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Abstract - The authors present a Bayesian 

network capable to estimate the weather parameters 

related, not only, to renewable resources: wind speed 

and solar irradiation. A large and systematic data 

base about simple and composed weather indices 

registered during four years, 2013-2016, was used to 

construct the data-driven Bayesian structure and to 

learn and validate its parameters. It includes 9 

weather indices collected, minute by minute, by a 

professional Davis Instrument Pro 2 Plus weather 

station.  The extremely large initial data base, over 1.8 

million records, was discretized in 4 classes making 

possible to use a very simple algorithm like Bayesian 

search to establish the most suitable network 

structure fitting the data. The main and first useful 

results mean the probability of wind speed and solar 

irradiance classes. Both parameters can be 

transformed in electrical power considering a given 

wind generator and a solar panel. 
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List of abbreviations 

BN – Bayesian network; 

DBN – dynamic Bayesian network; 

BSA – Bayesian search algorithm; 

Mbs – meteorological Bayesian network structure 

Md – meteorological database; 

M – the set of random variables included in Md; 

P(Mbs/Md) – posterior probability (probability of Mbs 

given Md); 

m – number of cases in Md; 

Cv – vth case in Md; 

MbsP – vector whose values denote de conditional 

probability assignments associated with belief network 

structure Mbs; 

f(MbsP/Mbs) – probability density function over MbsP 

given Mbs. 

 

1. INTRODUCTION 
 

The interest in dynamic Bayesian networks has 

grown in the last years due to the advantage of 

representing temporal dependencies without the need to 

create new variables. DBN are frequently used for 

forecasting natural phenomena or weather parameters. 

One such system is described in paper [1] where 

several forecasting elements are combined with the use of 

BN’s and the knowledge of meteorologists to predict 

severe weather. 

Another use of DBN’s is presented in paper [2], and 

it is related to the ability of predicting production 

volumes from renewable energy sources, in particular 

wind farms. Authors describe a technique based on 

Bayesian regularization for reducing model overfitting 

problems that may arise in forecasting of wind power 

generation, and their results showed that BN’s display 

equivalent predictive performance to Neural Networks 

trained by Maximum Likelihood. 

In paper [3], the authors used BN’s to model the 

spatial dependencies among two meteorological variables 

(rainfall and temperature) for weather prediction over a 

specific location.  Using inference algorithms it has been 

analyzed weather prediction by doing experiments over 

independent test data sets. 

The authors in [4], propose a method to estimate 

reference evapotranspiration (ET) from limited climate 

data by using a Bayesian model to determine the 

uncertainty of different models that explain ET. 

Paper [5] presents a probabilistic approach based on 

fuzzy Bayesian networks (FBN) to forecast the weather 

condition by predicting the spatio-temporal 

interrelationships among different climate variables. 

One of the most challenging problems in weather 

forecasting is discussed in [6]. For rainfall forecasting, 

the authors have used a BN model for representing 

rainfall data from 21 weather stations. Using the greedy 

search algorithm they have been able to represent 

dependencies between different stations. 

Other papers have been put forward by researchers 

employing various methods for weather forecast that 

include probabilistic models (Bayesian networks) [7] or 

neural network based techniques [8]. 

Besides forecasting weather parameters, DBN are 

used in several different domains like modeling electrical 

energy markets [9], forecasting short-term passenger flow 

in transport services [10], handwritten word recognition 

[11], fault detection in autonomous spacecraft [12], or in 

electronic equipment health diagnosis [13]. 

 

2. DYNAMIC BAYESIAN NETWORKS  
 

Detecting temporal patterns of time-series 

meteorological data is a difficult task due to really 

unknown dependence of parameters. They are not only 
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pure random variables but their dependencies are random 

also. That’s why the weather forecast keeps always the 

“probable” attribute even for short-time intervals.  

As it was mentioned above, DBN can be used to 

extend the ability of BN for belief calculations related to 

dynamically changing processes. 

In principle, there are two techniques for a time 

depending process: 

• Time slice approach consisting in capturing the 

evolving process states in time steps, as depicted in Fig. 

1; 

• Decomposing the BN in identical models or sub-

models multiplied over each time step as detailed in 

Fig. 2. 

Fig. 1. Dynamic Bayesian network modeling a time 

steps process evolution 

 
In this paper the authors used an adapted version of 

DBN compared to what it was presented in [14] and 

implemented in Genie software package [15], according 

to Fig. 2. 

 

2.1. Weather database 

 

The information about the weather, targeting the wind 

speed and solar irradiation as renewable resources, was 

registered minute by minute during 4 years, between 

2013 and 2016. 

