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ABSTRACT 

The clutter problem in ground penetrating radar (GPR) images highly 

effects the peformance of target detection ratio. Various methods have been 

proposed for clutter suppression purposes in the GPR literature. They can 

be mainly grouped as low rank, low rank and sparse and tensor-based 

decomposition methods. Principal component analysis (PCA) and robust 

principal component analysis (RPCA) are classicle approaches and could 

be classified as low rank and low rank/sparse decomposition methods, 

respectively. Recently proposed tensor-based methods provide an 

alternative perspective of solving the low rank and sparse decomposition to 

handle challenging situations such as shallowly buried objects or rough 

surface situations. Motivated by the performance of Tensor-based methods, 

we propose a new pre-transformation step for tensor robust principal 

component analysis (TRPCA) and compare it with the PCA and RPCA 

methods over a simulated GPR dataset. Our proposed method outperforms 

the classical PCA and recent RPCA methods both visually and 

quantitatively in terms of clutter removal. 

Keywords: Ground Penetrating Radar (GPR), Principal Component 

Analysis (PCA), Robust PCA (RPCA), Tensor RPCA (TRPCA), gprMax. 
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YNR GÖRÜNTÜLERİNDE KARGAŞANIN BASTIRILMASI İÇİN 

ÖZGÜN TENSÖR GTBA METODU 

ÖZ 

Yere nüfuz eden radar (YNR) görüntülerinde kargaşanın varlığı hedef tespit 

oranını büyük ölçüde etkilemektedir ve kargaşanın bastırılması için birçok 

yöntem önerilmiştir. Bu yöntemler temel olarak alçak sıra, alçak sıra ve 

seyrek ve tensör ayrıştırma yöntemleri olarak gruplanabilir. Temel bileşen 

analizi (TBA) kargaşa bastırma yöntemler arasında ilk akla gelen yöntemdir 

ve alçak sıra ailesinde yer alır. Daha sonra, bu yöntem alçak sıra ve seyrek 

ayrıştırma yöntemi olarak gürbüz temel bileşen analizi (GTBA) adıyla 

geliştirilmiş ve yüzeye yakın gömülen hedefler ve pürüzlü yüzeyler gibi zorlu 

durumlarla başa çıkabilir hale gelmiştir. Son zamanlarda önerilen tensör 

tabanlı yöntemler alçak sıra ve seyrek ayrıştırma problemine alternatif 

çözümler sağlamaktadır. Bu yöntemlerin sonuçlarından motive olarak, yeni 

bir ön-dönüşüm adımı ile tensör gürbüz temel bileşen analizi (TGTBA) 

yöntemi önerilmiştir ve önerilen yöntem TBA ve GTBA yöntemleri ile 

benzetim veri seti üzerinden karşılaştırılmıştır. Önerdiğimiz yöntem klasik 

TBA ve yeni önerilen GTBA yöntemlerine karşı hem görsel hem de sayısal 

olarak üstünlük sağlamıştır. 

Anahtar Kelimeler: Yere Nüfuz Eden Radar (YNR), Temel Bileşen Analizi 

(TBA), Gürbüz TBA (GTBA), Tensör GTBA (TGTBA), gprMax. 
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1. INTRODUCTION 

Ground-penetrating radar (GPR) is an effective and nondestructive 

geophysical tool for near surface applications and it is widely used for 

buried object detection. GPR sends radar pulses and uses the 

electromagnetic properties of the penetrated materials (dielectric 

permittivity, electrical conductivity and magnetic permeability) to image the 

subsurface. The received signal in one iteration constitutes the A-scan which 

is a 1D signal and concatenation of A-scans constitutes the B-scan or GPR 

image (Daniels, 2005). 

 

The major problem in the obtained GPR image is that the target signature is 

obscured by the clutter. The clutter can be arisen from several reasons such 

as ground-bounce, direct-wave arrival, presence of other candidate objects 

and environmental factors. To increase the detection probability, the clutter 

effect has to be suppressed. For this purpose, various methods are proposed 

and we can divide them into 4 major groups as low rank decomposition 

based methods (Verma et al., 2009), multi-resolution based methods 

(Kumlu & Erer, 2018; Kumlu, Erer, & Kaplan, 2020b), low rank and sparse 

decomposition based methods (Tivive, Bouzerdoum, & Abeynayake, 2019; 

Kumlu & Erer, 2020a) and tensor decomposition based methods (Song et 

al., 2019). The first three groups are widely studied in the literature (Verma 

et al., 2009; Kumlu & Erer, 2018; Kumlu & Erer, 2020a) and many methods 

are proposed. The latest one (Song et al., 2019) is a new subject and it is 

now trending topic. 

