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Abstract: Scheduling is a famous optimization problem that seeks the best strategy of allocating resources over time 

to perform jobs/tasks satisfying specific criteria. It exists everywhere in everyday life, particularly in manufacturing 

or industrial applications. An essential class of scheduling problems is a job shop scheduling problem (JSSP), an NP-

hard optimization problem. Several researchers have reported the use of heuristic methods to solve JSSP. This paper 

aims to investigate the performance of various heuristic algorithms to solve JSSP. Firstly, we developed a Genetic 

Algorithm (GA and compared the performance of some heuristic algorithms, including Particle Swarm Optimization 

(PSO), Upper-level algorithm (UPLA), Differential-based Harmony Search (DHS), Grey Wolf Optimization (GWO), 

Ant Colony Optimization (ACO), Bacterial Foraging Optimization (BFO), Parallel Bat Optimization (PBA), and Tabu 

Search (TS). The experimental results of the 28 benchmark test problems validated that the algorithms, except ACO, 

can provide the optimal solution of JSSP. PBA delivers the most impressive performance that solves 26 cases optimally, 

with the average error equal to 0.05%.  Among those 28 test problems, TS, DHS, and PBA can solve 26 instances 

optimally, followed by GA that solves 21 cases. 

Keywords: Combinatorial optimization, Job shop scheduling problem (JSSP), Artificial intelligence, Heuristic 

algorithms, NP-hard problem. 

 

 

1. Introduction 

Scheduling is one of the most essential and 

commonly encountered classes of optimization 

problems. Scheduling problems exist everywhere in 

everyday life, particularly in industrial or 

manufacturing applications. What makes scheduling 

problems important is that many manufacturing 

companies or industries have limited resources and 

have to satisfy specific criteria. Determining an 

excellent strategy to schedule tasks will reduce 

production costs or improve profitability. 

There are many variations of scheduling 

problems for several real-world uses. There are, in 

general, two classes of fundamental scheduling 

problems discussed in many pieces of literature. 

Those are the Job Shop Scheduling Problem (JSSP) 

and the Flow Shop Scheduling Problem (FSSP). 

Among them, JSSP has been the most widespread 

and complex problem. The JSSP model has been vital 

and practical and challenges many researchers in 

engineering, computing, and operational [1]. It 

represents a problem of allocating a set of resources 

(machine) to perform tasks (job) that consists of m 

different operations, and the separate device has the 

other processing time. The main objective is to 

determine the best machine schedule to do all job 

with the best objective value, i.e., minimizing 

makespan (Cmax), mean flow time, mean tardiness,  

earliness, maximum lateness, etc. [2]. The JSSP with 

𝑛  job and 𝑚  machine will have (𝑛!)𝑚  possible 

solutions. Thus, for the relatively large size problem, 

it will be computationally expensive to solve 

scheduling problems optimally [3]. 

Generally, there are two classes of methods for 

solving JSSP; exact and heuristic methods [4]. The 

first-class methods include: integer programming [5] 

[6], Lagrangian relaxation [7], dynamic 
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programming [8], and Branch and bound [9]. Another 

class is called heuristic algorithms, first introduced in 

early 1960. It was initially concerned with increasing 

the effectiveness of the problem-solving process. 

Although those methods do not guarantee the finding 

of an optimal solution, those have been reported 

useful in solving many challenging optimization 

problems within a reasonable computational time.  

The term heuristic is usually related to the 

methods or algorithms for solving problems 

intelligently. Over the last few decades, with the rapid 

increase of computer technology, we have seen 

enormous growth in heuristic approaches to various 

hard and challenging optimization problems, such as 

Simulated Annealing (SA), Ant Colony Optimization 

(ACO), Genetic Algorithm (GA), Branch-and-Bound, 

Tabu Search (TS), and so on.  

