solution based on the local search method's

optimization. A TS algorithm's main components are

memory structures, a trace of the search's evolution,

and strategies to use the memorized information in

the best possible way. Dell'Amico first introduced the

use of TS for solving the JSSP [14]. Their basic idea

is to avoid cycles in the search's evolution by

inhibiting the algorithm from reoccurring more

recently made moves. They evaluated TS's

performance on a set of problem instances, including

Lawrence (LA01-40) [22]. Their results show that TS

is useful in finding the optimal/near-optimal

solutions.

3.4 Upper-level algorithm (UPLA)

Nowadays, research on developing the heuristic

algorithm for JSSP has become more variegated. In

2019, Pongchairerks proposed a brand new two-level

metaheuristic algorithm, consisting of an upper-level

algorithm (UPLA) and a lower-level algorithm

(LOLA) for the JSSP. The UPLA is a brand new

algorithm that begins with a population of the

combinations of values from LOLA's input-

parameter. At every iteration, UPLA attempts to

increase its population by utilizing the feedback

returned from LOLA. Thus, LOLA may improve

from a local search algorithm to be an iterated local

search algorithm.

Furthermore, UPLA and LOLA result in the two-

level algorithm, which may adapt to every JSSP

instance. Similar to the other population-based

algorithms, UPLA examines search space based on

the population of the combination from the input

Received: October 29, 2020. Revised: January 13, 2021. 337

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.30

parameter. Real numbers represent all input-

parameter values.

Among JSSP algorithms, the most similar

algorithm to the proposed algorithm was the two-

level Particle Swarm Optimization (PSO) [24]. The

correspondence is that they generate parameterized-

active schedules with similar methods on both their

lower-level algorithms; furthermore, parameters for

both algorithms (lower and upper-level algorithms)

control the identical. However, the two-level PSO is

different from the suggested two-level metaheuristic

algorithm that uses GLN-PSO's framework [25]. The

authors assessed the algorithms' performance on 53

well-known benchmark instances, including FT06,

FT10, FT20, and LA01-LA40 [26]. Considering the

similarity and difference, they also compared their

results with those of the two-level PSO [24].

3.5 Differential-based harmony search (DHS)

The Differential-based Harmony Search (DHS)

to minimize makespan for JSSP was reported by

Zhao in 2018 [16]. The DHS improves the variable

neighbourhood search (VNS) based on the critical

path blocks. The transformed VNS, on the critical

path, is embedded into the DHS to seek a more

reliable solution based on the blocks. They evaluate

DHS's performances on a set of benchmark instances

from the OR-library with the objective of minimized

makespan [27]. Compared with various HS-based

algorithms and other state-of-the-art algorithms, the

DHS is superior in solution quality, convergence

speed, and stability [16].

3.6 GWO (Grey wolf optimization)

The Grey wolf optimization (GWO) algorithm is

a new population-oriented heuristic algorithm

inspired by grey wolves' social hierarchy and hunting

behaviour. Tianhua Jiang introduced GWO, a brand

new swarm-based intelligence algorithm, to deal with

optimization problems in 2018. The algorithm is

based on the crossover operation and adapt the

searching operator to minimize the makespan

(maximum completion time). They also introduced

an adaptive modification method to the algorithm to

keep the variety of population. They compared the

results with other published algorithms in the two

scheduling cases. According to the experimental

results, GWO provided better solutions for some

instances [28].

3.7 Bacterial foraging optimization (BFO)

Kim Passino proposed another intelligent

heuristic algorithm, called the Bacterial Foraging

Optimization (BFO), in 2002 [29]. The BFO is

inspired by the cooperation and competition

behaviours of a bacterium named E. coli in seeking

food. One of the primary processes in BFO is the

evolution process. It begins when the bacterium

migrates to a better solution according to the

advantaged group's activity. Zhou introduced an

algorithm called Chemotaxis-enhanced-BFO

(CEBFO) to solve the JSSP [30]. To improve the

algorithm's performance, they include a local search

operation and chemotaxis with the differential

evolution (DE). They conducted some numerical

experiments on a set of benchmark problems of JSSP.

