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Abstract: This article presents an Adaptive Neuro-Fuzzy Inference System (ANFIS) approach to rapidly detect 

COVID-19 cases using commonly available laboratory blood tests. Current Reverse transcription-polymerase chain 

reaction (RT-PCR) tests for COVID-19 suffer from several limitations including false-negative results as large as 15-

20%, the need for certified laboratories, expensive equipment, and trained personnel; hence the development of an 

efficient diagnosis system that provides prompt and accurate results is of great importance to control the spread of the 

virus. Therefore, it was aimed to develop an intelligent system to analyze blood tests and identify significant 

hematological indicators to support COVID-19 diagnosis. This study interpreted the ANFIS model performance by 

shapely values to identify the most important and decisive parameters that could assist clinicians in making effective 

patient management decisions. The findings of this study revealed that WBC (White blood cells) & Platelet counts can 

act as relevant and significant indicators for the diagnosis of COVID-19 patients. Moreover, the proposed ANFIS 

model achieved a high prediction accuracy as it was able to discriminate between positive and negative COVID-19 

patients with an Accuracy, Sensitivity, and Specificity rates of 95%, 75%, and 97.25% respectively even though 10 % 

only of the data was positive. Therefore by combining available and low-cost blood test results to analysis based on 

the ANFIS model, we were able to provide an efficient and robust system to diagnose COVID-19. 

Keywords: Adaptive neuro-fuzzy inference system (ANFIS), COVID-19 diagnosis, Routine blood tests, SHAP values, 

Hematologic parameters. 

 

 

1. Introduction 

The coronavirus epidemic, caused by the SARS-

CoV-2 virus and known as COVID-19, started in 

December 2019 in Wuhan, China, and extent quickly 

through the world [1]. The incubation period of 

COVID-19 is as long as 2 weeks or longer, and it is 

highly infectious [2] in which the lung tissue is the 

target organ. Some patients rapidly deteriorate into 

acute respiratory failure, acute respiratory distress 

syndrome (ARDS) or multiple organ failure, 

reducing the time required to save them. [3, 4]. 

Consequently, it is essential to find prognostic tools 

to classify possible and severe cases of COVID-19, 

which helps in early treatment.  In addition, 

diagnostics can play a significant part in disease 

control, permitting the fast employment of controller 

measures that limit the disease spread through 

positive patient discovery, separation and contact 

tracing. 

Molecular techniques have been proven accurate 

diagnoses because they can target and identify 

specific pathogens by identifying its genetic material 

or identifying unique markers of the pathogen itself. 

Several reverse transcription-polymerase chain 

reaction (RT-PCR) kits have been developed to 

detect the SARS-CoV-2 genetically [5]. RT-PCR 

testing relies on its ability to amplify a minimal 

quantity of viral genetic material in a sample and is 

considered an essential part for SARS-CoV-2 virus 

detection. RT-PCR tests for COVID-19 typically use 

samples obtained using swabs from the upper 

respiratory system. However, due to the global spread 

of the virus, the strong demand for RT-PCR tests 

highlights the drawbacks of this form of diagnosis on 
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a large scale, such as long time to acquire the results 

(over 2-3 h to produce results) and the necessity for 

accredited laboratories, costly tools and skilled staff 

[6]. In addition, RT-PCR entails general analytical 

and pre-analytical problems that can risk the 

diagnostic accuracy of the test [7]. For this type of 

test, current studies have recorded up to 20 percent 

false-negative results. [8, 9]. These limits make RT-

PCR inadequate for rapid and large-scale screening 

targeting for fast diagnosis of patients. Such 

restrictions become even more highlighted in 

developing countries, which suffer from limited 

resources. Thus, there is a critical need for substitute 

tests to rapidly identify infected COVID-19 patients 

in order to avoid transmission of the virus and ensure 

a quick treatment for patients. 

Other types of tests that are currently in 

development include serological testing (i.e., blood 

tests for specific antibodies) which deliver results 

promptly, however, they are non-generic for COVID-

19, and may have quite poor specificity and 

sensitivity [10-13]. Antibodies tests as 

Immunoglobulins (IgA, IgG, IgM) tests can’t identify 

the SARS-Cov2 existence directly, in fact, they 

identify the latest infection serological evidence. 

Furthermore, Li et al. [6] specified that positive 

reaction may be from other coronavirus and influenza 

virus antibodies. 