 

The most popular method for clutter removal is principal component 

analysis (PCA) which belongs to low rank based methods (Abujarad & 

Omar, 2006). It is used to decompose GPR image into many sub-images 

which equal to the number of A-scans. The sub-image belongs to the most 

significant eigenvector corresponds to the clutter component and the sum of 

remaining sub-images constitute the target component. The main problem of 

PCA is that it cannot remove clutter well enough if the target is shallowly 

buried or the surface of the ground is rough.  
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The robust principal component analysis (RPCA) is a low rank and sparse 

decomposition based method (Song et al., 2017). It exploits the low rank 

property of clutter and sparse property of target. After the decomposition by 

RPCA, the obtained low rank part corresponds to clutter component and the 

sparse part corresponds to target component.  It shows superior performance 

compared to the classical PCA method however it still have some trouble 

during shallowly buried objects and rough surfaces. 

 

The tensor robust principal component analysis (TRPCA) is recently 

proposed in GPR image decomposition (Song et al., 2019) and it exploits 

the advantage of multidimensional tensor and provides an alternative 

perspective of solving the low rank and sparse decomposition problem. In 

(Song et al., 2019), they are using low and high frequency filtering results of 

the GPR image to create an image tensor. The aim is to contain the spatial 

characteristics and spectral information during the GPR image 

decomposition. In our proposed method, we divide the GPR image into 

patches thus image-patch tensor is constructed. Each patch corresponds to 

the related A-scan and it keeps the structural information as patch-image. 

This procedure is a pre-transformation step. Then, TRPCA method is used 

and it effectively decomposes to GPR image into its clutter and target 

component. 

 

The rest of the paper is organized as follows. Section 2 introduces a 

methodology for GPR clutter suppression method. Results for simulated 

datasets as well as comparisons with PCA and RPCA are presented in 

section 3. Concluding remarks are given in section 4. 

2. METHODOLOGY 

PCA is the traditional matrix decomposition method and it is extensively 

used for clutter suppression in GPR. The GPR image is a two dimensional 

matrix denoted by        where M and N represent the time and 

distance index, respectively. PCA decomposes X into sum of low rank 

component L and noise component N, i.e.,      . The PCA method 

searches for the best rank-k estimate of X by minimizing the following cost 

function (Wold, Esbensen & Geladi, 1987). 
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    ‖   ‖ 
                                         (1) 

 

Here F refers to Frobenius norm.  For the decomposition subspace, the most 

dominant component (the highest eigenvalue) equals to the clutter image 

and sum of the rest equals to target image in practical. 

 

However, the well-known PCA method cannot efficiently decompose the 

GPR image if there is severe clutter present which generally corresponds to 

the field data. To overcome this drawback, the robust version of PCA is 

proposed which is called as RPCA.  

 

The aim of the RPCA method is to find a low rank approximation as well 

a sparse approximation (Candès et. al, 2011) of the GPR image X  where 

the low rank component denotes L, and the sparse component denotes S. 

Thus, the cost function of RPCA is 
 

      ‖ ‖   ‖ ‖                      (2) 

 

Where‖ ‖ ,  ‖ ‖ , and   denote the matrix nuclear norm of L, L1-norm of S 

and the regularization term, respectively. The main motivation of the cost 

function in (2) is the nuclear norm and L1-norm provides the tightest 

convex relaxation for the rank of input matrix and L0-norm. 

 

RPCA method shows superior performance compared to the classical PCA 

method, however, it still has some trouble for the severe clutter case. In the 

literature, the tensor based methods are proposed to provide an alternative 

solution for the low rank and sparse decomposition for multi-dimensional 

data and it exploits the information where contained in different dimensions. 

Tensor RPCA or known as TRPCA which is effectively applied to video 

processing, seismic denoising, and target detection problems (Lu et al., 

2019). 

 

To apply TRPCA, the pre-transformation step is necessary for GPR image 

which is the novelty of our work. In order to construct the multi-

dimensional data, we divide the GPR image into r r patches. As a result, 

the GPR image        is converted into          to construct the 
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image-patch tensor. In our problem, the parameter r is selected as √  since 

the length of the A-scans are equaled to M. Thus, the relation between each 

A-scans are modeled as image-patch tensor and A-scans are converted to 2D 

form by reshaping column vector with length   into √  √   image.  

