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ABSTRACT 

In this study, we formulate and compare two different Lagrangean 

relaxation-based decompositions for multicommodity network problems 

with penalized constraints. These problems are different versions of 

capacitated multicommodity network problems where capacity 

constraints can be violated for additional penalty costs. These costs are 

reflected as nonlinear terms in the objective function; hence, these 

problems turn out to be nonlinear mixed-integer optimization problems. 

To the best of our knowledge, there is no exact solution algorithm for this 

type of problem. We propose two kinds of Lagrangean relaxation-based 

decompositions and solve these problems with the subgradient algorithm. 

The resulting subproblems are easy to solve and the proposed algorithms 

can reach reasonable solutions where CPLEX solver cannot even find a 

solution. In the study, we also conduct a computational analysis where 

we compare two relaxations over various performance measures. Even 

though two relaxations present similar performances in terms of 

computation times and the number of iterations, we observed that 

Relaxation 1 statistically outperforms Relaxation 2. 

Keywords: Multicommodity Network Design Problem, Lagrangean 

Relaxation, Subgradient Algorithm, Decomposition. 
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KAPASİTE İHLALLİ ÇOKLU MAL ŞEBEKE DİZAYN PROBLEMİ 

İÇİN LAGRANGEAN GEVŞETMESİ TABANLI BİR ÇÖZÜM 

YAKLAŞIMI 

ÖZ 

Bu çalışmada, cezalandırıcı kısıtlara sahip çoklu mal şebeke problemi için 

Lagrangean gevşetmesi tabanlı iki farklı ayrıştırma yaklaşımı formüle 

edilmekte ve karşılaştırılmaktadır. Bu problemler kapasite kısıtlarının ilave 

bir ceza maliyeti ile ihlal edilebilediği kapasite kısıtlı çoklu mal şebeke 

problemlerinin farklı versiyonlarıdır. Bu maliyetler amaç fonksiyonuna 

doğrusal olmayan terimler olarak yansıtılmakta, bu kapsamda bu 

problemler doğrusal olmayan karışık tam sayılı eniyileme problemlerine 

dönüşmektedir. Bilgimiz dahilinde, bu tip problemlerin çözümü için 

herhangi bir kesin çözüm algoritması bulunmamaktadır. Bu problemler için 

iki farklı Lagrangean gevşetmesi tabanlı ayrıştırma teklif etmekte ve 

gradyant altı algoritması ile çözmekteyiz. Ortaya çıkan alt-problemler 

kolaylıkla çözülebilmekte ve önerilen algoritmalar CPLEX çözücünün 

herhangi bir çözüm bile bulamadığı durumlar için makul sonuçlar elde 

etmektedir. Çalışmada ayrıca bu iki gevşetmenin farklı performans 

metrikleri bazında karşılaştırmasının yapıldığı bir hesaplamalı analiz de 

yapmaktayız. Her ne kadar iki gevşetme de çözüm süresi ve iterasyon adedi 

açısından benzer performanslar gösterse de Gevşetme 1’nin istatistiksel 

olarak Gevşetme 2’den daha üstün olduğunu gözlemledik.  

Anahtar Kelimeler: Çoklu Mal Şebeke Dizayn Problemi, Lagrangean 

Gevşetmesi, Gradyan Altı Algoritması, Ayrıştırma. 
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1. INTRODUCTION 

Multicommodity network flow (MCNF) problems are used extensively in 

operations research or management applications such as production 

scheduling and planning, transportation, and routing where more than one 

commodity is to be shipped over a network from a designated origin node to 

a destination node. There are mainly three types of MCNF problems: max 

MCNF problem, the max-concurrent flow problem, and min-cost MNCF 

problem (Wang, 2018a). In max MCNF problem sum of all flows of 

commodities is aimed to be maximized. Max-concurrent flow problem 

maximizes the percentage of satisfied demands of all commodities. Min-

cost MCNF, on the other hand, aims to satisfy all demands for all 

commodities by finding a feasible assignment of flows to arcs. For this 

problem type, the major variant is incapacitated MCNF where there are no 

capacity limits enforced for arcs. 