Since laboratory medicine is a vital part in the 

early detection, diagnosis, and controlling of many 

diseases, current studies were conducted on the 

diagnoses of COVID-19 patients via analyzing the 

blood tests of suspected people [14-16]. The studies 

were performed in order to illustrate statistically 

significant variations which may help to detect 

COVID-19 patients. It has been shown that a few 

hematological parameters were obviously altered in 

COVID-19 patients. For instance, Davide Ferrari et 

al. [14] reported that there was a robust connotation 

between COVID-19 positively tested patients and a 

small WBC count in patients who were admitted to 

the San Raffaele Hospital (Milan, Italy) emergency 

room. Cheng et al. [17] presented a study on the 

clinical features and CT manifestations of positively 

and negatively tested COVID-19 patients in a single-

center study in Shanghai, China. The study revealed 

a significant connotation between low counts of 

WBC and platelets and patients with COVID-19. 

Moreover, the studies of Fan et al. [18] and Huang et 

al. [4] showed cases of leukopenia (low WBC count) 

and lymphopenia (low lymphocyte counts) of 

COVID-19 patients upon admission to the hospitals. 

Guan et al. [19] reported that in the routine blood test 

of COVID-19 patients upon admission to the hospital, 

the rate of reduced white blood cells or lymphocyte 

amount was mutual, and a decrease in the platelets 

count was observed in the patients. Hu Yun et al. [20] 

have also proved in their study that there was a 

decrease in WBC count, Platelet count, Basophils 

count & Eosinophil count in positively tested 

COVID-19 patients.  Another study was presented by 

Xiaofang Zhao et al. [21] who investigated the 

alteration in platelet counts between non-survivors 

and survivors infected with COVID-19. The authors 

found that there was a decrease in the platelet count 

of COVID-19 patients in the primary phases of the 

illness and that it was reduced in non-survivors more 

than in survivors in 1 week after admission. They 

found that the disease progression is related to the 

risk of reducing the number of platelets.  

Recently, Machine learning algorithms have been 

used to diagnose diseases through the study of 

hematological parameters [22, 23]. It was proved that 

a simple blood test with the combination of an 

effective machine learning method would help 

diagnose negative and positive COVID-19 patients. 

Therefore, the present study aims to propose an 

Adaptive Neuro-Fuzzy Inference System (ANFIS) 

approach to rapidly detect COVID-19 cases using 

commonly available laboratory blood tests.  The use 

of blood tests has the advantages of being cheaper 

and faster than other methods of diagnosis and thus 

providing a more reachable system. Besides, as 

pointed out from previous studies that hematological 

parameters can be indicators for the degree of 

sternness and the risk factors of COVID-19. 

Therefore, the identification of these criteria can be 

necessary for patients to promote clinical treatment. 

In this context, it was essential to develop intelligent 

systems to analyze blood tests and identify significant 

hematological indicators for the presence of COVID-

19. 

2. Contribution 

This study contributed to the proposal of a Neuro-

Fuzzy Inference System (ANFIS) model to rapidly 

detect COVID-19 cases using commonly available 

laboratory blood tests. Identification of the most 

relevant Clinical variables that had a significant 

influence on the classifier decision and therefore 

supporting the COVID19 diagnosis was also 

presented. Also developing a model classifier having 

a high prediction accuracy despite that 10 % only of 

the data was positive for COVID 19 proved that the 

ANFIS classifier is a reliable tool for the rapid and 

efficient detection of COVID-19 patients. 

Interpretation of the model both globally and locally 

was easily performed using SHAP values which can 

further guide in medical decision-making.   
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3. Materials 

The present study was applied on the results taken 

from the Kaggle dataset Diagnosis of COVID-19 and 

its clinical spectrum created by the Hospital Israelita 

Albert Einstein in São Paulo, Brazil [24]. The dataset 

provided by the Israelita Albert Hospital consisted of 

5644 records in which there were 559 cases (which 

constitutes 10% of the dataset) that were diagnosed 

with COVID 19  by employing the gold standard 

method; the reverse transcription-polymerase chain 

reaction (RT-PCR)[24]. The dataset contained 39 

variables (predictors), and one target outcome 

variable, which is a binary variable that indicates 

whether the patient is tested positive or negative and 

it is given by the name COVID-19 exam result. 

4. Methodology 

4.1 Preliminaries 

4.1.1. Adaptive neuro-fuzzy inference system (ANFIS) 

review 

The Neuro-Fuzzy Inference System (NFIS) 

combines the Fuzzy logic system (FLS) and the 

artificial neural networks (ANN). Combining this 

method with neural networks, produces significant 

results, which can provide rapid and accurate 

detection of COVID-19 cases by analyzing 

hematological parameters based on collected blood 

test samples.     