Among the heuristics algorithms, GA probably 

has been the most popular approach [10]. Aided by 

GAs, researchers evolve solutions to complex 

combinatorial optimization problems easily and 

rapidly. Our past researches reported the excellent 

performance of GA in solving various combinatorial 

optimization problems [11, 12], and [13]. In contrast 

to other heuristics methods, it utilizes a set population 

of solutions in its search. It makes GA more robust to 

solve many real-world problems [10]. 

For solving JSSP, several researchers have 

reported the robustness of heuristics methods. These 

include the TS algorithm by Mauro [14], Ant Colony 

Optimization (ACO) by Flórez  [15], Bacterial Foraging 

Optimization (BFO) by Zhao [16], Bat Optimization 

algorithm by Dao [17], and so on. Despite these 

interests, however, no researcher said the best method 

to solve JSSP all-time optimally. This fact shows that 

researches on the performance evaluation of the 

heuristic algorithms for JSSP are very crucial.   

This paper aims to investigate the performance of 

heuristic algorithms for solving JSSP. First, we 

developed a GA approach and conducted intensive 

numerical experiments on a set of  Benchmark test 

problems (3 test problems of Fisher dan  Thompson 

[18], and 25 instances of  Lawrence [19]). Further; 

we compared the results to those of some heuristic 

algorithms, including Particle Swarm Optimization (PSO), 

Upper-level algorithm (UPLA), Differential-based 

Harmony Search (DHS), Grey Wolf Optimization (GWO), 

Ant Colony Optimization (ACO), Bacterial Foraging 

Optimization (BFO), Parallel Bat Optimization (PBA), 

and Tabu Search (TS). The comparison is made based 

on the solution's quality, the relative error, and the 

number of instances solved (NIS) optimally for each 

test problem 

The organization for the remainder of the paper is 

as follows: the next section describes the formulation 

of JSSP. In the third section, we concern ourselves 

with some essential discussions of several heuristic 

algorithms, including GA's working mechanisms. 

Furthermore, in the fourth section, some comparisons 

of results from the numerical experiments on 

Benchmark test problems are presented. We evaluate 

the algorithms' performance based on the solution 

quality, the relative error, and the number of instances 

solved (NIS) optimally. In the end section, we 

provide the conclusion of this study, showing the 

approaches; remarkable effectiveness. 

2. Mathematical model of JSSP 

Consider the JSSP with m machines to perform n 

jobs or tasks. Each job/task consists of m operations. 

The order of operations for the machines is 

predetermined. The different device is used for a 

separate action to complete one job. The problem 

involves designing an effective strategy (called 

schedule) of assigning some activities to be done by 

the devices by meeting constraints. 

The main objective of JSSP is to determine the 

best machine schedule to do all jobs with the best 

objective function, i.e., minimizing makespan(Cmax), 

mean flow time, mean tardiness, earliness, and 

maximum lateness. The most common constraint of 

the JSSP is as follows [20]: 

1. A machine can process only a job or task at a 

time. 

2. The machine sequence of the machine to 

process each job must be the same.  

3. The process of a job cannot be interrupted. 

Let 𝑡𝑖𝑗  and 𝑓𝑖𝑗  are the starting and the finishing 

time of processing job 𝑗  at machine 𝑖 . 𝑃𝑖𝑗  Is the 

processing time of machine 𝑖 to perform job 𝑗. The 

makespan (𝐶𝑚𝑎𝑥 ) here represents the finishing time 

of the last job. The mathematical model of JSSP is as 

follows [21]: 

 

𝐦𝐢𝐧  𝐶𝑚𝑎𝑥                        (1) 

 

s.t. 