Even though min-cost MCNF models arise in different forms, two of them 

are mostly seen. These are network routing and network design problems 

(Wang, 2018a). Network routing problems seek a feasible assignment of 

flows to arcs for all commodities with a minimum cost without violating the 

capacity constraints of arcs. Network routing problems are usually seen in 

telecommunication and warehouse management applications (Yousefi 

Nejad Attari et al., 2020). In network design problems, we design a network 

on a given graph by determining which arcs to include in the network and 

the amount of flow on a given arc by satisfying the demands of all 

commodities. In capacitated version, the capacities of arcs cannot be 

violated. Network design problems have numerous applications in 

transportation, postal services, and telecommunication (Ghaffarinasab et al., 

2020). 

In this study, we consider a min-cost multicommodity network design 

problem where arc capacities can be violated for a penalty cost. The penalty 

cost for excess flow on an arc is reflected in the objective function on 

quadratic form; hence, the problem turns out to be a nonlinear mixed-integer 

multicommodity network flow problem. As Bektaş et al. (2010) remark, 

there is no exact solution method for this type of problem. In this respect, 

we consider two types of Lagrangean-based decompositions, one of which 
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was proposed by Bektaş et al. (2010) as flow decomposition. These 

decompositions yield subproblems that can be solved efficiently compared 

to the original problem. To find solutions for these decompositions, we 

employ a subgradient algorithm. With this study, we aim to contribute to the 

MNCF literature by introducing various solution techniques.  

The study is organized as follows: Section 2 provides a literature review for 

the problem. In section 3 we formulate the problem and present two 

different decompositions. Additionally, we give details of the algorithm 

based on subgradient optimization in this section. Section 4 gives details of 

an empirical study conducted for comparing two decompositions on a test 

set. Finally, we conclude in Section 5.  

2. LITERATURE REVIEW 

Being very popular among many scheduling, routing, and transportation 

applications, MNCF problems are well studied in the literature. In his paper, 

Wang (2018a) surveys the last three decades and provides a summary for 

applications and various mathematical formulations for MCNF problems. 

Focusing mainly on min-cost MCNF problems, he remarks that most of the 

MCNF problems are formulated as network routing and network design 

problems. In his follow-up paper, Wang (2018b) surveys MCNF solution 

methods that are proposed in the literature. He classifies solution methods 

as; primal and dual-based solution methods, approximation methods, 

interior-point methods, and convex programming methods.  

Among solution approaches, Holmberg and Yuan (2000) propose a branch 

and bound algorithm for knapsack relaxation of the multicommodity 

capacitated network design problem. Utilizing a subgradient algorithm 

having additional features such as special penalty tests and cutting criteria, 

they show that they obtain optimal solutions in very short computation times 

with respect to commercial software packages. Regarding the Lagrangean-

relaxation approach, Crainic et al. (2001) studied different relaxation 

techniques for large-scale capacitated MCNF problems. They propose two 

types of relaxations for the problem: by relaxing the capacity constraints 

they get a shortest path relaxation and by relaxing the network flow 

constraints they get knapsack relaxation. They utilize a bundle-based 
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algorithm and subgradient method for solving them. They remark that both 

solution approaches perform well provided that the subgradient method is 

tuned properly. Costa (2005) focuses on applications of Benders 

decomposition to MCNF network design problems and presents a review of 

these applications. Katayama et al. (2009) propose a capacity scaling 

heuristic by utilizing a column generation and row generation technique for 

solving multicommodity capacitated network design problems. Combining 

row and column generation techniques, their proposed heuristic generates 

high-quality results based on computational experiments involving 196 

problem instances. Alysson et al. (2009) compare three sets of inequalities 

that are used for strengthening the multicommodity capacitated network 

design problem formulation. They show that theoretical results apply to any 

network design problem for which feasible solutions are obtained by solving 

subproblems. Karsten et al. (2015) study a multicommodity network flow 

problem where a time constraint is imposed and apply it to a liner shipping 

network design case. The problem imposes time limits on the duration of the 

transit of the commodities through the network. They remark that ignoring 

time constraints results in significant differences in revenues compared to 

solving the same problem while these constraints are imposed. Considering 

that time constraints make the problem more complex, they propose an 

algorithm to reduce computation times. They show that the proposed 

technique solves the problem in reasonable times. Moradi et al. (2015) 

present a column generation algorithm for solving a bi-objective problem. 