The adaptive network-based fuzzy inference 

systems (ANFIS) are used to unravel difficulties 

associated to parameter recognition issues [25]. This 

parameter recognition is achieved by integrating the 

back-propagation gradient descent and the least-

squares approach via a hybrid learning law. 

ANFIS is a representation for graphical network 

of the Takagi-Sugeno-type fuzzy inference system 

possessed with the neural learning abilities. The 

architecture of the ANFIS is shown in Fig. 1. Fixed 

nodes are represented by the circular nodes, whereas 

the nodes that have parameters to be learned are 

represented by the square nodes. 

 

 
Figure. 1 Structure of the ANFIS network 

 

a.  ANFIS Architecture 
 

ANFIS system architecture consist of five layers: 

Layer 1:  Fuzzification layer is the first layer. 

Every node i in this layer is a square node and is 

shown in Eqs. (1) and (2): 

 

𝑂1,𝑖 = 𝜇𝐴𝑖   (𝑥)           𝑓𝑜𝑟 𝑖 = 1,2 (1) 

 

𝑂1,𝑖 = 𝜇𝐵𝑖−2   (𝑦)        𝑓𝑜𝑟 𝑖 = 1,2 (2) 

 

Where  𝜇𝐴𝑖   (𝑥)  and  𝜇𝐵𝑖−2   (𝑦)   fuzzy 

membership function (MF). In this paper, the 

following Triangular MF are used.  

 

𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟(𝑥; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 

0 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
𝑏 ≤ 𝑥 ≤ 𝑐

0 𝑐 ≤ 𝑥

 

 

Where (𝑥; 𝑎, 𝑏, 𝑐) is the parameter  set that changes 

the shapes of the MFs. Parameters in this layer are 

referred to as the premise parameters. 

Layer 2: The second layer in the ANFIS network 

is the rule layer. In this layer, the membership 

functions are the input values and each node 

multiplies the input and provides an output that 

reflects the rule's firing power. This layer's output is 

given in the Eq. (3).  

 

 𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖   (𝑥)    𝜇𝐵𝑖   (𝑦)       𝑖 = 1,2    (3) 

 

Layer 3:  Here the i-th node is calculated by the 

ratio of the i-th rules firing strength to the sum of the 

rule's firing strengths.  

 

 𝑂3,𝑖 = 𝑤𝑖̅̅ ̅ =  
𝑤𝑖

𝑤1+ 𝑤2
                        (4) 

 

Where 𝑤𝑖̅̅ ̅ is referred to as the normalized firing 

strength. 

Layer 4:  The total output is calculated in this 

layer as the summation of all incoming signals given 

in the Eq. (5). 

 

          𝑂4,𝑖 = 𝑤𝑖̅̅ ̅ 𝑓𝑖 = 𝑤𝑖̅̅ ̅ (𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) (5) 

 

Where 𝑤𝑖̅̅ ̅  is the output of layer 3, and  (𝑝𝑖𝑥 +
 𝑞𝑖𝑦 + 𝑟𝑖)  is the parameter set. Parameters in this 

layer are mentioned to as the consequent parameters. 

Layer 5: The single node in this layer calculates 

the total output as the number of all input signals, 

which is stated as 
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        𝑂5,𝑖 = ∑ 𝑤𝑖̅̅ ̅ 𝑓𝑖 = ∑
𝑤𝑖 𝑓𝑖

𝑤𝑖
𝑖  𝑖                     (6) 

 

b. Hybrid-learning Algorithm 

The ANFIS has two classes of tuning criteria, the 

first layer called the premise and consequent 

parameters in the fourth layer [25]. Throughout the 

learning process, these parameters are attuned until 

the wanted response of the FIS is accomplished. In 

this paper, FIS was trained using the hybrid learning 

algorithm, where  it combines the backpropagation 

(BP) algorithm and the least square method (LSM) 

[25], The ANFIS output can be written as: 

  

𝑓 =  
𝑤1

𝑤1 +𝑤2
 𝑓1 +

𝑤2
𝑤1 +𝑤2

 𝑓2 = 𝑤1̅̅̅̅  𝑓1 + 𝑤2̅̅̅̅  𝑓2 

= (𝑤1̅̅̅̅  𝑥)𝑝1 + (𝑤1̅̅̅̅  𝑦)𝑞1 + (𝑤1̅̅̅̅  )𝑟1 +                

 (𝑤2̅̅̅̅  𝑥)𝑝2 + (𝑤2̅̅̅̅  𝑦)𝑞2 + (𝑤2̅̅̅̅  )𝑟2                      (7) 
 

4.1.2. Shapely values review 

The Shapley Additive explanations (SHAP) 

approach is founded on the Shapley value principle 

from game theory [26,27]. The Shapley value 

(SHAP) principle was initially established to predict 

the significance of an individual player in a 

cooperative team. This conception is designed to 

distribute the total benefit or payoff between players 

and is based on the comparative prominence of their 

contributions to the result of a game. Shapley values 

deliver a solution to each player's allocation of a fair 

or rational reward and represent a distinctive result 

characterized by the following natural characteristics 

or axioms: local precision (additivity), consistency 

(symmetry) and non-existence (null effect) [27]. 