 

𝑡ℎ𝑗 − 𝑡𝑖𝑗 ≥ 𝑃𝑖𝑗                            (2) 

 

𝐶𝑚𝑎𝑥 − 𝑡𝑖𝑗 ≥ 𝑃𝑖𝑗                 (3) 

 

𝑡𝑖𝑗 − 𝑡𝑖𝑘 ≥ 𝑃𝑖𝑘     or    𝑡𝑖𝑘 − 𝑡𝑖𝑗 ≥ 𝑃𝑖𝑗    (4) 

 

𝑡𝑖𝑗 ≥ 0                        (5) 

 

In this model, Eq. (1) is the objective function to 

minimize the makespan. The constraint (2) 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131930/#pone.0167427.e003
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guarantees that the next step of machine ℎ for job 𝑗 is 

started after finishing the step at machine 𝑖 for job 𝑗. 
Next, the constraint (3) ensures the makespan is equal 

to or greater than the finishing time of the last job. Eq. 

(4) shows that only a machine processed a job at a 

time. Finally, Eq. (5) is a non-negative constraint.  

3. Heuristic approaches for JSSP 

In this section, we shall describe clearly the 

drawbacks of previous heuristic approaches used for 

solving JSSP, including Particle Swarm Optimization 

(PSO), Upper-level algorithm (UPLA), Differential-based 

Harmony Search (DHS), Grey Wolf Optimization (GWO), 

Ant Colony Optimization (ACO), Bacterial Foraging 

Optimization (BFO), Parallel Bat Optimization (PBA), 

and Tabu Search (TS). Next, we introduced the design of 

the GA approach.  We emphasize the difference 

between the methods to clarify the position of this 

works. 

3.1 ACO (Ant colony optimization) 

Ant Colony Optimization (ACO) is a heuristic 

algorithm that combines concepts from Artificial 

Intelligence and Biology, inspired by ants' collective 

behaviour [15]. Dorigo first introduced ACO for 

solving the Traveling Salesman Problem. Currently, 

ACO has solved various fields of our daily life 

applications. The ACO-based method, called Elitist 

Ant System (EAS) for JSSP, has been carried out 

among many by Florez in 2013. Each job consists of 

a sequence of operations, and each process comes 

with a determined machine and processing time. 

They adopt the collective intelligence of many simple 

agents to determine optimal solutions with minimum 

makespan.  

They presented the obtained results for each of 

the JSSP instances by Lawrence [22].  They 

compared the results with those of Tabu Search (TS) 

and the best-known solution (BKS) taken from [23]. 

The algorithm implemented, Elitist Ant System, has 

proven to be competitive by finding the more reliable 

quality solutions for JSSP  [15]. However, it also 

requires more effort to obtain the best-known 

solution for all LA instances. 

3.2 Particle swarm optimization (PSO) 

Particle Swarm Optimization (PSO) is a 

population-based metaheuristic optimization 

approach, introduced by Eberhart and Kennedy. 

Animals' behaviour to search for food, such as birds 

and fishes, inspires the PSO. Each flock of birds or 

fishes tends to determine its speed based on personal 

experience and information obtained through 

interactions with other members. Pongchairerks and 

Kachitvichyanukul reported the use of PSO to solve 

JSSP (JSP-PSO) in 2009 [24]. This paper proposed 

the GLN-PSO algorithm that allows the swarm to 

explore the other parts of the search spaces 

simultaneously. To evaluate the algorithm's 

performance, they had numerical experiments on 33 

well-known benchmark test problems from Fisher 

and Thompson (FT06, FT10, FT20), and the rest 

from Lawrence. Their computational results show the 

algorithm can optimally solve the problem 17 times. 

3.3 Tabu search (TS) 

Another popular heuristic method for solving 

combinatorial optimization problems is Tabu Search. 

Since Glover originally introduced it in 1986, 

hundreds of researchers reported the success of Tabu 

Search (TS) applications to various combinatorial 

optimization problems. It has been reported among 

practical algorithms and provides optimal/near-

optimal solutions for many cases. TS   searches for 

the best solution based on the local search method's 

optimization. A TS algorithm's main components are 

memory structures, a trace of the search's evolution, 

and strategies to use the memorized information in 

the best possible way. Dell'Amico first introduced the 

use of TS for solving the JSSP [14]. Their basic idea 

is to avoid cycles in the search's evolution by 

inhibiting the algorithm from reoccurring more 

recently made moves. They evaluated TS's 

performance on a set of problem instances, including 

Lawrence (LA01-40) [22]. Their results show that TS 

is useful in finding the optimal/near-optimal 

solutions.  