The results demonstrated a good understanding of the

algorithm.

3.8 Parallel bat algorithm (PBA)

In 2015, Dao proposed a parallel-based heuristic

algorithm version, called the parallel bat algorithm

(PBA) [17]. The fundamental structure of the PBA is

to divide the distribution of the bat populations into

several groups. They offered three schemes, namely

a random-key encoding, a makespan, and a

communication strategy. To examine the method's

accuracy, they had some experiments on 43 (forty-

three) benchmark instances (Fisher and Thompson

with FT06, FT10, FT20 [18], and Lawrence (LA01–

LA40) [31]). They compared their experimental

results are to those of the PSO algorithm. These show

that the intended approach gives competitive returns.

3.9 Genetic algorithm (GA)

Since Holland introduced GA in 1975, it has

witnessed many exciting advances in using Genetic

Algorithms (GAs) to solve challenging optimization

problems in everything from production design to

inventory and network design problems. It is a

heuristics method, inspired by the process of

Darwinian evolution. GA has been a multi-purpose

approach for searching the global optimality;

adapting GAs to a specific optimization problem is

challenging but frustrating. The selection methods,

efficient design of the chromosome representation,

crossover and mutation process, and GA parameters'

value influence GA's success [32]. Therefore,

discovering an efficient GA approach system for a

particular problem becomes essential in GA research.

3.9.1. The Chromosome representation

When implementing GA for an optimization

problem, an important issue is how to generate a

chromosome that would bring us to the right solution.

For the initial population, we have to create a

Received: October 29, 2020. Revised: January 13, 2021. 338

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.30

Figure. 1 An example of the chromosome for problem FT06

pop_size chromosome. Each chromosome consists of

𝑛 × 𝑚 gen generated randomly, and each job will

appear 𝑚 in the chromosome. One illustrates an

example of the chromosome for the test problem

FT06, having six jobs and six machines.

The chromosome in Figure. 1 indicates that the

first activity to be scheduled is job two at machine

one, followed by job six at machine one; then, job

three at machine one, and so on, according to the

order arranged in the chromosome list. 𝑂𝑖,𝑗

represents the operation for the job i at machine j.

3.9.2. Genetic operations

Procedure: Self Crossover:

Step 1: Chose a parent arbitrarily for crossover.

Step 2: Determine two crossover points randomly

Step 3: Move substring between the above two

points

The mutation operation is an essential feature of

GA to maintain the chromosome's diversity in the

generation. This paper adopts the swap mutation that

randomly selects two genes in the chromosome and

then exchanges them.

3.9.3. Evaluation and selection

In GA implementation, we computed the fitness

value to measure how well each chromosome fits the

problem's requirements. For JSSP, we can use

makespan as the fitness value as follows:

Fitness(𝑥) =
1

𝑓(𝑥)
 (6)

where f(x) is the objective function (makespan).

The decoding process to compute the makespan

(Cmax) of the schedule is as follows:

Step 1: Select the chromosome for the decoding

process.

Step 2: Read gen in the chromosome started from

the left.

Step 3: Determine the machine number from the

machine-order matrix, based on the job

operation number's information.

Step 4: Determine the processing time from the

processing time matrix based on the job

operation number's data.

Step 5: Determine the maximum time of the last

job time.

Step 6: Renew the current job finishing time by

adding the time to the result of Step 5;

Step 7: Repeat Step 2 to Step 6 until the last-gen

in the chromosome.

Another essential process of GA is the way to

determine the chromosome for the next population.

Of course, the selection process should be done based

on the fitness value. There have been several

selection strategies introduced in GA applications.

Here, we adopt the elitist approach by selecting the

best pop_size chromosome for the next generation.