 

The cost function for TRPCA is 

 

      ‖ ‖   ‖ ‖                                        (3) 

 

Where ‖ ‖  denotes the tensor nuclear norm of 3D tensors, ‖ ‖  is the sum 

of absolute values of all the entries in   and   is the regularization parameter 

(Lu et. al, 2019). They show that (3) can recover low rank and sparse 

components under certain conditions (when    is not too large and    is 

reasonably sparse).  

 

For the GPR image case, after the decomposition of  , the low rank 

component   corresponds to clutter part and sparse component   

corresponds to target part. 

 

 

Figure 1. The experimental design of the simulated dataset. 
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3. EXPERIMENTAL RESULTS 

The proposed TRPCA method is compared with the classical PCA 

(Abujarad & Omar, 2006) and recent RPCA method (Song et al., 2017). The 

obtained results show the superiority of our proposed method. The methods 

are evaluated both visually and quantitatively over the simulated dataset 

which is generated by the gprMax electromagnetic simulation software 

(Warren, Giannopoulos, & Giannakis, 2016). The experimental setup of the 

simulated dataset is shown in Figure 1. Our dataset contains, 2 different 

materials, 5 different burial depths and 6 different soil types. Since, they are 

constructed by simulation software, we have the reference images. These 

images give us ability to evaluate the performance of methods quantitatively 

which may not possible for the real datasets. The peak signal-to-noise ratio 

(PSNR) is used for the quantitative evaluation and the formulation is 

 

              (
 

   
)     (4) 

 

    
 

   
∑ ∑                  

  
   

 
                              (5) 

 

 
 

Figure 2. Raw data used for visual results: a) aluminum target, 1 cm burial 

depth and dry sand soil, b) aluminum target, 2 cm burial depth and wet sand 

soil, c) plastic target, 10 cm burial depth and dry clay soil, d) plastic target, 

2 cm burial depth, dry loam soil. 
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MSE denotes the mean square error, XT and XR denote the obtained target 

component and reference GPR image, i and j are the pixel locations. 

 

During the implementation of the methods, the following parameters are 

used: 

 There is no parameter for the PCA,  

 Penalization parameter          is selected for RPCA and other 

parameters are default. 

 Penalization parameter        is selected for TRPCA, the patch 

size is selected as      and other parameters are default. 

For the visual and quantitative performance evaluation part, four different 

scenarios are used and the experimental setup is presented in Figure 1. The 

sample GRP images from each case are shown in Figure 2. As seen in the 

Figure 2(a), the buried object is very closer to the surface and it is 

overlapped with clutter which is one of the challenging situations.  In Figure 

2(b), the buried target is aluminum and the soil is wet sand thus, its target 

signature is much weaker than the dry sand case in Figure 2(a). Figure 2(c) 

and (d) are plastic buried target and they are barely seen visually.  

 

 

Figure 3. First Row: Original Results, Second Row: Zoomed Version: a) 

raw data, b) reference data clutter suppression results for, c) PCA, d) RPCA, 

e) TRPCA. 
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The visual results of the raw data in Figure 2(a) are presented in Figure 3(c)-

(e) and the second row is the zoomed area for the target signature. As seen 

in the visual results, PCA cannot suppress the clutter since the target burial 

depth is 1 cm which is very shallow for PCA. The visual results of RPCA 

and TRPCA is similar however there is slight distortion around target 

signature in RPCA. The visual result of TRPCA looks identical to reference 

image and show better performance compared to the PCA and RPCA. The 

quantitative results support our visual results. As seen in the Table 1: 

Table 1. PSNR (dB) results for aluminum target with different burial 

depths.  

Aluminum Target PCA RPCA TRPCA 

0 cm 51.98 79.38 80.26 

1 cm 36.22 130.35 147.00 

2 cm 90.53 137.62 144.28 

4 cm 97.27 146.78 156.76 

10 cm 84.44 140.43 145.78 

 

 

Figure 4. First Row: Original Results, Second Row: Zoomed Version: a) 

raw data, b) reference data clutter suppression results for, c) PCA, d) RPCA, 

e) TRPCA. 
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For all the burial depth TRPCA outperforms PCA and RPCA for aluminum target. 