3.4 Upper-level algorithm (UPLA) 

Nowadays, research on developing the heuristic 

algorithm for JSSP has become more variegated. In 

2019, Pongchairerks proposed a brand new two-level 

metaheuristic algorithm, consisting of an upper-level 

algorithm (UPLA) and a lower-level algorithm 

(LOLA) for the JSSP. The UPLA is a brand new 

algorithm that begins with a population of the 

combinations of values from LOLA's input-

parameter. At every iteration, UPLA attempts to 

increase its population by utilizing the feedback 

returned from LOLA. Thus, LOLA may improve 

from a local search algorithm to be an iterated local 

search algorithm. 

Furthermore, UPLA and LOLA result in the two-

level algorithm, which may adapt to every JSSP 

instance. Similar to the other population-based 

algorithms, UPLA examines search space based on 

the population of the combination from the input 
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parameter. Real numbers represent all input-

parameter values.  

Among JSSP algorithms, the most similar 

algorithm to the proposed algorithm was the two-

level Particle Swarm Optimization (PSO) [24]. The 

correspondence is that they generate parameterized-

active schedules with similar methods on both their 

lower-level algorithms; furthermore, parameters for 

both algorithms (lower and upper-level algorithms) 

control the identical. However, the two-level PSO is 

different from the suggested two-level metaheuristic 

algorithm that uses GLN-PSO's framework [25]. The 

authors assessed the algorithms' performance on 53 

well-known benchmark instances, including FT06, 

FT10, FT20, and LA01-LA40 [26]. Considering the 

similarity and difference, they also compared their 

results with those of the two-level PSO [24].  

3.5 Differential-based harmony search (DHS) 

The Differential-based Harmony Search (DHS) 

to minimize makespan for JSSP was reported by 

Zhao in 2018 [16]. The DHS improves the variable 

neighbourhood search (VNS) based on the critical 

path blocks. The transformed VNS, on the critical 

path, is embedded into the DHS to seek a more 

reliable solution based on the blocks. They evaluate 

DHS's performances on a set of benchmark instances 

from the OR-library with the objective of minimized 

makespan [27].  Compared with various HS-based 

algorithms and other state-of-the-art algorithms, the 

DHS is superior in solution quality, convergence 

speed, and stability [16]. 

3.6 GWO (Grey wolf optimization) 

The Grey wolf optimization (GWO) algorithm is 

a new population-oriented heuristic algorithm 

inspired by grey wolves' social hierarchy and hunting 

behaviour. Tianhua Jiang introduced GWO, a brand 

new swarm-based intelligence algorithm, to deal with 

optimization problems in 2018. The algorithm is 

based on the crossover operation and adapt the 

searching operator to minimize the makespan 

(maximum completion time). They also introduced 

an adaptive modification method to the algorithm to 

keep the variety of population. They compared the 

results with other published algorithms in the two 

scheduling cases. According to the experimental 

results, GWO provided better solutions for some 

instances [28].  

3.7 Bacterial foraging optimization (BFO) 

Kim Passino proposed another intelligent 

heuristic algorithm, called the Bacterial Foraging 

Optimization (BFO), in 2002 [29]. The BFO is 

inspired by the cooperation and competition 

behaviours of a bacterium named E. coli in seeking 

food. One of the primary processes in BFO is the 

evolution process. It begins when the bacterium 

migrates to a better solution according to the 

advantaged group's activity. Zhou introduced an 

algorithm called Chemotaxis-enhanced-BFO 

(CEBFO) to solve the JSSP [30]. To improve the 

algorithm's performance, they include a local search 

operation and chemotaxis with the differential 

evolution (DE). They conducted some numerical 

experiments on a set of benchmark problems of JSSP. 