4. Numerical experiments and results

4.1 Design of numerical experiments

To evaluate the effectiveness and the efficiency

of the algorithm, we first have some numerical

experiments for GA on 28 Benchmark test problems:

3 instances (FT06, FT10, dan FT20) of Fisher dan

Thompson [18], and 25 instances (LA01-LA25) of

Lawrence [19], taken from the OR-library [27]. We

implement the algorithm in MATLAB R2015b and

run on an Intel Core i5 processor of 2.53 GHz.

The GA parameters are set as: crossover probability

(𝒑_𝑪) = 0.4, mutation probability (𝒑_𝑴) = 0.2,

population size (𝒑𝒐𝒑_𝒔𝒊𝒛𝒆) = 400 and maximum

generation (max_gen) = 10-2000, for each test

problem, the experiments are conducted 10 (ten)

times. Table 1 presents the overall results obtained

for all test problems, where the best and the average

values represent the best and the average fitness value

from the 10 (ten) running times. BKS represents the

best-known solution in the literature.

Received: October 29, 2020. Revised: January 13, 2021. 339

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.30

Table 1. The experimental results of the GA approach

Cases 𝒏 × 𝒎 ACT* BKS*
GA

Error

(%)

Best Average Worst

FT06 6 × 6 1,00 55 55 55 55 0,00

FT10 10 × 10 2,76 930 951 988.8 1030 2,26

FT20 20 × 5 1,08 1165 1178 1184.3 1197 1,12

LA01 10 × 5 6,00 666 666 666 666 0,00

LA02 10 × 5 3,97 655 655 658.8 666 0,00

LA03 10 × 5 6,44 597 597 611 621 0,00

LA04 10 × 5 3.35 590 590 592 601 0,00

LA05 10 × 5 1,8 593 593 593 593 0,00

LA06 15× 5 2,00 926 926 926 926 0,00

LA07 15 × 5 9,00 890 890 890 890 0,00

LA08 15 × 5 9,00 863 863 863 863 0,00

LA09 15 × 5 1,7,0 951 951 951 951 0,00

LA10 15 × 5 0,80 958 958 958 958 0,00

LA11 20 × 5 2,80 1222 1222 1222 1222 0,00

LA12 20 × 5 2,80 1039 1039 1039 1039 0,00

LA13 20 × 5 2,60 1150 1150 1150 1150 0,00

LA14 20 × 5 1,00 1292 1292 1292 1292 0,00

LA15 20 × 5 20,00 1207 1207 1207 1207 0,00

LA16 10 × 10 767 945 959 977.2 997 0,00

LA17 10 × 10 774 784 784 788.9 797 0,00

LA18 10 × 10 808 848 848 868.5 909 0,00

LA19 10 × 10 1.395 842 842 850 874 0,00

LA20 10 × 10 1.234 902 907 928.4 992 0,55

LA21 15 × 10 1.743 1046 1061 1097 1114 1,43

LA22 15 × 10 1.443 927 943 987.8 1046 1,08

LA23 15 × 10 752 1032 1032 1035.3 1054 0,00

LA24 15×10 1.122 935 948 977 994 1,39

LA25 15×10 2.049 977 987 1015,8 1042 1,02

Average 0.3162

*ACT: Average Computational Time (in second)

4.2 Results and discussion

"In the above table, the error is computed by

using the following formula:

𝐸𝑟𝑟𝑜𝑟 =
(𝐵𝑒𝑠𝑡−𝑂𝑝𝑡𝑖𝑚𝑢𝑚)×100%

𝑂𝑝𝑡𝑖𝑚𝑢𝑚
 (7)

Here, one can notice the excellent performance of

GA to solve JSSP. Despite not reaching the optimal

solution all-time, GA presents the optimal solutions

(21 instances), with an average error of less than 0.32

percent. The results also show that GA can provide

solutions to the problems within reasonable

computational time. For some hard/difficult cases,

GA can obtain near-optimal solutions with an error

from 0.5 to 1.43 percent. More efforts can be made to

improve the solutions by possibly hybridizing GA

with other local search techniques. The Gantt chart

schedule and the convergence of the solution for

LA40 are illustrated in Figure. 2 and Figure. 3,

respectively.