Features that contribute to the production or 

prediction of the model with distinct magnitudes and 

signs are accounted for by Shapley values. Therefore, 

Shapley values reflect estimates of the significance of 

the function (magnitude of the contribution) as well 

as the direction (sign). Features in this study represent 

the hematological parameters in the collected blood 

tests where positive SHAP values indicate that the 

feature is "helping" the positive class (i.e., pushing 

the prediction to be "infected"), whereas negative 

SHAP values indicate that the feature is pushing the 

prediction to be "not-infected". In specific, the 

importance of a feature i is defined by the Shapley 

value in Eq. (8) 

 

∅𝑖 = 
1

|𝑁|!
 ∑ |𝑆|𝑆𝐶𝑁\{𝑖} ! (|𝑁| − |𝑆| − 1)!            

 [𝑓 (𝑆 ∪  {𝑖} − 𝑓(𝑆))]                          (8) 

 

Here f (S) relates to the ANFIS model output 

which can be clarified by a set of features 𝑆, and N is 

the whole set of all features. The ultimate 

contribution of Shapley value of feature 𝑖∅𝑖  is 

determined as the middling of its contributions across 

all possible permutations of a feature set. Features are 

then individually applied to the collection and their 

importance is exposed by the shift in model 

performance. Importantly, this formalism takes into 

account feature orderings that affect the observed 

modifications in the performance of a model in the 

presence of correlated features. 
 

4.2 Proposed approach 

In this paper, we defined a machine learning 

method as a computational approach for the rapid 

detection of COVID-19 patients that learns from a 

predefined bag of features and goes through several 

different steps. These steps are illustrated in Fig. 2 

which consisted of the following stages: (1) Dataset 

preparation, (2) Feature Selection, (3) Classification, 

and (4) Interpreting Model Predictions.  

 

Raw dataset for laboratory tests  

(39 variables)

Filter Dataset  

Split the dataset

(Training and testing set)

• Remove Features 

with > 20% null 

values

• Remove outlier data.

 Selected important variables   

Development of the ANFIS Classifier   

Train and test the ANFIS classifier 

 Calculate Shapely Values 

Explain ANFIS Model prediction 
using the SHAP Values

Analysis and Visualizing the 
distribution of a dataset

Evaluate the ANFIS classifier 

Summary 
plots and bar 

plots 

SHAP force 
plots

Dependence 
plot 

Dataset 

Preparation 

Features 

Selection and 

analysis  

Classifications 

Interpreting 

Model 

Predictions

 
Figure. 2 Overall proposed approach steps 

 

 

 



Received:  October 14, 2020.     Revised: December 14, 2020.                                                                                         182 

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021           DOI: 10.22266/ijies2021.0430.16 

 

4.2.1. Filtering the dataset and splitting: 

The main purpose of filtering the dataset is to 

remove the artifacts (variables that have many 

missing data points and outlier data) and the splitting 

step is to provide the classifier model with an 

accurate dataset and also to split the dataset into two 

parts. One part is used for training the classifier while 

the other part is used for the final evaluation of the 

classifier. Filtering the dataset and splitting steps are 

shown in the scheme: 

 

a. All information was anonymized in compliance 

with the current international practices and 

guidelines. 

b. In order to have a mean of zero and a unit 

standard deviation, all clinical data was 

standardized. 

c. It was observed from the data that most of the 

variables have a very high percentage of missing 

values. Hence, variables that had too many 

missing data points (> 20 %) were removed from 

the dataset.  

d. Samples that were too sparse (outlier data) in 

laboratory data were also removed. 

e. We chose to keep negative samples that have at 

least 10 variables with data points available. This 

is performed to avoid an overfit scenario where a 

few samples (sparse but positive) may have an 

undue influence on the predictive model. 

f. Splitting the dataset into 80%  as the training set, 

20 % as the testing set  

4.2.2. Selected features 

After filtering the dataset as previously 

mentioned in the latter section, the data set contained 

16 variables which included WBC count, Platelet 

Count, Patient age, HCT, Hgb, MPV, RBC Count, 

Basophils count, Absolute Eosinophil Count, 

Lymphocyte Count, MCHC, MCH, MCV, Absolute 

Monocyte Count, RDW and the presence of chronic 

disease. The selected variables or features represent 

the hematologic parameters that are present in a 

complete blood cell analysis of suspected patients. 