The results demonstrated a good understanding of the 

algorithm. 

3.8 Parallel bat algorithm (PBA) 

In 2015, Dao proposed a parallel-based heuristic 

algorithm version, called the parallel bat algorithm 

(PBA) [17]. The fundamental structure of the PBA is 

to divide the distribution of the bat populations into 

several groups. They offered three schemes, namely 

a random-key encoding, a makespan, and a 

communication strategy.  To examine the method's 

accuracy, they had some experiments on 43 (forty-

three)  benchmark instances (Fisher and Thompson 

with FT06, FT10, FT20 [18], and Lawrence (LA01–

LA40) [31]). They compared their experimental 

results are to those of the PSO algorithm. These show 

that the intended approach gives competitive returns. 

3.9 Genetic algorithm (GA) 

Since Holland introduced GA in 1975, it has 

witnessed many exciting advances in using Genetic 

Algorithms (GAs) to solve challenging optimization 

problems in everything from production design to 

inventory and network design problems. It is a 

heuristics method, inspired by the process of 

Darwinian evolution. GA has been a multi-purpose 

approach for searching the global optimality; 

adapting GAs to a specific optimization problem is 

challenging but frustrating. The selection methods, 

efficient design of the chromosome representation, 

crossover and mutation process, and GA parameters' 

value influence GA's success [32]. Therefore, 

discovering an efficient GA approach system for a 

particular problem becomes essential in GA research.  

3.9.1. The Chromosome representation 

When implementing GA for an optimization 

problem, an important issue is how to generate a 

chromosome that would bring us to the right solution. 

For the initial population, we have to create a 
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Figure. 1 An example of the chromosome for problem FT06 

 

pop_size chromosome. Each chromosome consists of 

𝑛 × 𝑚  gen generated randomly, and each job will 

appear 𝑚  in the chromosome. One illustrates an 

example of the chromosome for the test problem 

FT06, having six jobs and six machines. 

The chromosome in Figure. 1 indicates that the 

first activity to be scheduled is job two at machine 

one, followed by job six at machine one; then, job 

three at machine one, and so on, according to the 

order arranged in the chromosome list. 𝑂𝑖,𝑗 

represents the operation for the job i at machine j. 

3.9.2. Genetic operations 

Procedure: Self Crossover:  

Step 1: Chose a parent arbitrarily for crossover.  

Step 2: Determine two crossover points randomly 

Step 3: Move substring between the above two 

points 

 

The mutation operation is an essential feature of 

GA to maintain the chromosome's diversity in the 

generation. This paper adopts the swap mutation that 

randomly selects two genes in the chromosome and 

then exchanges them.   

3.9.3. Evaluation and selection 

In GA implementation, we computed the fitness 

value to measure how well each chromosome fits the 

problem's requirements. For JSSP, we can use 

makespan as the fitness value as follows: 

 

Fitness(𝑥) =
1

𝑓(𝑥)
                         (6) 

 

where f(x) is the objective function (makespan). 

 
The decoding process to compute the makespan 

(Cmax ) of the schedule is as follows:  

 

Step 1: Select the chromosome for the decoding 

process.  

Step 2: Read gen in the chromosome started from 

the left.  

Step 3: Determine the machine number from the 

machine-order matrix, based on the job 

operation number's information. 

Step 4: Determine the processing time from the 

processing time matrix based on the job 

operation number's data. 

Step 5: Determine the maximum time of the last 

job time.  

Step 6: Renew the current job finishing time by 

adding the time to the result of Step 5; 

Step 7: Repeat Step 2 to Step 6 until the last-gen 

in the chromosome.  

Another essential process of GA is the way to 

determine the chromosome for the next population. 

Of course, the selection process should be done based 

on the fitness value. There have been several 

selection strategies introduced in GA applications. 

Here, we adopt the elitist approach by selecting the 

best pop_size chromosome for the next generation.  

