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Abstract: Groundwater (GW) quality evaluation includes a variety of biological, chemical and physical parameters. 

The fundamental problem with water quality assessment is the difficulty with which a large number of parameters are 

evaluated. If all criteria have been used to evaluate the quality of GW, then computational difficulty will certainly 

increase. In this paper, a new hybrid three-stage assessment approach based on Feature Extraction Algorithm (FEA), 

standard deviation (SD) and Complex Proportional Assessment Method (COPRAS) was proposed. In the first stage 

the redundant criteria for GW quality assessment is removed using FEA. Secondly, the weights of the reduct 

parameters are evaluated based on SD. Finally, GW sites are ranked using (COPRAS). Sixteen GW samples were 

gathered from several GW wells. The collected samples were investigated for 12 various physicochemical water 

quality criteria to evaluate GW quality. The results reveal that sulfates (SO4), nitrate (NO3), Fluorides (F), sodium 

(Na), and Escherichia coli (E. coli) are the main parameters for GW quality assessment. Furthermore, the optimal 

concentrations of physicochemical parameters: (SO4), (NO3), (F), (Na), and (E. coli) are 18.9(mg/L), 8.18(mg/L), 

0.222(mg/L), 21(mg/L), 1.9(MPN/100mL), respectively, with 40 WQI.The suggested approach is compared to three 

MCDM methods to validate the performance of the proposed methodology. The assessment results gained by the FEA 

combined with COPRAS and SD significantly minimize computational difficulty, reasonable and accurate. The 

approach presented in this study improves the system for evaluating GW quality. 

Keywords: Multi criteria decision making (MCDM), Groundwater (GW), Standard deviation (SD), Complex 

proportional assessment method (COPRAS). 

 

 

1. Introduction 

Water is a vital resource for the property of life 

on earth. Groundwater (GW) is one of the world's 

essential water resources, used for basic needs, such 

as drinking, cooking, industry and agriculture. As a 

result of the exponential population growth, and the 

overuse of GW sources, the quality of GW is 

continuously deteriorating. In specific, as in amount, 

GW quality should be considered seriously. A major 

concern for human life is the quality of water which 

relates to the physical, biological and chemical 

characteristics of water, as it is directly related to 

human health. As the evaluation of water quality is 

one of the most important issues in GW studies, a 

number of methods for evaluating quality of the water 

have been constructed. One of the old approaches is 

the Schuler map; this approach includes an evaluation 

of drinking water in relation to chemical parameters 

separately and at an aquifer level [1]. Geographical 

information system (GIS) was used in the study area 

to analyze the spatial distribution of the groundwater 

quality index [2]. The World Health Organization 

(WHO) guidelines for a range of drinking water 

indices have been established [3]. Multi-Criteria 

Decision-Making (MCDM) methods are considered 

to be effective techniques in diverse areas, such as; 

contractors assessment, projects management, 

products selection, construction of roads, etc. 
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TOPSIS (Technique for Order Preference by 

Similarity Ideal Solution) was used as supplier 

selection method [4].For mobile services evaluation, 

the VIKOR methodology (Vlsekriterijumska 

Optimizaciya I Kompromisno Resenje) was applied 

[5]. Multi-Objective Optimization by Ratio Analysis 

(MOORA) approach was used to determine and 

maximize the influence of the identified process 

factors [6]. EDAS has been used successfully to 

determine the optimal set of operating parameters of 

a diesel engine [7]. In [8] the Fuzzy-AHP weighted is 

carried out with Fuzzy ordered Average (FOWA) for 

groundwater quality index development. Another 

method based on Fuzzy comprehensive evaluation 

has been proposed in [9] for GW assessment. A 

methodology was developed for the ranking of water 

quality using the Order of Preference Technique 

Similar to Ideal Solution (TOPSIS) and the Entropy 

Weight Method [10]. In [11], to establish numerous 

water quality indices (WQI) and a method for grading 

groundwater wells, Fuzzy VIKOR dependent water 

quality evaluation methodology was suggested. 

COPRAS is an MCDM tool utilized by multiple 

researchers to solve several different problems. The 

benefits of COPRAS methodology are; COPRAS 

approach is very simple to implement, as it needs 

much less computation than other techniques and the 

principal advantage of COPRAS relative to other 

MCDM methods is to be able to compute degree of 

utility [12]. Weight determination is a critical feature 

of water quality management, since the weights of the 

criteria will certainly affect the evaluation results. 