Their approach is based on bi-objective simplex and Dantzig-Wolfe 

decomposition. They start the methodology by solving a single objective 

MCNF problem with Dantzig-Wolfe decomposition. Afterward, the 

algorithm moves from one non-dominated extreme point to another, as in 

simplex until there is no entering variable left. Gendron and Gouveia (2016) 

consider the piecewise linear multicommodity network design problem with 

an additional constraint enforcing that the total flow on each arc must be an 

integer. These types of problems are common in transportation and logistics 

because the total flow might be represented with vehicles or containers. 

They propose a formulation by using discretization which is commonly used 

in mixed-integer programming. They develop a Lagrangean relaxation 

solution approach and show that their approach is efficient and effective. 

Chouman et al. (2018) propose a novel branch-and-cut algorithm for solving 
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multicommodity capacitated fixed charge network design problem. They 

incorporate several filtering methods to the algorithm that exploits the 

structure of the problem. Thus, they inhibit combinations of values of some 

variables. They show that filtering significantly improves the performance 

of the branch-and-cut algorithm. Oğuz et al. (2018) consider restricted 

continuous facility location problems where location of a facility can be 

anywhere on the planet except for in restricted regions. They model the 

problem as a MCNF problem and propose Benders decomposition algorithm 

to find the optimal solution to the model. They conduct computational 

experiments and show that the proposed method outperforms commercial 

solvers.  

Among newer studies dealing with MNCF problems, Anisi and Fathabadi 

(2019) consider the survivable multicommodity network design with node 

capacities and flow restrictions. Being a variant of the multicommodity 

network design problem, these problems aim to minimize the cost of failure 

in addition to design cost. The design aims to ensure a feasible flow in case 

of a simultaneous failure on arcs. They utilize Benders decomposition to 

solve the problem as well as a new approach that considers particular failure 

scenarios. Guimaraes et al. (2020) studied a variant of the MNCF problem 

where multiple transport lines and time windows are considered. They 

proposed two mixed-integer programming models and two objective 

functions, in particular, minimization of network operational costs and 

minimization of travel times. Trivella et al. (2021) studied a generalization 

of MCNF where transit time restrictions are modeled as soft constraints and 

delays are penalized. Kazemzadeh et al. (2021) introduced node-based 

Lagrangian relaxation where the resulting subproblem decomposes by 

nodes.  

There are not many studies that deal with nonlinear integer multicommodity 

network design problems. Crainic and Rousseau (1986) study a nonlinear 

mixed-integer multicommodity network flow problem. They present an 

algorithm combining heuristics and optimization. Belotti et al. (2007) 

consider a multicommodity network design problem with discrete node 

costs. Costs are defined as stepwise functions of facilities installed at these 

nodes. They propose a branch-and-cut algorithm for solving the problem. 

Bektaş et al. (2010) propose Lagrangean-based decomposition algorithms 
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for multicommodity network design problems where arc capacities can be 

violated at the expense of a penalty. This penalty adds nonlinear cost to the 

min-cost objective function. They propose two decompositions: flow 

decomposition that is obtained by relaxing capacity constraints, and arc 

decomposition that is obtained by relaxing flow constraints. They show that 

with the help of a special algorithm developed to solve subproblems in arc 

decomposition, arc decomposition performs better in terms of convergence 

but worse in terms of computation time and the number of iterations. 

