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Abstract: Base metal prices, especially steel, play a significant role in industrial 
economics, making them worth knowing about future values. In most cases, we expect 
superior performance from multivariate forecasting models comparing univariate 
methods due to the involvement of explanatory variables in the system. Standard vector 
auto regressive model can only capture short-run dynamics because of the differencing 
process for non-stationary series that eliminates the possible long-run relationship. 
Instead, performing non-stationary series on levels through the vector auto-regressive 
framework does not suffers such loss. Moreover, the vector error correction model can 
define both short-term and long-run dynamics explicitly. These models can yield more 
robust forecasts in the mid-term and long-term by investigating short-run and long-run 
relationships simultaneously. The current study aims to perform an out-of-sample 
forecast for the United States steel prices index 18 months ahead using cointegrated 
variables. The results suggest that the non-stationary vector auto-regressive model 
outperforms the vector error correction model regarding mean absolute percentage 
error and root mean square error as forecast accuracy measures. 
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 1. Introduction 

 John Hicks defines the impact of the statistical revolution on economic studies through the middle of 
the 20th century as the rise of econometrics (Hicks, 1956). Economic forecasts have become a broadly 
speaking subject along with the advancement of statistical methods. However, owing to uncertainty and 
unprecedented interventions in an economy, forecasting financial time series has become a challenging task 
for decades. Steel products, which are the most critical ferrous-based commodities, can be seen as the 
backbone of every country's development. According to the World Steel Association (2020), crude steel 
production was reached an enormous amount of 1.87 billion tons in 2019. The economic state of a country 
is considerably related to steel consumption. 

 Since 2008, steel products have been traded in the commodity exchange markets with futures 
contracts, which have changed steel’s role from a physical asset to a financial asset (Arık & Mutlu, 2014). It 
has become a hedge to protect the investment against the economic fluctuations and profit-making means 
for the traders. Thus the art of forecasting can be a precious tool for mitigating the risk in commodity 
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exchange markets, and besides, forecasting the steel prices as a physical asset makes essential contributions 
to the policymakers at all levels. 

 The United States (U.S.) is considered a leading country in importing steel products with an 
approximate value of 27.1 million tonnes in 2019. Also, among the major crude steel producer countries, the 
U.S. takes fourth place after China, India, and Japan. The most important countries which export steel 
products to the U.S. are Canada, Brazil, Mexico, and South Korea (World Steel Association, 2020). Although 
various researches on the U.S. steel industry have been done in past years, still, lack of comprehensive 
academic research is felt in investigating the steel prices. With recent tariffs and limitations imposed on the 
steel products import from Canada, South America, and the European Union (EU), it is essential to interrogate 
steel prices and useful leading indicators in price changes. Concurrently, forecast models should be made to 
predict the price changes to mitigate economic instability risks. 

 The introduction of Vector Auto-Regressive (VAR) models by Sims (1980) dissolved multivariate 
forecasting's complexity due to the assumption of exogeneity. In this model, all variables can be treated as 
endogenous variables. Due to simultaneous equations for all variables in the system, which depend on lagged 
values, there is no need to forecast input variables separately with univariate models.  

 In this study, the non-stationary VAR and Vector Error Correction (VEC) models are used for 
forecasting purposes. For model validation, we use the out-of-sample (hold-out sample) forecast. As an 
indicator of steel prices, we use the Producer Price Index for steel mill products. The forecast horizon is 
selected as 18 months, considering future contracts' average duration in the New York Merchandise 
Exchange (NYMEX) and the London Metal Exchange (LME). 

 In section 2, the methodology for VAR, VEC models, and cointegration are explained. Section 3 is set 
to present the data and model specifications. Section 4 is designated for the forecast results and discussion. 
Subsequently, it is followed by section 5, which is the conclusion. 