Thus, enhanced information has been provided about 

how to select an effective form of determination. A 

wide range of techniques of weight parameters 

evaluation are used to compute the quality of the 

water [13-14]. Standard deviation weight 

methodology is used in this study to evaluate the 

weights of the water assessment factors despite its 

simplicity and accessibility. In addition to weight 

determination, parameter selection seems to be 

another critical problem when determining quality of 

the water. During water quality investigation, a wide 

number of factors are gathered, but not all criteria are 

significant with the same degree, and some factors 

are also insignificant to the results of the evaluation. 

When all factors that collected are added to determine 

water quality, it would certainly be difficult to 

evaluate. It is common to select criteria dependent on 

individual expertise to decrease the parameters of 

information system, but this is impractical and to 

some degree inefficient. Different methods to reduce 

dimensions of input spaces are available, such as 

Principal Component Analysis (PCA) [15] and 

Factor Analysis (FA) [16]. In this paper, FEA 

combined with COPRAS and SD is proposed to 

select the most appropriate GW well among the 

feasible alternatives. FEA is used to execute variable 

reduction before water quality evaluation, SD is 

applied to calculate the weights of variables, and 

COPRAS is applied to evaluate water quality. The 

advantage of the suggested approach is not only in 

improving support to the decision-making process in 

selecting the best alternative but also in dealing with 

datasets with a large number of input variables, FEA 

can obviously minimize the parameters of input space 

and calculation difficulty. A considerable amount of 

time is saved at the same time. The rest of this paper 

is structured as follows. FEA method with its 

calculation steps, COPRAS with its computation 

steps and SD are presented in Section 2. The 

methodology of the suggested approach is given in 

section 3. The implementation of the proposed 

approach is validated with the best GW well selection 

problem in section 4. Lastly, in section 5 the 

conclusions are discussed. 

2. Methods 

2.1 Feature extraction algorithm 

Some information is necessary in an information 

system for analysis of the system characteristics, but 

some information is unnecessary. Feature extraction 

algorithm (FEA) can be used to eliminate the 

redundant data while preserving the quality of sorting 

of the current circumstances. The features extracted 

are the reduct. For an information system 𝑆 =
(𝑈, 𝐴, 𝑉, 𝑓) , where 𝑈  is a finite  nonempty set of 

objects and 𝐴 is a finite  nonempty set of attributes, 

𝑉is a nonempty set of values, and 𝑓 is an information 

function that maps an object in 𝑈 to exactly one value 

in 𝑉 , the feature reduction steps is given as 

follows[17]: 

 

Step1: Evaluate the value 𝑆𝑎
𝑑  which used as a 

measure to rank attributes and subsequently select the 

best attribute for superset of reduct by: 

 

𝑆𝑑 = 𝑛2 − ∑ (𝑛𝑖)
2𝑚

𝑖=1

𝑆𝑃𝑎
𝑑 = ∑ ((𝑛𝑝)

2
− ∑ (𝑛𝑝

𝑖 )
2𝑚

𝑖=1 )𝑘
𝑃=1

𝑆𝑎
𝑑 =

1

2
(𝑆𝑑 − 𝑆𝑃𝑎

𝑑)

        (1) 

 

Where, 𝑛𝑖 is the number of cases in decision class i, 

𝑛𝑝is the number of cases that has symbolic value p 

for criteria a, and np
i is the number of cases from 

decision class i that has symbolic value p for criteria 

a. 
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Step2: Select the attribute with the maximum 𝑆𝑎
𝑑 

Step3: Subsequently use the selected attribute to 

partition the decision table into equivalence classes. 

Step4: Repeat the steps from step 1 to step 3 with 

each equivalence class 

Step5: Select the attribute with the maximum ∑ 𝑆𝑎
𝑑 

Step6: Repeat the steps from step 1 to step 5 till 

∑ 𝑆𝑎
𝑑 = 0 for all attributes. 

2.2 Standard deviation. 

The standard deviation (SD) is considered as 

measurement for the weights of the different criteria. 

The weights of the attributes using (SD) are 

determined by the following steps: 

Step1: Create the decision matrix of, X 

 

𝑋 = [𝑋𝑖𝑗]
𝑚𝑛

[

𝑥11𝑥12. . . 𝑥1𝑛

𝑥21𝑥22. . . 𝑥2𝑛

⋮      ⋮        ⋱   ⋮
𝑥𝑚1𝑥𝑚2. . . 𝑥𝑚𝑛

]                     (2)  

 

Where Xij is the performance value of ith alternative 

on jth criterion, n is the number of parameters and m 

is the number of alternatives.  