Especially for the shallowly buried target (1 cm), TRPCA performance is 

approximately %13 better than the RPCA. 

The visual results of the raw data in Figure 2(b) are presented in Figure 

4(c)-(e) and the second row is the zoomed area for the target signature. As 

seen in the visual results, PCA obtains target signature however the residual 

of clutter is still available in the form of horizontal lines. The visual results 

of RPCA and TRPCA look similar however there is slight distortion around 

target signature in RPCA.  

The visual result of TRPCA looks identical to reference image and show 

better performance compared to the PCA and RPCA. 

The quantitative results support our visual results. As seen in the Table 2, for all 

the soil types TRPCA outperforms PCA and RPCA for aluminum target. 

Especially for the wet sand oil, TRPCA performance is approximately %10 better 

than the RPCA. 

Table 2. PSNR (dB) results for aluminum target with different soil types.  

Aluminum Target PCA RPCA TRPCA 

Dry sand soil 90.53 137.62 144.28 

Damp sand soil 103.53 132.68 137.03 

Wet sand soil 73.32 132.83 145.82 

Dry clay soil 101.55 129.30 135.48 

Wet clay soil 90.62 135.69 141.32 

Dry loam soil 100.89 128.08 135.69 
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Figure 5. First Row: Original Results, Second Row: Zoomed Version: a) 

raw data, b) reference data clutter suppression results for, c) PCA, d) RPCA, 

e) TRPCA. 

The visual results of the raw data in Figure 2(c) are presented in Figure 5(c)-

(e) and the second row is the zoomed area for the target signature. As seen 

in the visual results, PCA obtains target signature however the residual of 

clutter is still available in the form of horizontal lines. The visual results of 

RPCA and TRPCA look similar to each other. 

The quantitative results in plastic target case are not obvious as in the 

aluminum target. However, TRPCA outperform RPCA for 3 out of 5 GPR 

images. There are not dramatic differences between TRPCA and PRCA in 

the sense of PSNR (dB) value. Both of them outperform the classical PCA 

method with huge differences in quantitative analysis. 

Table 3. PSNR (dB) results for plastic target with different burial depths.  

Plastic Target PCA RPCA TRPCA 

0 cm 53.91 92.95 80.26 

1 cm 58.71 101.90 104.59 

2 cm 99.82 126.04 128.60 

4 cm 104.11 132.06 130.85 

10 cm 96.55 115.36 125.79 
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The visual results of the raw data in Figure 2(d) are presented in Figure 

6(c)-(e) and the second row is the zoomed area for the target signature. As 

seen in the visual results, PCA obtains target signature however the residual 

of clutter is still available in the form of horizontal lines. The visual results 

of RPCA and TRPCA look similar to each other. Both of them effectively 

suppressed the clutter and outperform the classical PCA method. 

 

Figure 6. First Row: Original Results, Second Row: Zoomed Version: a) 

raw data, b) reference data clutter suppression results for, c) PCA, d) RPCA, 

e) TRPCA. 

Again, the quantitative results in this case are not obvious as in the 

aluminum target. However, TRPCA outperform RPCA for 4 out of 6 GPR 

images. There are not dramatic differences between TRPCA and PRCA and 

both of them outperform the classical PCA method with huge differences. 
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Table 4. PSNR (dB) results for plastic target with different soil types.  

Aluminum Target PCA RPCA TRPCA 

Dry sand soil 47.42 72.46 68.26 

Damp sand soil 92.17 121.62 126.99 

Wet sand soil 70.29 135.67 133.52 

Dry clay soil 99.82 126.04 128.60 

Wet clay soil 94.12 125.82 131.11 

Dry loam soil 99.25 125.92 128.87 

 

4. CONCLUSION 

The proposed TRPCA based clutter suppression method applies a novel pre-

transformation step during the construction of image-patch tensor in GPR. 

The 1D A-scans are converted to 2D images and they are concatenated to 

construct multi-dimensional image tensor. Since, 2D GPR images are 

formed by the concatenation of A-scans, the constructed new image tensor 

from A-scans are interrelated. Then, TRPCA method is used for the 

decomposition of the constructed GPR image tensor. The obtained results 

are compared with the classical PCA and recently proposed RPCA method 

over the simulation dataset both visually and quantitatively. The obtained 

results show that TRPCA method heavily outperforms classical PCA and 

recently proposed RPCA in the aluminum target case and it has better 

decomposition results in the plastic target case.  
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