 2. Literature Review 

 Several papers have gone through commodity prices forecast models, yet few consider forecast 
models for steel prices. The dedicated literature on steel prices has investigated the price determination 
structure considerably more than practical forecasting models. Mancke (1968) and Grossman (1986) gave an 
insight into the U.S. steel industry using conventional regression analysis and raw materials cost, capacity 
utilization, imports and, industrial production index as input variables. Blecker (1989) applied a dynamic 
regression model to determine the U.S. steel prices by shipments dividends and major steel producer 
company’s market shares in addition to previous works. Moreover, Liebman (2006), as the most 
comprehensive study for the U.S. steel price determination, brought in the steelworkers' wage, exchange 
rates and, China’s steel demand as input variables as well as previous variables in the literature. Richardson 
(1999) assessed the effect of low-cost steel imports from Eastern-European countries on the European 
Community using regression analysis.  

 The global steel forecast model was tried by Malanichev and Vorobyev (2011) with multivariate 
regression using raw material costs and capacity utilization. In the research by Kapl and Müller (2010), the 
authors compared the efficiency of the autoregressive integrated moving averages (ARIMA) model with 
covariates versus multi-channel singular spectrum analysis (M-SSA). They concluded that the M-SSA model 
is more favorable in the generalization of the forecast. Chou (2013) went towards bivariate fuzzy time series 
analysis for forecasting long-term global steel prices with the bulk shipping prices as an explanatory variable, 
while Wu and Zhu (2012) adopted artificial neural network (ANN) for forecasting a week ahead with a 
univariate model for steel prices. The most recent attempt to forecasting steel prices made by Liu, Wang, 
Zhu, and Zhang (2015) using back propagation neural network (BPNN) with multivariate inputs. They used 
China’s steel price index along with iron ore and coal prices index and the average monthly trading volume 
of the rebar steel as explanatory variables. As an attempt to price determination in Turkey, Akman (2016) 
looked into the effect of the EUR/USD exchange rate on the Turkish steel prices using the VAR model. 
Popescu, Nica, Stefanescu-Mihaila, and Lazaroiu (2016) consider the problematic effects of steel imports into 
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the U.S., as job loss and declining production capacity resulted from low-cost imports from countries with 
aggressive export policy. Most recent works on steel prices focus on China’s steel industry due to 
extraordinary economic growth. Kim and Lim (2019) investigated price discovery and a spillover effect in spot 
and futures markets using VEC and generalized autoregressive conditional heteroscedastic (GARCH) models. 
Their research concluded in the existence of the price discovery in all of the steel futures markets. They 
showed a spillover effect between spot and future market in wire rod, coking coal, coke, and 
silicomanganese. Another research has come from Cetin, Aksoy and Iseri (2019), which tried to forecast steel 
prices using the long short-term memory network model (LSTM). They used ten years’ steel price data 
obtained from LME to forecast steel prices. Liu, Wang, Zhu, and Zhang (2015) worked on the impact of 
Chinese steel product prices. The proposed methodology for this work is the adaptive neuro-fuzzy inference 
system (ANFIS) which is the hybrid method from back propagation (BP) method and least square. Their results 
revealed that Asian countries have a greater impact on China’s import market. Furthermore, sheet steel 
products have a significant effect on import and export markets. 

 As we search for reliable forecast models on base metals and specifically steel prices, we found very 
few academic resources with appropriate modeling aspects. There are few available academic papers for 
steel forecast models that are complex to implement in practice. In contrast, the models being used in 
practice are not established on a robust theoretical framework. Thus, this study aims to find a capable 
forecasting model for steel prices. 

 3. The Methodology 

 3.1. Vector Autoregression Model 

 VAR model, which has introduced by Sims (1980), is the expansion of the autoregressive model (AR) 
with the ability to enter more than one variable as endogenous variables to the model. In this system, each 
endogenous variable on the left side is affected by its own lags, as well as other endogenous variables lags 
on the right side by (P) lags. The mathematical expression of the reduced-form of the VAR (P) model is 
represented in equation (1). 

𝑍𝑡 = 𝛿 + ∑ Γi𝑍𝑡−𝑖 + 𝜇𝑡
𝑃
𝑖=1                                                            (1) 

 Where (𝑍𝑡) is (N × 1) vector of endogenous variables, (𝛿) is (N × 1) intercept vector, (Γi) is (N × N) 
coefficient matrix for the autoregressive process ( when: 𝑖 > 0,  ∅𝑃 ≠ 0), and (𝜇𝑡) is (N × 1) vector of the 
white noise error term.  