Step2: Normalize the decision matrix to obtain 

dimensionless values from various criteria using the 

following formula: 

 

𝑋𝑖𝑗
𝑠 =

𝑋𝑖𝑗−𝑚𝑖𝑛𝑋𝑖𝑗

𝑚𝑎𝑥𝑋𝑖𝑗−𝑚𝑖𝑛𝑋𝑖𝑗
                        (3) 

 

Step3: Evaluation of the (SD) for every criterion 

using the following formula: 

 

𝑆𝐷𝑗 = √
1

𝑚
∑ (𝑋𝑖𝑗

𝑆 − 𝑋̅𝑗)2𝑚
𝑖=1                   (4) 

 

where  Xij is the mean of the values of the jth Criteria 

after normalization and j = ,2,3, … , n.   
Step4: Finally, the weight foe each criterion is 

computed the following equation: 

 

𝑊𝐽 =
𝑆𝐷𝑗

∑ 𝑆𝐷𝑗
𝑛
𝑗=1

                          (5) 

2.3 Complex proportional assessment (COPRAS) 

Zavadskas et al. developed the method of 

preference ranking for complex proportional 

assessment (COPRAS) [18]. This approach considers 

separate the effect of maximization and minimization 

parameters on the results of the evaluation. The 

performance of the alternatives in terms of different 

criteria and the corresponding criteria weights is 

taken into account. This approach chooses the best 

decision, taking into account the optimal and worst 

solutions. The COPRAS technique was applied in 

different fields such as material selection, 

management, construction, economics, etc. [19-22]. 

The COPRAS technique steps are defined as follows 

[23]: 

 

Step1: determine the main criteria and define the 

alternatives. 

Step2: Create the decision matrix of, X 

 

𝑋 = [𝑋𝑖𝑗]
𝑚𝑛

= [

𝑥11𝑥12. . . 𝑥1𝑛

𝑥21𝑥22. . . 𝑥2𝑛

⋮      ⋮        ⋱   ⋮
𝑥𝑚1𝑥𝑚2. . . 𝑥𝑚𝑛

]           (6) 

 

Where 𝑋𝑖𝑗 is the performance value of ith alternative 

on jth criterion, n is the number of parameters and m 

is the number of alternatives.  

Step3: Normalize the decision matrix to obtain 

dimensionless values from various criteria using the 

following formula, R. 

 

𝑅 = [𝑟𝑖𝑗]
𝑚𝑛

=
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

                     (7) 

 

Step4: Calculate the weighted normalized decision 

matrix, D. 

 

𝐷 = [𝑦𝑖𝑗]
𝑚𝑛

= 𝑟𝑖𝑗 × 𝑤𝑗 (𝑖=1,2,…,𝑚;  𝑗=1,2,…,𝑛) (8) 

 

Step5: The sums weighted standardized values are 

determined using the following formulas for 

beneficial as well as non-beneficial parameters:  

 
𝑆+𝑖 = ∑ 𝑦+𝑖𝑗 𝑛

𝑗=1

𝑆−𝑖 = ∑ 𝑦−𝑖𝑗
𝑛
𝑗=1

                         (9) 

 

Where y+ij  and y−ij are the weighted normalized 

values for the beneficial and non-beneficial attributes, 

respectively.  

Step 6: Calculation the relative importance of each 

alternative, Qi : 

 

𝑄𝑖 = 𝑆𝑖 +
𝑆−𝑚𝑖𝑛  .  ∑ 𝑆−𝑖

𝑚
𝑖=1

𝑆−𝑖  .∑ (𝑆−𝑚𝑖𝑛/𝑆−𝑖)𝑚
𝑖=1   

, 𝑖 = 1,2,3, … 𝑚 (10) 

 

Where 𝑆−𝑚𝑖𝑛  is the minimum value of 𝑆𝑖. 