4. Numerical experiments and results 

4.1 Design of numerical experiments 

To evaluate the effectiveness and the efficiency 

of the algorithm, we first have some numerical 

experiments for GA on 28 Benchmark test problems: 

3 instances (FT06, FT10, dan  FT20) of Fisher dan  

Thompson [18], and 25 instances  (LA01-LA25) of  

Lawrence [19], taken from the OR-library [27]. We 

implement the algorithm in MATLAB R2015b and 

run on an Intel Core i5 processor of 2.53 GHz.  

The GA parameters are set as: crossover probability 

( 𝒑_𝑪 ) = 0.4, mutation probability ( 𝒑_𝑴 ) = 0.2, 

population size (𝒑𝒐𝒑_𝒔𝒊𝒛𝒆) = 400 and maximum 

generation (max_gen) = 10-2000, for each test 

problem, the experiments are conducted 10 (ten) 

times. Table 1 presents the overall results obtained 

for all test problems, where the best and the average 

values represent the best and the average fitness value 

from the 10 (ten) running times. BKS represents the 

best-known solution in the literature. 
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Table 1. The experimental results of the GA approach 

Cases 𝒏 × 𝒎 ACT* BKS* 
GA 

Error 

(%) 

Best Average Worst  

FT06 6 × 6 1,00 55 55 55 55 0,00 

FT10 10 × 10 2,76 930 951 988.8 1030 2,26 

FT20 20 × 5 1,08 1165 1178 1184.3 1197 1,12 

LA01 10 × 5 6,00 666 666 666 666 0,00 

LA02 10 × 5 3,97 655 655 658.8 666 0,00 

LA03 10 × 5 6,44 597 597 611 621 0,00 

LA04 10 × 5 3.35 590 590 592 601 0,00 

LA05 10 × 5 1,8 593 593 593 593 0,00 

LA06 15× 5 2,00 926 926 926 926 0,00 

LA07 15 × 5 9,00 890 890 890 890 0,00 

LA08 15 × 5 9,00 863 863 863 863 0,00 

LA09 15 × 5 1,7,0 951 951 951 951 0,00 

LA10 15 × 5 0,80 958 958 958 958 0,00 

LA11 20 × 5 2,80 1222 1222 1222 1222 0,00 

LA12 20 × 5 2,80 1039 1039 1039 1039 0,00 

LA13 20 × 5 2,60 1150 1150 1150 1150 0,00 

LA14 20 × 5 1,00 1292 1292 1292 1292 0,00 

LA15 20 × 5 20,00 1207 1207 1207 1207 0,00 

LA16 10 × 10 767 945 959 977.2 997 0,00 

LA17 10 × 10 774 784 784 788.9 797 0,00 

LA18 10 × 10 808 848 848 868.5 909 0,00 

LA19 10 × 10 1.395 842 842 850 874 0,00 

LA20 10 × 10 1.234 902 907 928.4 992 0,55 

LA21 15 × 10 1.743 1046 1061 1097 1114 1,43 

LA22 15 × 10 1.443 927 943 987.8 1046 1,08 

LA23 15 × 10 752 1032 1032 1035.3 1054 0,00 

LA24 15×10 1.122 935 948 977 994 1,39 

LA25 15×10 2.049 977 987 1015,8 1042 1,02 

Average 0.3162 

*ACT: Average Computational Time (in second) 

4.2 Results and discussion 

"In the above table, the error is computed by 

using the following formula: 

 

𝐸𝑟𝑟𝑜𝑟 =
(𝐵𝑒𝑠𝑡−𝑂𝑝𝑡𝑖𝑚𝑢𝑚)×100% 

𝑂𝑝𝑡𝑖𝑚𝑢𝑚
            (7) 

 

Here, one can notice the excellent performance of 

GA to solve JSSP. Despite not reaching the optimal 

solution all-time, GA presents the optimal solutions 

(21 instances), with an average error of less than 0.32 

percent. The results also show that GA can provide 

solutions to the problems within reasonable 

computational time. For some hard/difficult cases, 

GA can obtain near-optimal solutions with an error 

from 0.5 to 1.43 percent. More efforts can be made to 

improve the solutions by possibly hybridizing GA 

with other local search techniques. The Gantt chart 

schedule and the convergence of the solution for 

LA40 are illustrated in Figure. 2 and Figure. 3, 

respectively. 