A professional Davis Instrument weather station type 

Vantage Pro2 Plus was used to collect the information 

about 9 weather parameters, simple or composed, are 

presented in table 1. 

The station recorded over 1.8 million data rows with 

some inevitable errors or missing values. 

There was necessary to clean the data, replace with 

zero, average values or near similar values using different 

robust techniques to avoid wrong records on data chains 

while keeping an acceptable accuracy of final results 

[16].  A discretization procedure was necessary with a 

view to find the Bayes network structure.  

Fig. 2. Multiplied temporal Bayesian network  

 

Table 1. Indices recorded for weather forecast 
Weather 

parameter and acronym in 

DBN  

(random variable) 

Accuracy Range Units 

Evapotranspiration – ET (ET) 5% 0 – 19999.9 mm 

Barometric pressure – Bar (B) 
0.8 mm Hg 

1.0 mb 

410 - 820 mm Hg 

540 – 1100 mb 

mm Hg 

mb 

Outside humidity –  

Out humid (OU) 
3% 0% - 100% % 

Solar irradiance – Solar rad 

(SR) 
5% 0 - 1800 W/m2 

Outside temperature –  

Temp out (TO) 
0.5 -40 - +65 0C 

Wind speed – Wind speed 

(WS) 
5% 1 – 67  m/s 

Heat index – Heat index (HI) 1.5 -40 - +74 0C 

THW index – THW index 

(THW) 
2 -68 - +64 0C 

THSW index – THSW index 

(THSW) 
2 -68 - +64 0C 

    

2.2. Bayesian searching algorithm 
 

There are many learning methods to find a suitable 

Bayesian network structure fitting a set of database cases. 

One of the simplest is Bayesian Search Algorithm (BSA) 

clearly presented in [17]. The essence of this algorithm is 

based on finding the most probable Bayes network 

structure given a database and calculating P(Mbs|Md).  

Let consider the following assumptions and 

notations: 

- BSA compares two or more Bayesian network 

structures (Mbsi, Mbsj, Mbsk, …) generated by the 

same data base Md and calculates the conditional 

probability ratio according  to fundamental rule of 

probability: 

Time step 1 

Time step 2 

Time step n 

Time step 1 

Time step 2 

Time step n 
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- The unique database M includes the meteorological 

variables: 

 

     },,,,,,,,{ THWTHSWHWSTOSROUBETM ≡   (2) 

which are the conditional dependent variables of Mbs. 

- A database row of variables means a case. 

- The cases are assumed to be conditional independent 

and this is expressed by the equation 

-  

         

 (3) 

 

 

 

- The continuous recorded variables were discretized 

in 4 classes without missing values. 

Based on the above mentioned assumptions, as it was 

demonstrated in [17], 
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where 

- n is the number of discrete xi variables; 

- every variable has ri values (vi1, vi2, …., viri); 

- qi is the unique instantaneous value of the set of 

parents πi of the variable xi in Md; 

- Nijk is the number of cases in Md in which the 

variable xi has the value vik while the set of variables 

πi is instantiated as wij; consequently, 
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The BSA find the optimal structure reducing the 

number of possible structures considering equal priors 

P(Mbs) = C on Mbs and maximizing P(Mbs|Md). Eq. 4 

becomes 

 

     

(6) 

Maximum of P(Mbs|Md) means maximum of the 

second product: 

 

                 

 

   (7) 

 

 

 

A more general expression of eq. (7) is fully 

presented in [17]. 

 

 

 

3. DATA-DRIVEN BAYESIAN NETWORK 

STRUCTURE 
 

Fig. 3 shows a sample of 10 data cases of the 9 non-

discretized meteorological variables of Md. To apply the 

BSA it was necessary to use discretized variable values. 

The authors’ tests proved the BN structure based is 

depending on year or even on the month of the year 

which means a real difficulty in establishing a final one. 

The solution was to ask climate experts opinion and to 

validate finally the structure according with data and 

minimize the errors. 

Anyway, establish a suitable structure for weather 

forecast remains an extreme complex task associated with 

errors. 

 

 
a) 

 
b)  

Fig. 3 A sample of the continuously (a) and discretized 

(b) recorded data-cases of meteorological variables of 

Md 

 

The BN structure based on 4 years full database is 

shown in Fig. 4. 

 

 
Fig. 4 The BN structure generated using BSA 

 

BSA showed the conditional independence of ET 

from the rest of variables while Heat index is a marginal 

one.  