Step 7: Evaluation of the quantitative utility, 𝑈𝑖 

 

𝑈𝑖 =
𝑄𝑖

𝑄𝑚𝑎𝑥
 . 100%                       (11) 

 

Here, Qmax   is the maximum relative importance 

value. The utility values of the determined  
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Define all alternatives 

Defining the paramters to be used in decision 

making 

Utilize FEA in reduct of criteria  

Stage I: 

Criteria 

Reduction 

Evaluating the paramters weights based on Standrd 

deviation 

Stage II:  

Evaluating Criteria 

Weights 

 

Determination the normalized decision matrix 

Compute the weighted normalized decision matrix 

Evaluation sum of beneficial and cost criteria values 

Calculation utility values of alternatives 

Ranking of alternatives 

Stage III: 

COPRAS 

Figure. 1 The schematic structure of the proposed 

approach 
 

alternatives are between 0 and 100 %. Finally, the 

most desirable alternative is the maximum utility 

factor. 

3. Proposed methodology 

The technique offered is composed of three 

elementary stages: 

1st Stage. Reduction of criteria using FEA algorithm 

2nd Stage. Weight computation of reduct parameters 

using standard deviation method  

3rd Stage. Alternatives ranking by using of complex 

proportional assessment (COPRAS). 

The schematic structure of the proposed approach is 

shown in Fig. 1. 

4. Results, validations and discussions 

In this section, a practical application is given to 

validate the performance and the efficiency of the 

suggested approach for groundwater quality 

assessment. 

4.1 Information system of evaluating groundwater 

quality 

Groundwater quality evaluation problem includes 

a variety of chemical and physical parameters. 

Sixteen GW samples were gathered from several GW 

wells in Jordan [24] as shown in Table 1. For each 

sample, twelve parameter including hydrogen ion 

concentration (pH-a1), total dissolved solids 

(TDS(mg/L)-a2), total hardness (TH(mg/L)-a3), 

Turbidity (Turb(NTU)–a4), sulfates (SO4(mg/L)-a5), 

chlorides (Cl(mg/L)-a6), nitrate (NO3(mg/L)-a7), 

Fluorides (F(mg/L)-a8), sodium (Na(mg/L)-a9), Zinc 

(Zn(mg/L)-a10), iron (Fe(mg/L)-a11), and 

Escherichia coli (E. coli(MPN/100mL)-a12) were 

investigated. These parameters are taken as condition 

attributes in our approach. In the other hand the water 

quality index (WQI) is indicated as decision attribute 

for each sample. 

4.2 Discretization and coding of information 

system 

The information system is discretized by 

transforming the continuous values of the 

quantitative parameters (a1 – a12), and the degision 

 
Table 1. Groundwater samples information system 

W. 

NO. 

Condition parameter Decision 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 D 

pH TDS TH Turb SO4 Cl NO3 F Na Zn Fe E.coli WQI 

w1 7.15 446 424 0.3 28 53 45 0.229 25 0.1 0.04 33 274 

w2 7.43 424 376 0.1 35 70 61 0.364 41 0.016 0.04 34 287 

w3 7.4 671 470 0.2 53 160 33 0.486 99 0.016 0.04 9.4 113 

w4 7.81 429 263 0.45 36 68 46 0.411 30 0.03 0.04 3.7 66 

w5 7.29 454 407 0.7 32 83 36 0.304 36 0.016 0.04 590 4295 

w6 7.4 438 308 0.55 35 74 38 0.338 32 0.03 0.04 6.4 83 

w7 7.84 329 218 0.08 9 24 22 0.306 14 0.016 0.04 1.8 44 

w8 7.78 464 236 0.4 37 134 2.3 0.709 94 0.016 0.09 1.8 52 

w9 7.48 424 290 0.25 60 115 1 1.9 52 0.016 0.04 1.8 55 

w10 8.71 262 23 0.45 42 47 7.3 0.124 80 0.016 0.1 1.8 46 

w11 7.96 680 283 0.23 37 249 22 0.332 112 0.016 0.04 1.8 60 

w12 7.28 1417 861 4.8 605 187 1 1.523 145 0.06 0.11 1.8 96 

w13 7.24 565 506 0.1 67 132 16 0.341 73 0.016 0.04 1.9 54 

w14 7.82 391 289 0.1 16 59 17 0.256 20 0.016 0.04 3.7 59 

w15 7.63 337 267 0.75 39 54 1.9 0.901 23 0.016 0.04 6.4 80 

w16 7.61 194 118 0.05 18.9 37 8.18 0.222 21 0.016 0.04 1.9 40 
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Table 2. Definition of attribute coding 