4.3 Comparison of some heuristic methods 

In this research, we evaluate the merit and the 

limitation of the approaches by comparing the results 

of some heuristic algorithms, including Ant Colony 

Optimization (ACO) [15], Particle Swarm 

Optimization (PSO) [33], Tabu Search (TS) [14], 

Upper-level algorithm (UPLA) [26], Differential-

based Harmony Search (DHS) [16], Grey Wolf 

Optimization (GWO) [28], Bacterial Foraging 

Optimization (BFO) [30], Parallel Bat Optimization 

(PBA)  [17], and the proposed Genetic Algorithm 

(GA).  The performances are measured based on the 

solution quality, the number of instances solved 

(NIS) optimally, and the relative error. We made a  

 

 
Figure. 2 Gantt chart schedule for LA40 
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Figure. 3 The convergence of the objective function in the generation for LA40 

 

 
Table 2. Performance of the heuristic approaches on all instances 

Test 

Problem 

Size 

(n ×m) 

 
BKS* 

ACO 

[15] 

PSO 

[33] 

TS 

[14] 

UPLA 

[26] 

DHS 

[16] 

GWO 

[28] 

BFO 

[30] 

PBA 

[17] 

GA 

(Proposed) 

FT06 6 × 6  55 - 55 - 55 55 55 55 55 55 

FT10 10 × 10  930 - 951 - 930 930 940 937 930 951 

FT20 20 × 5  1165 - 1191 - 1165 1165 1178 1171 1165 1178 

LA01 10 × 5  666 666 666 666 666 666 666 666 666 666 

LA02 10 × 5  655 669 663 655 655 655 655 655 655 655 

LA03 10 × 5  597 623 603 597 597 597 597 597 597 597 

LA04 10 × 5  590 611 611 590 590 590 590 590 590 590 

LA05 10 × 5  593 593 593 593 593 593 593 593 593 593 

LA06 15× 5  926 926 926 926 926 926 926 926 926 926 

LA07 15 × 5  890 890 890 890 8 q90 890 890 890 890 890 

LA08 15 × 5  863 863 863 863 863 863 863 863 863 863 

LA09 15 × 5  951 951 951 951 951 951 951 951 951 951 

LA10 15 × 5  958 958 958 958 958 958 958 958 958 958 

LA11 20 × 5  1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 

LA12 20 × 5  1039 1039 1039 1039 1039 1039 1039 1039 1039 1039 

LA13 20 × 5  1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 

LA14 20 × 5  1292 1292 1292 1292 1292 1292 1292 1292 1292 1292 

LA15 20 × 5  1207 1212 1207 1207 1207 1207 1207 1207 1207 1207 

LA16 10 × 10  945 1005 959 945 945 945 956 945 945 945 

LA17 10 × 10  784 812 784 784 784 784 790 785 784 784 

LA18 10 × 10  848 885 848 848 848 848 859 848 848 848 

LA19 10 × 10  842 875 857 842 842 842 845 844 842 842 

LA20 10 × 10  902 912 910 902 902 902 937 907 902 907 

LA21 15 × 10  1046 1107 1074 1048 1052 1046 1090 - 1046 1061 

LA22 15 × 10  927 1018 944 933 927 927 970 - 933 937 

LA23 15 × 10  1032 1051 1032 1032 1032 1032 1032 - 1032 1032 

LA24 15×10  935 1011 971 941 941 979 982 - 941 948 

LA25 15×10  977 1062 987 979 982 1016 1008 - 977 987 

 

 