4.3 Comparison of some heuristic methods

In this research, we evaluate the merit and the

limitation of the approaches by comparing the results

of some heuristic algorithms, including Ant Colony

Optimization (ACO) [15], Particle Swarm

Optimization (PSO) [33], Tabu Search (TS) [14],

Upper-level algorithm (UPLA) [26], Differential-

based Harmony Search (DHS) [16], Grey Wolf

Optimization (GWO) [28], Bacterial Foraging

Optimization (BFO) [30], Parallel Bat Optimization

(PBA) [17], and the proposed Genetic Algorithm

(GA). The performances are measured based on the

solution quality, the number of instances solved

(NIS) optimally, and the relative error. We made a

Figure. 2 Gantt chart schedule for LA40

Received: October 29, 2020. Revised: January 13, 2021. 340

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.30

Figure. 3 The convergence of the objective function in the generation for LA40

Table 2. Performance of the heuristic approaches on all instances

Test

Problem

Size

(n ×m)

BKS*

ACO

[15]

PSO

[33]

TS

[14]

UPLA

[26]

DHS

[16]

GWO

[28]

BFO

[30]

PBA

[17]

GA

(Proposed)

FT06 6 × 6 55 - 55 - 55 55 55 55 55 55

FT10 10 × 10 930 - 951 - 930 930 940 937 930 951

FT20 20 × 5 1165 - 1191 - 1165 1165 1178 1171 1165 1178

LA01 10 × 5 666 666 666 666 666 666 666 666 666 666

LA02 10 × 5 655 669 663 655 655 655 655 655 655 655

LA03 10 × 5 597 623 603 597 597 597 597 597 597 597

LA04 10 × 5 590 611 611 590 590 590 590 590 590 590

LA05 10 × 5 593 593 593 593 593 593 593 593 593 593

LA06 15× 5 926 926 926 926 926 926 926 926 926 926

LA07 15 × 5 890 890 890 890 8 q90 890 890 890 890 890

LA08 15 × 5 863 863 863 863 863 863 863 863 863 863

LA09 15 × 5 951 951 951 951 951 951 951 951 951 951

LA10 15 × 5 958 958 958 958 958 958 958 958 958 958

LA11 20 × 5 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222

LA12 20 × 5 1039 1039 1039 1039 1039 1039 1039 1039 1039 1039

LA13 20 × 5 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150

LA14 20 × 5 1292 1292 1292 1292 1292 1292 1292 1292 1292 1292

LA15 20 × 5 1207 1212 1207 1207 1207 1207 1207 1207 1207 1207

LA16 10 × 10 945 1005 959 945 945 945 956 945 945 945

LA17 10 × 10 784 812 784 784 784 784 790 785 784 784

LA18 10 × 10 848 885 848 848 848 848 859 848 848 848

LA19 10 × 10 842 875 857 842 842 842 845 844 842 842

LA20 10 × 10 902 912 910 902 902 902 937 907 902 907

LA21 15 × 10 1046 1107 1074 1048 1052 1046 1090 - 1046 1061

LA22 15 × 10 927 1018 944 933 927 927 970 - 933 937

LA23 15 × 10 1032 1051 1032 1032 1032 1032 1032 - 1032 1032

LA24 15×10 935 1011 971 941 941 979 982 - 941 948

LA25 15×10 977 1062 987 979 982 1016 1008 - 977 987

Received: October 29, 2020. Revised: January 13, 2021. 341

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.30

Table 3. The error comparison of the heuristic approaches in all instances

Test

Problem

Dimensi

(n ×m)
ACO PSO TS UPLA DHS GWO BFO PBA GA

FT06 6 × 6 - 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00

FT10 10 × 10 - 2.26 - 0.00 0.00 1.08 0.75 0.00 2.26

FT20 20 × 5 - 2.23 - 0.00 0.00 1.12 0.52 0.00 1.12

LA01 10 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA02 10 × 5 2.14 1.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA03 10 × 5 4.36 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA04 10 × 5 3.56 3.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA05 10 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA06 15× 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA07 15 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA08 15 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA09 15 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA10 15 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA11 20 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA12 20 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA13 20 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA14 20 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA15 20 × 5 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LA16 10 × 10 6.35 1.48 0.00 0.00 0.00 1.16 0.00 0.00 0.00