Attributes 
Code 

I II III IV V 

a1 pH a1 ≤ 6.5 6.5 < a1 ≤ 7 7 < a1 ≤ 7.5 7.5 < a1 ≤ 8.5 a1 > 8.5 

a2 TDS a2 ≤ 300 300 < a2 ≤ 500 500 < a2 ≤ 1000 1000 < a2 ≤ 2000 a2 > 2000 

a3 TH a3 ≤ 150 150 < a3 ≤ 300 300 < a3 ≤ 450 450 < a3 ≤ 550 a3 > 550 

a4 Turb a1 ≤ 0.05 0.05 < a1 ≤ 1 1 < a1 ≤ 5 5 < a1 ≤ 10 a1 > 10 

a5 SO4 a5 ≤ 50 50 < a5 ≤ 150 150 < a5 ≤ 250 250 < a5 ≤ 350 a5 > 350 

a6 Cl a6 ≤ 50 50 < a6 ≤ 150 150 < a6 ≤ 250 250 < a6 ≤ 350 a6 > 350 

a7 NO3 a7 ≤ 2 2 < a7 ≤ 5 5 < a7 ≤ 20 20 < a7 ≤ 30 a7 > 30 

a8 F a8 ≤ 0.5 0.5 < a8 ≤ 1 1 < a8 ≤ 1.5 1.5 < a8 ≤ 2 a8 > 2 

a9 Na a9 ≤ 100 100 < a9 ≤ 200 200 < a9 ≤ 250 250 < a9 ≤ 300 a9 > 300 

a10 Zn a10 ≤ .05 0.05 < a10 ≤ 0.5 0.5 < a10 ≤ 1 1 < a10 ≤ 5 a10 > 5 

a11 Fe a11 ≤ 0.1 0.1 < a11 ≤ 0.2 0.2 < a11 ≤ 0.3 0.3 < a11 ≤ 1.5 a11 > 1.5 

a12 E.coli a1 ≤ 1.1 1.1 < a1 ≤ 2.2 2.2 < a1 ≤ 10 10 < a1 ≤ 50 a1 > 50 

D WQI D ≤ 50 50 < D ≤ 100 100 < D ≤ 200 200 < D ≤ 300 D > 300 

 

Table 3. Coded information system 

W. 

NO. 

Condition parameter Decision 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 D 

pH TDS TH Turb SO4 Cl NO3 F Na Zn Fe E.coli WQI 

w1 II II III II I II V I I II I IV IV 

w2 II II III II I II V I I I I IV IV 

w3 II III IV II II III V I I I I III III 

w4 III II II II I II V I I I I III II 

w5 II II III II I II V I I I I V V 

w6 II II III II I II V I I I I III II 

w7 III II II II I I IV I I I I II I 

w8 III II II II I II II II I I I II II 

w9 II II II II II II I IV I I I II II 

w10 V I I II I I III I I I II II I 

w11 III III II II I III IV I II I I II II 

w12 II IV V III V III I IV II II II II II 

w13 II III IV II II II III I I I I II II 

w14 III II II II I II III I I I I III II 

w15 III II II II I II I II I I I III II 

w16 III I I II I I III I I I I II I 

 

attribute (D) into qualitative terms. The condition 

attributes of chemical and physical parameters for 

groundwater samples are coded into five qualitative  

terms; (I, II, III, IV, and V). Furthermore, the decision 

attribute (D) is coded into five qualitative terms; (I 

(excellent), II (good), III (moderate), IV (poor), and 

V (very poor)). The definition of attribute coding is 

shown in Table 2. This coding method is applied as 

presented in the coded information system of Table 3. 

4.3 Groundwater Information system reduction 

In this step Feature Extraction Algorithm (FEA) 

is applied for the coded information system in table 

III for extracting the reduct. The reduction result 

obtained as the output of the (FEA) can be written 

as { 𝑎5, 𝑎7, 𝑎8, 𝑎9, 𝑎12}. According to the FEA 

algorithm result the parameters 
{ a1, a2, a3, a4, a6, a10, a11 }  can be omitted from 

Table 1 and the reduct Table 4 is obtained. 

4.4 Calculation the weights of the assessment 

parameters by standard deviation 

The weights of parameters for GW assessment 

are determined using the standard deviation. To 

evaluate the standard deviation, standardization of 

the range was performed using Eq. (3) to turn 

different scales and units into specific observable 

units between different GW assessment parameters to 

measure their weights. The standard deviation (SD) 

is then calculated for every assessment parameter 

using Eq. (4). The next step after determining the 

standard deviation for all assessment parameters is to  
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Table 4. Information system reduct 

W. 