The target outcome variable indicates whether the 

patient is tested positive or negative for COVID 19.   

4.2.3. Analysis and visualizing the distribution of a 

dataset 

The most essential step before developing the 

classifier is the analysis and understanding of the 

relations between each selected feature and target (0 

or 1). Creating a histogram provides a visual 

representation of data distribution.  

4.2.4. Development of a classification model 

The classification model for the COVID-19 

diagnosis is achieved by the Adaptive Neuro-Fuzzy 

Inference System (ANFIS). The classification 

schemes employed in our experiments include the 

following steps:  

a. ANFIS Classifier Design 

For the classification of COVID-19 patients, a 

multilayer ANFIS classifier consisting of an input 

layer, three hidden layers, and an output layer is used 

in this article. A number of neurons are installed on 

the input layer of the ANFIS classifier, which is 

proportional to the size of the features extracted. The 

hidden layer is checked with a different number of 

neurons and, eventually, four hidden layers are 

designed to achieve the optimum rate of 

classification. Four hidden layers and each hidden 

layer with 16 neurons are configured in this article. 

The output layer consists of a single neuron and thus 

produces a single binary output 0 (negative) or 1 

(positive). Training the ANFIS model was 

accomplished using the Hybrid- Learning algorithm.  
 

b. Model performance  

We employed the selected features to train the 

ANFIS classifier then the classifier performance was 

evaluated in terms of Sensitivity, Specificity, and 

Accuracy. These terms are calculated as shown in 

Eqs. (9) -(11). Accuracy is the probability that the test 

will deliver precise outcomes, that is, negative in 

healthy patients and positive in infected patients. 

Hence, it is the probability of the true positives and 

true negatives between all the results. The sensitivity 

is the rate of true positives and determines the 

classifier's ability to detect correctly people with 

COVID-19. Specificity is the capability of 

categorizing healthy patients as negatives. It is the 

rate of accurate negatives.  The explanation of the 

terms of TP, FP, TN, and FN are shown in Table 1.  

  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%                 (9) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃+𝑇𝑁
× 100%                (10) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%         (11) 

 

In addition, To evaluate our prediction ANFIS 

model classifier, other state of Art classifiers KNN 

(k-Nearest Neighbor), and RF (Random Forest) were 

implemented and compared them with the proposed 

model. 
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Table 1. Definitions of terms used for measuring the 

ANFIS model performance 

Term Meaning 

True Positives 

(TP) 

The number of positively tested 

COVID-19 cases that are properly 

categorized as positive cases. 

False 

Positives (FP) 

The number of positively tested 

COVID-19 cases that are wrongly 

categorized as negative cases. 

True 

Negatives 

(TN) 

The number of negatively tested 

COVID-19 cases that are properly 

categorized as negative cases. 

False 

negatives 

(FN) 

The number of negatively tested 

COVID-19 cases that are wrongly 

categorized as positive cases. 

4.2.5. Interpreting the ANFIS Model prediction using 

the SHAP Values 

Model explanations are important because they 

can be employed to improve medical decision-

making and guide policy-making initiatives. In this 

study, the SHAP method was employed to 

comprehend the significance of the various clinical 

variables and its effect on the model output hence 

pointing out the best indicators for predicting patients 

that are infected with the COVID-19 disease. A main 

benefit of the associated SHAP values is that they add 

interpretability to complicated models such as 

ANFIS. The model interpretability was evaluated 

both locally and globally by looking at the relative 

importance of the variables and their impact on the 

ANFIS model's prediction. Global interpretability 

helps to understand the entire structure of the model 

and it can be obtained through summary plots and bar 

plots that show the global importance of the features. 

The SHAP summary plot shows how much each 

predictor contributes, either positively or negatively, 

to the target outcome variable (whether the patient is 

tested positive or negative for COVID 19). Features 

are organized by the sum of the magnitudes of the 

SHAP values in all the samples, i.e. by their global 

impact  ∑ |∅𝑖
(𝑗)|𝑁

𝑗=1 . SHAP values ∅𝑖
(𝑗)

 are drawn 

horizontally. Local explanations focus on explaining 

each prediction and it can be accomplished through 

SHAP force plots. Force plots show how features 

contribute to pushing the ANFIS prediction output 

from the base value to the model output.  The output 

value of the model is the prediction for that 

observation. The base value is the average model 

output over the training dataset. The prediction starts 

from the base value.  