Paraskevopoulos et al. (2016) study a variant of fixed-charge 

multicommodity network design problem having additional congestion 

costs. They model the problem as a nonlinear integer programming model, 

and they propose two solution approaches. The first solution approach is the 

reformulation of the problem as a mixed-integer second-order cone 

program. The second uses an evolutionary algorithm combining iterated 

local search and scatter search. They remark that the first solution approach 

provides satisfactory results provided that conic representations of nonlinear 

terms are available. Additionally, they observe that the evolutionary 

algorithm is not only satisfactory but also achieves good quality solutions in 

short computational times.  

For a recent survey regarding classification, applications, and solution 

methods of MNCF problems, the interested reader is referred to Salimifard 

and Bigharaz (2020).  

3. PROBLEM FORMULATION AND OPTIMIZATION WITH 

LAGRANGEAN RELAXATION 

We formulate the min-cost multicommodity network flow problem with 

capacity violations in harmony with the definition of Bektaş et al. (2010). 

We have a graph of         where   corresponds to set of nodes and   

corresponds to set of arcs. Two different sets   
                 and 

  
                 are defined for each node. We have a set of 

commodities  . In this respect, we formulate the problem as follow: 

Parameters: 

   : Upper bound on the amount of excess flow on each arc 
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   :  Fixed cost of activating a network 

  : Quantity of commodity   that is to be sent from      to       

  
     if       ,   

      if        

   
    The unit cost of routing the demand for commodity   over arc       

   : Capacity of arc       

   : Penalty cost for excess flow on arc       

 

Decision Variables: 

   
   The amount of commodity   flowing on arc       where    

    

   : Design variable for selecting arc       where           

   : Excess flow on arc       where      . 

 

The Model: 

                     ∑    
       

    ∑ ∑    
 

          

   
 

 ∑         
 

       

 
(1) 

 

 

            

∑    
  

    
 

∑    
 

    
 

   
 
          (2) 

   
                      (3) 

∑    
  

   

                    (4) 
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                    (5) 

   
                                   (6) 

The penalty term      
  adds nonlinearity to the formulation. This term is 

quadratic in our formulation, however, the power of this term could be cubic 

or higher, as well (Bektaş et al., 2010). Constraint (2) is the flow 

conservation constraint, Constraint (3) ensures that flow of an arc is positive 

provided that it is selected, Constraint (4) enforces that total flow on an arc 

should be less than and equal to the sum of the capacity of that arc and 

excess flow on that arc, Constraint (5) imposes that maximum amount of 

excess flow on an arc cannot be more than a predefined value and can be 

positive unless it is selected. 

This problem is a nonlinear mixed-integer problem and as Bektaş et al. 

(2010) remark, there exists no exact solution method proposed in the 

literature. In this respect, we define two different Lagrangean relaxations for 

the problem. Lagrangean relaxation aims to get rid of complicating 

constraints by adding them to the objective function by multiplying them 

with Lagrengean multipliers so that the resulting problem can be partitioned 

into small subproblems which can be solved relatively easily. The 

Lagrangean relaxation approach is classified as price-directive methods 

since Lagrangean multipliers place prices on the dualized constraints (Ahuja 

et al., 1993). In this respect, this technique aims to find proper prices so that 

an optimal solution to the Lagrangean subproblem provides a solution to the 

main problem. 

3.1. Relaxation 1 

This relaxation is proposed by Bektaş et al. (2010) and obtained by relaxing 

capacity constraints (Constraint sets (3) and (4)). By defining Lagrangean 

variables    
 

 and     for these constraint sets respectively, we formulate the 

relaxed problem as follows. 
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                  ∑      

       

∑    
 

   

             

 ∑ ∑    
     

      

          

   
 

 ∑ [        
        ]

       

 

(7) 

                                                      (2), (5), (6) (8) 

We can decompose       into two subproblems. The first subproblem is 

defined over   and   variables. As shown by Bektaş et al. (2010), this 

problem can be solved by inspection. 

                  ∑      

       

∑    
 

   

                      
 

        

      (9) 

                                                      (5)   (10) 

We define the second problem over   variables as shown below. 