NO. 

Condition parameter Decision 

a5 a7 a8 a9 a12 D 

SO4 NO3 F Na E.coli WQI 

w1 28 45 0.229 25 33 274 

w2 35 61 0.364 41 34 287 

w3 53 33 0.486 99 9.4 113 

w4 36 46 0.411 30 3.7 66 

w5 32 36 0.304 36 590 4295 

w6 35 38 0.338 32 6.4 83 

w7 9 22 0.306 14 1.8 44 

w8 37 2.3 0.709 94 1.8 52 

w9 60 1 1.9 52 1.8 55 

w10 42 7.3 0.124 80 1.8 46 

w11 37 22 0.332 112 1.8 60 

w12 605 1 1.523 145 1.8 96 

w13 67 16 0.341 73 1.9 54 

w14 16 17 0.256 20 3.7 59 

w15 39 1.9 0.901 23 6.4 80 

w16 18.9 8.18 0.222 21 1.9 40 

 

Table 5. Weights of the GW assessment parameters. 

W. 

NO. 

Standardized mean of conditional parameters 

a5 a7 a8 a9 a12 

SO4 NO3 F Na E.coli 

w1 0.0319 0.7333 0.0591 0.0840 0.0530 

w2 0.0436 1 0.1351 0.2061 0.0547 

w3 0.0738 0.5333 0.2038 0.6489 0.0129 

w4 0.0453 0.7500 0.1616 0.1221 0.0032 

w5 0.0386 0.5833 0.1014 0.1679 1 

w6 0.0436 0.6167 0.1205 0.1374 0.0078 

w7 0 0.3500 0.1025 0 0 

w8 0.0470 0.0217 0.3294 0.6107 0 

w9 0.0856 0 1 0.2901 0 

w10 0.0554 0.1050 0 0.5038 0 

w11 0.0470 0.3500 0.1171 0.7481 0 

w12 1 0.0000 0.7877 1 0 

w13 0.0973 0.2500 0.1222 0.4504 0.0002 

w14 0.0117 0.2667 0.0743 0.0458 0.0032 

w15 0.0503 0.0150 0.4375 0.0687 0.0078 

w16 0.0166 0.1197 0.0552 0.0534 0.0002 

SDj 0.2322 0.3045 0.2711 0.2922 0.2404 

(Wj) 0.17326 0.22714 0.20228 0.21799 0.17933 

 

evaluate their  Wj  weights, with Eq. (5). The 

normalized values and the corresponding weights of 

the assessment parameters are indicated in Table 5. 

4.5 Assessment the available locations of 

groundwater wells by COPRAS 

In COPRAS method, firstly the parameters for 

groundwater assessment are transformed into 

dimensionless values using linear normalization 

procedure, so that all these parameters can be  

Table 6. Weighted normalized decision matrix 

W. 

NO. 

a5 a7 a8 a9 a12 

SO4 NO3 F Na E.coli 

w1 0.0042 0.0286 0.0053 0.0061 0.0084 

w2 0.0053 0.0387 0.0084 0.0100 0.0087 

w3 0.0080 0.0210 0.0112 0.0241 0.0024 

w4 0.0054 0.0292 0.0095 0.0073 0.0009 

w5 0.0048 0.0229 0.0070 0.0087 0.1509 

w6 0.0053 0.0241 0.0078 0.0078 0.0016 

w7 0.0014 0.0140 0.0071 0.0034 0.0005 

w8 0.0056 0.0015 0.0164 0.0228 0.0005 

w9 0.0090 0.0006 0.0439 0.0126 0.0005 

w10 0.0063 0.0046 0.0029 0.0194 0.0005 

w11 0.0056 0.0140 0.0077 0.0272 0.0005 

w12 0.0912 0.0006 0.0352 0.0352 0.0005 

w13 0.0101 0.0102 0.0079 0.0177 0.0005 

w14 0.0024 0.0108 0.0059 0.0049 0.0009 

w15 0.0059 0.0012 0.0208 0.0056 0.0016 

w16 0.0028 0.0052 0.0051 0.0051 0.0005 

 

compared. Then, using Eq. (8), the corresponding 

weighted normalized matrix is constructed, as shown 

in Table 6. 