5. Type-style and fonts 

In the first part of this section, Analysis and 

Visualizing of the distribution of the dataset will be 

discussed to understand the relations between the 

selected features and the target outcome (1 for 

positively tested COVID-19 patients and 0 for 

negatively tested patients). Secondly, an evaluation 

of the ANFIS model performance will be presented 

to investigate the prediction ability of the proposed 

model classifier. Interpreting the ANFIS model will 

be further discussed using SHAP values.  

The distribution curves for the selected features 

with target values are shown in Fig. 3. It was 

observed that several features had pronounced effects 

on the diagnosis of the COVID-19 disease while 

others had no significant effect. It was clear that 

Patient age Quantile, Platelet count, WBC count, 

Basophils count, Absolute Eosinophil count, 

Monocytes, and the existence of chronic disease had 

a pronounced effect on the diagnosis of COVID-19 

patients where other values of other parameters like 

RBC count, HCT, Hgb, MPV, MCHC, Lymph count 

and RDW counts were not significantly altered 

between positively and negatively tested patients 

with COVID-19.  

To evaluate the ANFIS model performance, a 

confusion matrix was developed and shown in Fig. 4 

to show the predicted values produced from the 

model. The testing data set had a total of 121 cases; it 

was obvious from the confusion matrix that the 

trained ANFIS classifier could correctly identify 9 

cases as positively tested COVID-19 patients (TP) 

and 106 cases are correctly identified as negatively 

tested COVID-19 patients (TN). 3 Positively tested 

cases were wrongly identified as negatively tested 

cases (FP) and 3 negatively tested cases were 

wrongly identified as positively tested (FN). 

Table 2 shows the computed Accuracy, 

Sensitivity, and Specificity for testing data of the 

ANFIS model classifier.  The results revealed that the 

ANFIS model could classify between positive and 

negative COVID-19 patients by achieved Accuracy, 

Sensitivity, and Specificity rates of 95%, 75%, and 

97.25% respectively. It is also noticeable that the 

ANFIS classifier attained a significantly higher 

accuracy than the corresponding counterpart 

classifiers. 

 
Table 2. Comparison between ANFIS model and state of 

art methods 

Performance Metrics ANFIS KNN RF 

Accuracy 0.95 0.892 0.90 

Sensitivity 0.75 0.895 0.71 

Specificity 0.97 0.882 0.91 

http://onlineconfusionmatrix.com/#measures
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Figure. 3 Distribution curves for selected features with target values 

 

In general, the high accuracy of the ANFIS 

classifier reveals its high ability of classification 

hence providing a useful and efficient diagnosis of 

COVID-19 cases using commonly available 

laboratory blood test data. The high specificity 

achieved by the model indicates high true negative 

rates due to the high number of negatively tested 

COVID-19 patients that are available in the dataset 

which can help to train the classifier to distinguish the 

healthy cases. However, the low sensitivity of the 

ANFIS classifier (75%) means that there are high 

false-negative results and thus reducing the ability of 

the classifier to discern between the cases of the 

disease. This can be attributed to the fact that 10% 

only of the dataset was used to train the classifier on 

positive cases of COVID 19. Accordingly, to 

improve the performance of the classifier we should 

increase the number of patients and therefore can help 

in discriminating between positive and negative 

COVID-19 patients. 

To Interpret the ANFIS model and to show the 

relative importance of each feature and its effect on 

the predicted diagnoses of patients, an aggregate bar 

graph was performed and shown in Fig. 5. The bar 

graph plots the mean absolute SHAP value for each 

feature. Furthermore, a SHAP summary plot shown 

in Fig. 6 was developed that provided more context 

than the bar chart and also their range of effects over 
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Figure. 4 Confusion matrix of the ANFIS classifier 

 

the dataset. Each point in the SHAP summary plot 

represents a row of the data set. This is like the bar 

plot but it can show the positive or negative 

relationship for each variable with the target. Features 

are sorted descendingly according to their importance. 

The horizontal location in the SHAP summary plot 

shows whether the effect of that value is associated 

with a higher or lower prediction.  

The x-axis points indicate the effect of the feature 

on the estimation of a specific patient. Color refers to 

either high (red) or low (blue) relative variables. 

Positive SHAP values indicate that the model 

predicted positively tested cases with COVID-19 

while a negative SHAP value indicates negatively 

tested patients. SHAP values farther away from zero 

means a bigger impact for a certain feature. 