                   ∑ ∑    
     

      

          

   
 

 (11) 

                                                      (2) (12) 

This problem can be decomposed into     single commodity minimum cost 

network problems. We know that this problem is well-solved in the sense 

that an efficient algorithm is known. We can use the shortest path algorithm 

to solve each of these problems. 

3.2. Relaxation 2 

The second relaxation dualizes constraint sets (3), (4), and (5). We define 

nonnegative Lagrangean variables    
 

,    , and     for these constraint sets 

respectively and formulate the relaxed problem as follows. 
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                  ∑      

       

       ∑    
 

   

             

 ∑ ∑    
     

      

          

   
 

 ∑ [        
              ]

       

 

(13) 

                                                      (2) (14) 

This problem can be decomposed into 3 subproblems. The first problem is 

defined over   variables. 

                   ∑ ∑    
     

      

          

   
 

 (15) 

                                                      (2) (16) 

This subproblem decomposes into a set of minimum cost network flow 

problems for each commodity  . Therefore, we need to solve     minimum 

cost network flow problems. 

The second subproblem is defined over   variables and formulated as 

follows. This problem is an unconstrained binary optimization problem and 

can be solved by inspection easily. 

                  ∑      

       

       ∑    
 

   

              (17) 

The last subproblem is defined over   variables. 

                   ∑ [        
              ]

       

 (18) 

This problem is a quadratic nonlinear programming problem. Since     

nonnegative, this is a convex function with a unique minimum. That is, the 

second derivative is positive and thus the solution to the first derivative 

gives the unique minimum. Therefore, this problem is easy to solve, too 

(Bektaş et al., 2010).  
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3.3. Optimization with Subgradient Algorithm 

The subgradient algorithm is an easy and simple technique to solve non-

differentiable Lagrangean multiplier problems. For a given set of 

multipliers, the relaxed problem provides a Lower Bound (LB) for the 

original problem. To obtain an Upper Bound (UB), problem   is solved 

while       is fixed to         where these values correspond to the 

solution to the relaxed problem. In this case, the resulting problem turns out 

to be a linear programming problem. The subgradient algorithm is shown in 

Figure 1. 

Define: 

 :   Number of iterations 

  : Step size at each iteration 

            : Optimal objective values for            , respectively. 

   : Optimal objective value for the Lagrangean problem. 

   (
   

 

   
 ) : Vector of Lagrangean multipliers for Relaxation 1. 

   (

   
 

   
 

   
 

)  Vector of Lagrangean multipliers for Relaxation 2. 

   (

    
 

   
 

   
 

): Vector of subgradients for             , respectively.  

1. Initialize       

2.       and      

3.      

4. While     
     

  
   do 
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 4.1 Solve Lagrangean dual 

  4.1.1 Solve    , get  ̅   and  ̅   (Relaxation 1) 

Solve    , get  ̅  
 

 (Relaxation 2) 

  4.1.2 Solve    , get  ̅  
 

 (Relaxation 1) 

Solve    , get  ̅   (Relaxation 2) 

  4.1.3 Solve    , get  ̅   (Relaxation 2) 

 4.2             (Relaxation 1) 

                 (Relaxation 2) 

 4.3 If        then 

          

 4.4 Solve        ̅        ̅                     and get   
     

  
 

 4.5      
  ∑    

       

                      
 

        ∑    
     

   

 

 4.6 Calculate subgradients 

  4.6.1      
   ̅  

     ̅                     

   
  ∑    

 

   

     ̅    ̅                  

   
   ̅       ̅                

   (
    

 

   
 ) (Relaxation 1) 
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   (

    
 

   
 

   
 

) (Relaxation 2) 

 4.7 Calculate step length 

    
      

‖  ‖ 
 

 4.8 Update Lagrangean multipliers 

             

 4.9       

5. End while 

Figure 1. Subgradient algorithm for the relaxations. 