LA17 10 × 10 3.57 0.00 0.00 0.00 0.00 0.77 0.13 0.00 0.00

LA18 10 × 10 4.36 0.00 0.00 0.00 0.00 1.30 0.00 0.00 0.00

LA19 10 × 10 3.92 1.78 0.00 0.00 0.00 0.36 0.24 0.00 0.00

LA20 10 × 10 1.11 0.89 0.00 0.00 0.00 3.88 0.55 0.00 0.55

LA21 15 × 10 5.83 2.68 0.19 0.57 0.00 4.21 - 0.00 1.43

LA22 15 × 10 9.82 1.83 0.65 0.00 0.00 4.64 - 0.65 1.08

LA23 15 × 10 1.84 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00

LA24 15×10 8.13 3.85 0.64 0.64 4.71 5.03 - 0.64 1.39

LA25 15×10 8.70 1.02 0.20 0.51 3.99 3.17 - 0.00 1.02

Figure. 4 The comparison of average error

comparison of the results for 28 benchmark test

problems (FT06, FT10, F20) and 25 instances

(LA01-LA25) of Lawrence [19]. Table 2

summarizes the comparative results. We also

computed the percentage relative error concerning

BKS, as shown in the following Table 3.

Figure. 5 The comparison of NIS optimally by the

heuristic methods

We also analyze the algorithm based on the

average errors and the number of instances solved

Received: October 29, 2020. Revised: January 13, 2021. 342

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.30

(NIS) optimally. We illustrated the comparison of the

average errors and obtained NIS by the algorithms in

Figure. 4 and Figure. 5, respectively. These results

indicate that, though no algorithm can give the

optimal solution, the algorithms effectively find the

optimal/near-optimal solutions to the problems.

Almost all algorithms, except ACO, can provide an

error of less than 1 percent. PBA presents the most

impressive performance that can solve 26 cases

optimally, with the average error equal to 0.05%.

Among those 28 test problems, TS, DHS, and PBA

can solve 26 instances optimally, followed by GA

that solves 21 cases.

5. Conclusion

This paper analyzed the performance of some

heuristic algorithms for solving JSSP. First, we

developed the GA approach and conducted some

intensive numerical experiments on a set of

Benchmark instances from the literature. We

investigated some heuristic methods' performance,

based on the solution quality, the relative error, and

the number of instances solved (NIS) optimally. The

results validate that, though no method presents

optimal solutions at all times, the heuristics are robust

in searching for the optimal solutions of JSSP.

Among them, the PBA is the most effective algorithm

that solves 26 instances optimally with an average

error of 0.05%, followed by DHS, UPLA, and GA.

The computational results show that the proposed GA

can obtain competitive results in both NIS (21 cases

with an average error of 0.32%) and computational

time. These findings add to a growing body of

literature on the applications of heuristics.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Admi Syarif supervised the study, analyzed the

results, verified the study's findings, and wrote the

paper. Mitsuo Gen gave the idea of the algorithm;

Renaldi Kumar and Ade Pamungkas designed and

performed the experiments;

Acknowledgments

This research was supported by the Scientific

"Riset Unggulan" Program, Ministry of Education

and Culture, Lampung University, the Grant-in-Aid

2226/UN26.21/PN/2019, Indonesia, 2019. The

authors thank the anonymous reviewers for their

valuable comments and suggestions on this paper.

References

[1] J. K. Lenstra and A. H. G. Rinnooy Kan,

“Computational Complexity of Discrete

Optimization Problems”, Annals of Discrete

Mathematics, Vol. 4, pp. 121–140, 1979.