The conditional probabilities of variables classes are 

presented in Fig. 5 for the initial time step. 

An important aspect in constructing a data-driven 

BN is the error checking involving the opposite 

procedure: fitting the resulting BN structure to the data. 

There are many techniques for this. 
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Fig. 5 Conditional probabilities of meteorological 

variables classes for the first time step 

 

A simple one is to randomly check the results offered 

by BN as a result of considering the evidence of n-1 

variables and see if the nth (THSW in Fig. 6) has the same 

value as in the data base accordingly. 

 

 

Fig. 6 Randomly setting the evidence for n-1 variables 

and checking if the n
th

 (e.g. THSW) has the same 

value like in data base 
 

A more elegant method is to use specific methods for 

error checking based on: 

- general accuracy which is a numerical (%) result 

showing how many records are correctly estimated 

by the network from the total; for the BN in Fig. 4, 

maximum accuracy is 0.8553 for wind speed 

between 10-12 [m/s] (class s3) and 0.5416 for solar 

irradiance higher than 684 [W/m2] (class s4); 

- confusion matrix [19] shows the same result in terms 

of the number of records correctly and incorrectly 

classified; 

- Receiver Operating Characteristic - ROC for each of 

the states of each of the class variables [19]. Fig. 7 

shows the ROC for the class s3 of wind speed and 

associated value for AUC – Area Under ROC while 

Fig. 8 includes the same information but for class s4 

of solar irradiance; 

- calibration characteristic could an important measure 

of performance of a probabilistic model [19]. 

 

3.1. Dynamic Bayesian network analysis 

 

A time step analysis for the BN is a complex one 

from computing time and computer resources even in the 

case of a relative simple BN like in Fig. 4. 

 

Fig. 7 ROC for class s3 [10-12 m/s] of wind speed and 

AUC=0.7298 
 

 
Fig. 8 ROC for class s4 [up 684 W/m2] of solar 

irradiance and AUC=0.6974 

 

The DBN was analyzed for a few months due to 

computer limitations, especially the memory [18]. The 

authors used an Intel® Core™ i3-2120 CPU @ 3.30 

GHz, 64-bit operating system, x64-based processor with 

4.00 GB installed RAM.  

The BN given in Fig. 4 was generated using the full 

database records. The corresponding unrolled BN is 

depicted in Fig. 9 and it was obtained following the 

technique indicated in Fig. 2 for 5 monthly time steps. 

Solar irradiance and wind speed were the target 

variables for which the corresponding dynamic class 

probabilities are showed in Fig. 10. 

These conditional time-dependent probabilities of 

renewable resources allow computing the corresponding 

power generated by given renewable sources. 
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Fig. 9 The unrolled BN (first time step) 

 

 

 

Fig. 10 The dynamic conditional probabilities for 

wind speed and solar irradiance generated by DBN 
 

Details about the probabilities dynamic are given in 

Fig. 11 and Fig. 12 for wind speed and solar irradiance 

respectively. 

The power generated by wind source is given by: 

 

][
2

1 3
WvAcPwind ⋅⋅⋅= ρ

       (8) 

where c is the generator efficiency,  ρ is density air 

[kg/m
3
], A  is the generator area perpendicular to the wind 

[m
2
] and v is the wind speed [m/s]. 

For a solar panel, the power generated is given by: 

 

][ prsolar WPHrSP ⋅⋅⋅=
       (9) 

where S is total solar panel area [m
2
], r is solar panel 

yield or efficiency [%], H is the solar irradiance [W/m2], 

Pr is performance ratio (range between 0.5 and 0.90. 
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Using Eq. 8 and Eq. 9 together with probability 

distributions of renewable resources class variables we 

can get the corresponding distributions of power (and the 

corresponding energy) generated by renewable sources.   

 

4. CONCLUSIONS 
 

DBN are a suitable instrument for weather forecast 

and the associated renewable resources availability. The 

time distribution probabilities for wind speed and solar 

irradiance allow calculating the expected power/energy 

generated. 

Future work has to be dedicated to a more precise 

date-driven BN structure and DBN’ better adjusted time 

intervals network.  

More sophisticated algorithms like PC, NPC, 

Essential Search Graph, Greedy Thick Thinning, etc., 

fitting the database are available. 

A computer with high resources, from which at least 

8-16 GB RAM is necessary for a yearly, or more, 

extended DBN analysis. 

The aim is to find a good BN structure for weather 

forecast (which is not a simple task) and estimate the 

available energy from renewable sources adapted to 

costumers needs. 
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