Simplicity of the subgradient algorithm has made it a popular option for 

solving Lagrangean multiplier problems. At each iteration, the algorithm 

takes a small step from the current point in the direction opposite to a 

subgradient. The most important parameter in the algorithm is the step 

length. One option is to use a constant step length. This option guarantees 

convergence; however, the convergence is too slow. In this respect, we 

employ a dynamic step length which provides faster convergence (Wolsey, 

1998). 

4. COMPUTATIONAL ANALYSIS 

We have performed a computational analysis to compare the performances 

of these two relaxations. For this purpose, we used the first 36 instances 

defined in Crainic et al. (2001) which are also used by Bektaş et al. (2010). 

As done by Bektaş et al. (2010), we reduced capacities of arcs in the 

instances as    
        and set penalty costs     to twice the flow cost of 

each arc. Subproblems are solved by using IBM ILOG CPLEX 12.5. 

Additionally, original problem is solved with IBM ILOG CPLEX 12.5 to 
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evaluate lower bounds achieved. For both relaxations, subgradient algorithm 

is stopped whenever the gap does not improve for 30 consecutive iterations. 

The algorithm is coded with Java and run using an Intel Core i7 2.6 GHz. 8 

GB RAM computer. Computational results are shown in Table 1. 

Table 1. Computational results. 

    
Relaxation 1 Relaxation 2 

Inst. N A P      i     t                     i    t              

1.1 10 35 10 128 6.90 0.67 0.67 154 5.10 0.24 0.24 

1.2 10 35 10 29 3.14 2.63 0.62 50 3.34 1.80 1.01 

1.3 10 35 10 14 1.83 16.61 6.43 22 1.89 9.34 4.99 

1.4 10 35 10 18 1.87 29.19 - 18 1.78 28.81 - 

1.5 10 35 10 81 3.84 35.86 31.56 94 4.37 33.86 32.22 

1.6 10 35 10 95 5.52 27.31 - 92 3.90 27.24 - 

2.1 10 35 25 25 3.57 53.78 48.02 22 2.98 19.90 18.48 

2.2 10 35 25 102 5.56 71.63 - 102 5.56 32.93 - 

2.3 10 35 25 64 6.54 67.94 65.30 62 4.31 41.91 40.53 

2.4 10 35 25 33 4.30 72.78 54.32 43 3.125 45.55 45.16 

2.5 10 35 25 52 5.38 70.66 52.72 37 3.57 50.01 49.48 

2.6 10 35 25 33 4.04 60.20 42.06 117 7.20 40.46 39.94 

3.1 10 35 50 25 4.71 70.92 48.45 33 6.45 37.56 35.02 

3.2 10 35 50 32 5.29 63.56 31.45 100 10.09 32.98 32.04 

3.3 10 35 50 52 8.57 69.43 - 77 6.187 39.29 - 

3.4 10 35 50 32 5.59 75.27 52.97 31 3.39 56.93 53.56 

3.5 10 35 50 48 5.76 67.75 47.43 85 5.62 45.67 44.53 

3.6 10 35 50 52 6.52 50.27 - 149 11.25 36.99 - 

4.1 10 60 10 44 4.33 6.99 3.50 67 6.00 11.33 0.66 

4.2 10 60 10 27 3.44 19.61 10.17 23 2.10 12.39 0.98 

4.3 10 60 10 132 5.92 9.25 14.45 178 6.60 8.49 8.49 

4.4 10 60 10 45 4.53 4.87 0.32 46 3.26 8.36 1.07 

4.5 10 60 10 150 6.63 8.81 7.45 34 2.73 12.83 0.47 

4.6 10 60 10 17 2.56 38.86 12.78 70 3.85 32.25 13.10 

5.1 10 60 25 41 5.64 28.01 17.39 37 4.2 20.32 12.61 

5.2 10 60 25 115 13.2 20.38 7.73 34 3.73 20.29 3.11 

5.3 10 60 25 70 7.41 50.30 10.85 59 5.14 15.54 10.24 

5.4 10 60 25 45 4.32 74.49 - 45 4.32 22.79 - 

5.5 10 60 25 44 5.69 67.46 - 59 5.73 49.68 - 

5.6 10 60 25 54 6.2 60.84 - 48 3.406 58.12 - 

6.1 10 60 50 34 7.12 67.38 23.22 88 12.39 27.15 22.87 

6.2 10 60 50 62 11.8 63.52 - 44 7.03 35.69 - 



A Lagrangean Relaxation-based Solution Approach for Multicommodity 

Network Design Problem with Capacity Violations 

 