Received:  October 29, 2020.     Revised: January 13, 2021.                                                                                             341 

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021           DOI: 10.22266/ijies2021.0430.30 

 

Table 3. The error comparison of the heuristic approaches in all instances 

Test  

Problem 

Dimensi  

(n ×m) 
ACO PSO TS UPLA DHS GWO BFO PBA GA 

FT06 6 × 6 - 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 

FT10 10 × 10 - 2.26 - 0.00 0.00 1.08 0.75 0.00 2.26 

FT20 20 × 5 - 2.23 - 0.00 0.00 1.12 0.52 0.00 1.12 

LA01 10 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA02 10 × 5 2.14 1.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA03 10 × 5 4.36 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA04 10 × 5 3.56 3.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA05 10 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA06 15× 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA07 15 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA08 15 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA09 15 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA10 15 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA11 20 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA12 20 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA13 20 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA14 20 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA15 20 × 5 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

LA16 10 × 10 6.35 1.48 0.00 0.00 0.00 1.16 0.00 0.00 0.00 

LA17 10 × 10 3.57 0.00 0.00 0.00 0.00 0.77 0.13 0.00 0.00 

LA18 10 × 10 4.36 0.00 0.00 0.00 0.00 1.30 0.00 0.00 0.00 

LA19 10 × 10 3.92 1.78 0.00 0.00 0.00 0.36 0.24 0.00 0.00 

LA20 10 × 10 1.11 0.89 0.00 0.00 0.00 3.88 0.55 0.00 0.55 

LA21 15 × 10 5.83 2.68 0.19 0.57 0.00 4.21 - 0.00 1.43 

LA22 15 × 10 9.82 1.83 0.65 0.00 0.00 4.64 - 0.65 1.08 

LA23 15 × 10 1.84 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 

LA24 15×10 8.13 3.85 0.64 0.64 4.71 5.03 - 0.64 1.39 

LA25 15×10 8.70 1.02 0.20 0.51 3.99 3.17 - 0.00 1.02 

 

 
Figure. 4 The comparison of average error 

 

comparison of the results for 28 benchmark test 

problems (FT06, FT10, F20) and 25 instances  

(LA01-LA25)  of  Lawrence [19]. Table 2 

summarizes the comparative results. We also 

computed the percentage relative error concerning 

BKS, as shown in the following Table 3. 

 
Figure. 5 The comparison of NIS optimally by the 

heuristic methods 

 

We also analyze the algorithm based on the 

average errors and the number of instances solved 
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(NIS) optimally. We illustrated the comparison of the 

average errors and obtained NIS by the algorithms in 

Figure. 4 and Figure. 5, respectively. These results 

indicate that, though no algorithm can give the 

optimal solution, the algorithms effectively find the 

optimal/near-optimal solutions to the problems. 

Almost all algorithms, except ACO, can provide an 

error of less than 1 percent. PBA presents the most 

impressive performance that can solve 26 cases 

optimally, with the average error equal to 0.05%.  

Among those 28 test problems, TS, DHS, and PBA 

can solve 26 instances optimally, followed by GA 

that solves 21 cases. 

5. Conclusion 

This paper analyzed the performance of some 

heuristic algorithms for solving JSSP. First, we 

developed the GA approach and conducted some 

intensive numerical experiments on a set of 

Benchmark instances from the literature. We 

investigated some heuristic methods' performance, 

based on the solution quality, the relative error, and 

the number of instances solved (NIS) optimally. The 

results validate that, though no method presents 

optimal solutions at all times, the heuristics are robust 

in searching for the optimal solutions of JSSP. 

Among them, the PBA is the most effective algorithm 

that solves 26 instances optimally with an average 

error of 0.05%, followed by DHS, UPLA, and GA. 

The computational results show that the proposed GA 

can obtain competitive results in both NIS (21 cases 

with an average error of 0.32%) and computational 

time. These findings add to a growing body of 

literature on the applications of heuristics.  
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