[2] J. F. Gonçalves, J. J. De Magalhães Mendes, and

M. G. C. Resende, “A hybrid genetic algorithm

for the job shop scheduling problem”, European

Journal of Operational Research, Vol. 167, No.

1, pp. 77–95, 2005.

[3] E. A. C. Uzorh and N. Innocent, “Solving

Machine Shops Scheduling Problems using

Priority Sequencing Rules Techniques”, The

International Journal of Engineering and

Science, Vol. 3, No. 6, pp. 1813–2319, 2014.

[4] K. Akram, K. Kamal, and A. Zeb, “Fast

simulated annealing hybridized with quenching

for solving job-shop scheduling problem”,

Applied Soft Computing, Vol. 49, pp. 510–523,

2016.

[5] C. Özgüven, Y. Yavuz, and L. Özbakir, “Mixed-

integer goal programming models for the

flexible job-shop scheduling problems with

separable and non-separable sequence-

dependent setup times”, Applied Mathematical

Modelling, Vol. 36, No. 2, pp. 846–858, 2012.

[6] D. Catanzaro, L. Gouveia, and M. Labbé,

“Improved integer linear programming

formulations for the job Sequencing and tool

Switching Problem”, European Journal of

Operational Research, Vol. 244, No. 3, pp. 766–

777, 2015.

[7] P. Baptiste, M. Flamini, and F. Sourd,

“Lagrangian Bounds for Just-In-Time Job-Shop

Scheduling”, Computers & Operations

Research, Vol. 35, No. 3, pp. 906–915, 2008.

[8] J. A. S. Gromicho, J. J. Van Hoorn, F. Saldanha-

da-Gama, and G. T. Timmer, “Solving the job-

shop scheduling problem optimally by dynamic

programming”, Computers & Operations

Research, Vol. 39, No. 12, pp. 2968–2977, 2012.

[9] P. Brucker, E. K. Burke, and S. Groenemeyer,

“A branch and bound algorithm for the cyclic

job-shop problem with transportation”,

Computers & Operations Research, Vol. 39, No.

12, pp. 3200–3214, 2012.

[10] M. Gen and R. Cheng, Genetic Algorithms and

Engineering Optimization, John Wiley & Sons,

New York, 2000.

[11] A. Syarif, Y. S. Yun, and M. Gen, “Study on

multi-stage logistic chain network: A spanning

tree-based genetic algorithm approach”,

Computers and Industrial Engineering, Vol. 43,

No. 1–2, pp. 299–314, 2002.

Received: October 29, 2020. Revised: January 13, 2021. 343

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.30

[12] M. Gen and A. Syarif, “Double Spanning Tree-

Based Genetic Algorithm for Two-Stage

Transportation Problem”, International Journal

of Knowledge-Based and Intelligent

Engineering Systems, Vol. 7, No. 4, pp. 214–221,

2003.

[13] A. Syarif, D. Anggraini, K. Muludi, Wamiliana,

and M. Gen, “Comparing Various Genetic

Algorithm Approaches for Multiple-Choice

Multi-Dimensional Knapsack Problem (mm-

KP)”, International Journal of Intelligent

Engineering and Systems, Vol. 13, No. 5, pp.

455–462, 2020.

[14] M. Dell'Amico and M. Trubian, “Applying tabu

search to the job-shop scheduling problem”,

Annals of Operations Research, Vol. 41, No. 3,

pp. 231–252, 1993.

[15] E. Flórez, W. Gómez, L. Bautista, E. Florez, W.

Gomez, and Lola Bautista, “An Ant Colony

Optimization Algorithm for Job Shop

Scheduling Problem”, International Journal of

Artificial Intelligence & Applications (IJAIA),

Vol. 4, No. 4, pp. 53–66, 2013.

[16] F. Zhao, S. Qin, G. Yang, W. Ma, C. Zhang, and

H. Song, “A Differential-Based Harmony

Search Algorithm with Variable Neighborhood

Search for Job Shop Scheduling Problem and Its

Runtime Analysis”, IEEE Access, Vol. 6, pp.

76313–76330, 2018.