It was noticed from Figs. 5 and 6 that the top five 

most important hematological parameters that had a 

significant effect on the ANFIS model's prediction 

are the WBC count, Platelet count, existence of the 

chronic disease, Basophils count & patient age 

quantile. It was also clear that WBC and platelet 

count had the maximum impact of the prediction 

where low values of these two variables are 

associated with clear positive impacts on the model 

prediction. This indicates that patients having low 

values of WBC and platelet counts are most likely of 

being infected with COVID-19.  This result can lead 

us to conclude that there is a significant association 

between low WBC and platelet counts and COVID-

19 patients which is similar to previous findings [17], 

[19], and [20]. The interrelation between low WBC 

count and COVID-19 cases was also proved by other 

previous studies [4], [14] and [18]. Xiaofang Zhao et 

al. [21] also found that that there was a decrease in 

the platelet count of COVID-19 patients in the early 

stages of the disease and that the progression of the 

disease is related to the risk of lowering the platelet 

count.  
 

 

 
Figure. 5 Bar plot to show the global importance for each 

feature 
 

 
Figure. 6 SHAP summary plot of the ANFIS model 

 

In this study, a possible explanation of the low 

WBC and Platelet counts in COVID-19 patients is 

that the erosion of the virus caused excessive 

destruction of white blood cells leading to a decrease 

in the number of white blood cells in the peripheral 

blood of the patients. However, with the progression 

of the virus and the severity of the patient's conditions, 

it could lead to an increase in the white blood cells.  

Furthermore, the virus infection may bring about 

immune damages to platelets by inducing auto-

antibodies and immune complexes.  

Another relevant observation from the SHAP 

summary plot that the presence of chronic disease had 

a positive impact on the ANFIS prediction target 

which implies that patients having a chronic disease 

or illness are more likely to be infected with COVID-

19 which can be due to the disorders in the immune 

system of the body caused by the presence of the 

chronic disease and the lower ability to resist any 



Received:  October 14, 2020.     Revised: December 14, 2020.                                                                                         186 

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021           DOI: 10.22266/ijies2021.0430.16 

 

other infections or viruses. As also observed from Fig. 

4 that low values of Basophils and Eosinophil counts 

had a positive impact on the target variable where low 

values of theses magnitudes are expected to be 

present in COVID-19 patients. This finding is similar 

to other previous studies[16,20,28] . On the other 

hand, Patient age quantile did not show a clear effect 

on the prediction of the model so in our study it is not 

considered as a marker for diagnosis of the COVID-

19 disease. This bias can be due to the limited number 

of positively tested COVID-19 patients in the dataset. 

Moreover, the plot showed that an increase in the 

monocyte count had positive SHAP values which 

meant that the model predicted positively tested cases 

having an increased monocyte count. This result is 

similar to another study, which showed that COVID- 

19 patients had a greater number of monocytes than 

healthy people, but still within the normal range. [28]. 

In regards to the seriousness of the disease, pro 

inflammatory monocyte activation, particularly for 

elderly people on early diagnosis have also been 

shown to be linked to the severe condition [29]. 

Activated monocytes are therefore not generally 

available for routine analyzers in the form of 

parameters. 

In conclusion, as observed from Figs. 5 and 6 that 

cases having low WBC, Platelet, Basophils, and 

Eosinophil counts and also having a state of illness or 

chronic disease are more likely to be infected with the 

COVID-19 virus. Since the WBC and Platelets count 

had the maximum impact on the ANFIS model 

predictions; therefore WBC & platelet counts can act 

as relevant and significant indicators for the diagnosis 

of COVID-19 patients. 

In order to get a deeper insight into the 

interactions between variables, we further developed 

SHAP dependence plots. They show the marginal 

effect that one or two variables have on the predicted 

outcome of the proposed ANFIS model. Showing 

how the model output changes as the features change 

helps us to explain how the model depends on that 

feature. They plot a feature’s value versus the SHAP 

value of that feature across various samples.  

Each dot is a single forecast (row) from the 

dataset. The value of the feature appear on the x-axis 

and the y-axis is the SHAP value for that feature, 

which characterizes how much the feature's value 

changes the output of the model for that sample's 

prediction. The color relates to a second feature that 

may have a collaboration effect with the feature that 

has been plotted. The second feature is selected 

automatically.  

Fig. 7 shows dependence plots between different 

variables and their effect on the ANFIS predicted 

outcome. Fig. 7 (a) shows the SHAP values of WBC 

count where Platelet count was chosen to show the 

interaction between them. It was clear that there was 

a downward trend between the WBC count and the 

target variable. The lower the WBC count the higher 

the ANFIS model prediction for the existence of 

COVID-19. 