Then, the sums of weighted normalized values are 

calculated using Eq. (9), for both maximizing 

parameters (S+i) and minimizing parameters (S−i). 

Subsequently, relative significance (priority) of each 

GW well was obtained by using Eq. (10). Finally, by 

using Eq. (11), quantitative utility for each alternative 

was calculated upon which the final ranking was 

obtained (Table 7). 

 
Table 7. Sum of the weighted normalized values, relative 

significance, utility values and ranking of the 

groundwater wells 

W. 

NO. 𝑆+𝑖 𝑆−𝑖 𝑄𝑖 𝑈𝑖 Rank 

w1 0 0.0711 0.038473 26.39825 14 

w2 0 0.1627 0.016809 11.53313 15 

w3 0 0.0667 0.040994 28.12821 13 

w4 0 0.0524 0.052216 35.82801 9 

w5 0 0.1944 0.014072 9.655704 16 

w6 0 0.0549 0.049815 34.18062 11 

w7 0 0.0249 0.10969 75.26369 2 

w8 0 0.0337 0.081076 55.6299 4 

w9 0 0.0464 0.058984 40.47148 6 

w10 0 0.0263 0.104124 71.44464 3 

w11 0 0.0467 0.058518 40.15208 8 

w12 0 0.0666 0.041038 28.15829 12 

w13 0 0.0351 0.077815 53.39239 5 

w14 0 0.0466 0.058646 40.2399 7 

w15 0 0.0526 0.051989 35.67238 10 

w16 0 0.0188 0.145741 100 1 
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Figure. 2 Comparative rankings of suggested method with 

other MCDM techniques 

4.6 Comparison between the proposed method 

and comprehensive evaluation techniques 

To evaluate the validity and strength of the 

suggested methodology, the ranking results were also 

compared with the previously investigated 

optimization approaches such as:  MOORA [6], 

VIKOR [5] and TOPSIS [4]. The results of rankings 

of various approaches are presented in the Fig. 2. 

The results do not show much difference between 

the proposed method and the other MCDM methods 

except in the rankings of the middle rated alternatives. 

It can be observed that GW well 16 received the 

highest attention by all methods, hence may be 

regarded as the most appropriate. The results indicate 

that the suggested approach is consistent with the 

other techniques. The suggested approach is not only 

improve decision-making process in selecting the 

best alternative but also in dealing with datasets with 

a large number of input variables, FEA can obviously 

minimize the parameters of input space and 

calculation difficulty. A considerable amount of time 

is saved at the same time. 

5. Conclusions 

The assessment of GW quality is one of the key 

issues in water resources management. In this 

research, a methodology based on FEA combined 

with COPRAS Method and SD for GW assessment is 

introduced. Twelve parameter including hydrogen 

ion concentration (pH), total dissolved solids (TDS), 

total hardness (TH), Turbidity (Turb), sulfates (SO4), 

chlorides (Cl), nitrate (NO3), Fluorides (F), sodium 

(Na), Zinc (Zn)), iron (Fe), and Escherichia coli (E. 

coli) were investigated to evaluate GW quality. First, 

FEA was used to perform attribute reduction of 

parameters for water assessment. Then, the parameter 

weights were computed using SD. Finally, COPRAS 

for evaluating GW quality rankings was successfully 

employed. The results reveal that sulfates (SO4), 

nitrate (NO3), Fluorides (F), sodium (Na), and 

Escherichia coli (E. coli) are the main parameters for 

GW quality assessment. Furthermore, the optimal 

concentrations of physicochemical parameters: 

(SO4), (NO3), (F), (Na), and (E. coli) are 18.9(mg/L), 

8.18(mg/L), 0.222(mg/L), 21(mg/L), 

1.9(MPN/100mL), respectively. To validate the 

suggested approach output, three MCDM analytical 

techniques, including MOORA, VIKOR, and 

TOPSIS, are being compared. It demonstrates that the 

computed values for the proposed model are close to 

the methods MOORA, VIKOR, and TOPSIS. Hence, 

the suggested model is considered to be an effective 

evaluation method for ranking groundwater wells. 

We can, therefore, conclude that FEA combined with 

COPRAS Method and SD approach is powerful in the 

optimization of GW parameters. Moreover, the 

proposed approach provides a generic method that 

can be extended to various selection difficulties that 

include complexity and a variety of performance 

indicators. Compared to other MCDM methods, the 

results derived from the proposed model are 

reasonable and reliable to implement.  
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