[17] T. K. Dao, T. S. Pan, T. T. Nguyen, and J. S. Pan,

“Parallel bat algorithm for optimizing makespan

in job shop scheduling problems”, Journal of

Intelligent Manufacturing, Vol. 29, No. 2, pp.

451–462, 2018.

[18] H. Fisher and G. L. Thompson, “Probabilistic

Learning Combinations of Local Job-Shop

Scheduling Rules”, Industrial Scheduling, Vol.

3, No. 2, pp. 225–251, 1963.

[19] S. Lawrence, “Supplement to Resource-

Constrained Project Scheduling: An

Experimental Investigation of Heuristic

Scheduling Techniques”, Energy Procedia, Vol.

4, No. 7, pp. 4411–4417, 1984.

[20] H. Zaher, N. Ragaa, and H. Sayed, “A novel

Improved Bat Algorithm for Job Shop

Scheduling Problem”, International Journal of

Computer Applications, Vol. 164, No. 5, pp. 24–

30, 2017.

[21] K. Ploydanai and A. Mungwattana, “Algorithm

for Solving Job Shop Scheduling Problem Based

on machine availability constraint”,

International Journal on Computer Science and

Engineering (IJCSE), Vol. 02, No. 05, pp. 1919–

1925, 2010.

[22] L. Davis, Job Shop Scheduling with Genetic

Algorithms, Psychology Press, East Sussex,

United Kingdom, 1985.

[23] D. Applegate and W. Cook, “Computational

study of the job-shop scheduling problem”,

ORSA Journal on Computing, Vol. 3, No. 2, pp.

149–156, 1991.

[24] P. Pongchairerks and V. Kachitvichyanukul, “A

two-level Particle Swarm Optimization

algorithm on Job-Shop Scheduling Problems”,

International Journal of Operational Research,

Vol. 4, No. 4, pp. 390–411, 2009.

[25] P. Pongchairerks and V. Kachitvichyanukul, “A

Non-Homogenous Particle Swarm Optimization

with Multiple Social Structures”, In: Proc. of the

2005 International Conf. on Simulation and

Modeling, Nakornpathom, Thailand, pp. 132–

136, 2005.

[26] P. Pongchairerks, “A two-level metaheuristic

algorithm for the job-shop scheduling problem”,

Complexity, Vol. 2019, pp. 1–11, 2019.

[27] http://people.brunel.ac.uk/~mastjjb/jeb/orlib/fil

es/jobshop1.txt (accessed Feb. 07, 2020).

[28] T. Jiang and C. Zhang, “Application of Grey

Wolf Optimization for Solving Combinatorial

Problems: Job Shop and Flexible Job Shop

Scheduling Cases”, IEEE Access, Vol. 6, pp.

26231–26240, 2018.

[29] K. M. Passino, “Biomimicry of bacterial

foraging for distributed optimization and

control”, IEEE Control Systems Magazine, Vol.

22, No. 3, pp. 52–67, 2002.

[30] F. Zhao, X. Jiang, C. Zhang, and J. Wang, “A

chemotaxis-enhanced bacterial foraging

algorithm and its application in job shop

scheduling problem”, International Journal of

Computer Integrated Manufacturing, Vol. 28,

No. 10, pp. 1106–1121, 2015.

[31] J. Dossey, A. Otto, L. Spence, and C. Eynden,

Discrete Mathematics, 2nd Edition,

Harpercollins College Div, New York City, New

York, 1993.

[32] A. Syarif, W. Wamiliana, P. Lumbanraja, and M.

Gen, “Study on genetic algorithm (GA)

approaches for solving Flow Shop Scheduling

Problem (FSSP)”, In: Proc. of the 5th

International Conf. on Science, Technology and

Interdisciplinary Research (IC-STAR 2019),

Bandar Lampung, Indonesia, 2020.

[33] P. Pongchairerks, “Particle swarm optimization

algorithm applied to scheduling problems”,

Science Asia, Vol. 35, No. 1, pp. 89–94, 2009.