Moreover, low WBC counts accompanied by low 

Platelet counts increased the risk of being infected 

with the virus. SHAP values for the existence of the 

chronic disease in suspected patients were plotted in 

Fig. 7 (b) where a value of 1 and 0 indicates the 

existence and non-existence of chronic disease. It was 

obvious that the presence of a chronic disease or a 

state of illness in patients showed positive SHAP 

values indicating higher probabilities of infection 

with COVID-19.  

Fig. 7 (c) and 7 (d) revealed that low values of 

Basophil and Eosinophil counts had a higher impact 

on the prediction along with low values of WBC 

count increases the risk of COVID-19. Furthermore, 

the appearance of monocytes in the blood tests of 

patients as shown in Fig. 7 (e) were associated with 

the high prediction of the ANFIS model and thereby 

increased the probability of COVID-19.  

To evaluate the model interpretability locally, 

SHAP force plots were performed for two 

observations or in other words two cases. In the plot, 

each Shapley value is an arrow that pushes to increase 

or decrease the prediction. Feature values that push 

the model towards a higher prediction of 1 (infected 

with COVID-19) are in red, and those reducing the 

prediction to 0 (not infected with COVID-19) are in 

blue and the length of the region shows how much the 

feature contributes to this effect. These plots explain 

why the model output takes a given value for each 

observation and it can also determine the 

observations where a certain variable or a set of 

variables have a greater or lower impact on the 

model's prediction. Figs. 8 and 9 show the SHAP 

force plots for two patients from the data set. 

The force plot shown in Fig. 8 reveals that for this 

particular patient, the ANFIS model output has a high  

prediction of 1 which is higher than the base value 

(0.08264). This indicates that this patient is infected 

with COVID-19. In this observation, features like 

Basophil count, Absolute Monocytes, and the 

existence of chronic disease pushed the model 

prediction to the right towards a value of 1 which 

increased the patient's predicted probability of being 

infected with COVID-19. Since in this study, the 

patient age wasn’t considered as an indicator to 

differentiate between positive and negative cases of 

the virus; therefore it is not taken into account.  

Fig.9 shows the force plot of the second patient 

where the ANFIS output prediction is 0 which means 
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Figure. 7 Dependence plot that shows SHAP values of: 

(a) WBC count, (b) chronic disease, (c) basophils count, 

(d) absolute eosinophil count and (e) absolute monocytes 

 

that the model classifies this observation as a 

negatively tested COVID-19 patient. As observed 

from the plot that the base value is higher than the 

model output. Features increasing the prediction of 

being infected with COVID-19 like the Basophil 

counts and the existence of chronic disease are offset 

by forces driving the prediction lower to a value of 0.  

The biggest impact that drives the prediction 

lower as seen from the plot is Platelet count and WBC 

count. 

6. Conclusion 

In this paper, an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) approach was proposed to rapidly 

detect COVID-19 cases using commonly available 

laboratory blood test data.  The use of blood tests has 

the advantages of being less expensive and less time 

consuming than other diagnosis methods and thus 

providing a more accessible system. Hence, the 

present study aims to provide an efficient and reliable 

predicting model to analyze blood tests and identify 

significant hematological indicators to support 

COVID-19 diagnosis. The study was applied to the 

results created by the Hospital Israelita Albert  

Einstein in São Paulo, Brazil. The ANFIS model 

classifier had the capability of discriminating 

between positive and negative COVID-19 patients 

with an Accuracy, Sensitivity, and Specificity rates of 

95%, 75%, and 97.25% respectively although 10% 

only of the data was positive for COVID 19. 

The ANFIS model performance was interpreted 

by shapely values in order to identify the most 

important and decisive hematological parameters that 

could assist clinicians in making effective patient 

management decisions. The results revealed that 

patients having low WBC and Platelet counts are 

more likely to be infected with COVID-19 patients  
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Figure. 8 SHAP force plot to show the prediction of the ANFIS model for the 10th observation 

 

 
Figure. 9 SHAP force plot to show the prediction of the ANFIS model for the 50th observation 

 

and that they had the maximum impact on the ANFIS 

model predictions. Hence, it was concluded that 

WBC & platelet counts could act as relevant and 

significant indicators for the diagnosis of COVID-19 

patients. The high classification ability of the ANFIS 

model proves that it is a useful, efficient, and rapid 

diagnosis system of COVID-19. Therefore, a stable, 

reliable, and readily available method for diagnosing 

COVID-19 can be provided by combining available 

blood test results with analysis based on the proposed 

ANFIS model. 
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