- 257 - 

 

 

 

6.3 10 60 50 74 14.02 40.25 - 69 5.68 25.77 - 

6.4 10 60 50 34 5.54 81.09 - 84 15.17 36.33 - 

6.5 10 60 50 42 7.24 75.78 - 82 13.23 40.62 - 

6.6 10 60 50 69 7.76 77.51 - 69 7.77 37.46 - 

 

In Table 1, columns 2-4 correspond to the size of the instance in terms of 

the number of arcs, nodes, and commodities, respectively. Next two main 

columns present results for Relaxation 1 and 2. Under these columns, we 

provide the number of iterations performed for solution ( ), computation 

time (CPU time) of the algorithm in seconds ( ), gap value (in %) calculated 

based on UB and LB difference (  ) and gap value (in %) calculated based 

on optimal value achieved by CPLEX solver and LB difference (  ). The 

dashed lines under the last columns indicate those instances for which 

CPLEX cannot obtain optimal values. As clearly seen, CPLEX fails to find 

an optimal solution for 13 problems (36% of the problem set). As problem 

size increases, the performance of the CPLEX decreases, as expected. Table 

1 indicates that computation times for both relaxations are less than a 

minute (maximum being 16 seconds) while we observe a slight increase as 

problems get more complex. To compare performances of these two 

relaxations visually, we plot performance measures vs. instances as shown 

in Figures 2-5. The gap    is computed and graphed only for those instances 

that CPLEX solves optimally. 

 

-Continuation of the Table 1. 
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Figure 2. Number of iterations vs. instances. 

 

 

Figure 3. CPU times (in seconds) vs. instances. 
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Figure 4. Gaps (  ) vs. instances. 

 

 

Figure 5. Gaps (  ) vs. instances. 
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5. CONCLUSION 

In this study, we consider a min-cost multicommodity network design 

problem where arc capacities can be violated for a penalty cost. When the 

penalty term is quadratic or has higher power, the problem turns out to be a 

nonlinear mixed-integer problem that does not have an exact solution 

method proposed in the literature. To solve this problem efficiently, we 

consider two different Lagrangean relaxations which decompose the 

original problem into smaller and easy to solve subproblems. One of these 

relaxations was proposed by Bektaş et al. (2010). We propose another 

relaxation and compare this relaxation with the former one. We 

implemented a computational study over a set of instances and solved these 

instances with the CPLEX solver and two relaxation approaches. Our 

computational study has shown that the CPLEX solver cannot obtain a 

solution for %36 of the test instances while two relaxation-based approaches 

achieve solutions with reasonable gaps. We also observe from the 

computational study that, our relaxation (Relaxation 2) outperforms that of 

Bektaş et al. (2010) (Relaxation 1) in terms of performance measures gap    

and gap   . Hence, this relaxation can be used for solving aforementioned 

problems which do not have exact solution methods and cannot be solved 

by on-the-shelf optimizers efficiently. 

We used a subgradient algorithm to optimize the Lagrangean problem. One 

of the drawbacks of this algorithm is that it requires fine-tuning of 

parameters to achieve satisfactory results. Particularly, we observed that 

parameter   that is used to calculate step length should be tuned carefully 

and values varying between 0.05 and 0.9 provide good results. Additionally, 

initial values of Lagrangean multipliers have a dramatic impact on the 

performance of the algorithm. Hence, as future work, a starting heuristic 

that will find suitable parameter settings would increase the performance of 

the algorithm.  

As we stated previously, gap    improves better than the gap    as problem 

size increases. This result indicates that we need to have a better procedure 

to generate UBs for the algorithm. Therefore, this could be another future 

work for this study. 
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