 Commonly, the VAR model is estimated by the ordinary least squares (OLS). Accordingly, all 
assumptions about OLS are also applicable to the VAR model estimation process. However, for cointegrated 
time series, OLS estimation can handle the non-stationarity in variables and obtains consistent parameter 
estimation. For this reason, the differencing in variables is not needed as it eliminates the long-run dynamics 
in case of existence (Phillips & Durlauf, 1986; West, 1988; Sims, Stock, & Watson, 1990).  

 Selection of optimal lag length for VAR (P) system can be made by information criteria such as 
likelihood ratio (LR), Akaike’s final prediction error (FPE), Akaike information criterion (AIC), Schwarz 
information criterion (SIC), or Bayesian information criterion (BIC), and, Hannan-Quinn information criterion 
(HQ). The optimal lag length selection is sensitive to the maximum lag length in the unrestricted VAR model. 
In the literature, 6 and 12 lag lengths are mostly suggested for monthly data.  

 Gredenhoff and Karlsson (1999) stated that AIC defines the lag length in VAR systems better than 
other information criteria. Alternatively, Lütkepohl (2005) suggested whenever the VAR model is used for 
forecasting purposes, the selection of optimal lag length is not a momentous task since the main objective is 
the improvement of forecast accuracy.  
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 3.2. Cointegration 

 According to Granger (1981), cointegration between two series is defined by proportional and 
equivalent movement in the long-run dynamics when the effect of lags (short-run relationship) is denied. In 
other words, when two or more variables are integrated of order d, there can be an underlying linear 
relationship in less order than d between the variables, which is called cointegration (Engle & Granger, 1987). 
As commonly in financial data, the variables are integrated of order one, where the cointegration relationship 
has to be a stationary process in case of existence. 

 Cointegration tests are used to reveal the evidence of underlying long-run economic equilibrium 
between the variables. Whereas the Engle and Granger (1987) test procedure only allows for one 
combination of cointegrated variables, with the  Johansen and Juselius (1990) and Johansen's (1991) test 
procedure, it is possible to disclose more than one cointegrated relationships between N time series with the 
integration order of  I(1). 

 3.3. Vector Error Correction Model 

 Based on Engle and Granger (1987), the error correction term (ECT) shows the state of the  departure 
(shock) from the long-run equilibrium in the antecedent period, which will be corrected in the subsequent 
period. The error correction model (ECM) can state both short-run and long-run dynamics in a single model. 
While the Engle and Granger (1987) method for ECM constitutes a single equation with a dependent variable 
and multiple independent variables, Johansen (1991) VEC model uses the VAR methodology to determine 
multiple cointegration combinations between the variables. 

 The standard VAR model is performed in differences to avoid non-stationarity. However, using 
differenced variables results in a misspecified model due to the data loss in the long run when the 
cointegration is present. In this situation, using unrestricted VAR in levels (LVAR) which is not suffers from 
misspecification, can be preferred (Engle & Yoo, 1987). Using non-stationary variables in the VAR model with 
OLS estimation has raised concerns about the model's stability as coefficients are near the unit circle. 
Outcomes in Sims, Stock, and Watson (1990) and Toda and Phillips (1993) demonstrates a standard 
asymptotic distribution for regression coefficients in the LVAR model under the cointegration case for 
explanatory variables. Lutkepoh and Kratzig (2004) suggest that unlike LVAR models, which can indicate 
short-run and long-run relationships implicitly, VEC models can explicitly show cointegration relations. 
Although LVAR models can capture stochastic trends, most econometric books suggest avoiding using LVAR 
models in case of cointegration due to the proper coefficient estimation and advise to move on to VEC 
models. However, when the ultimate goal of the study is pure forecasting in practice, the LVAR model can 
yield promising results since the estimation of the coefficients are not as crucial as economic interpretation 
( Fanchon & Wendel, 1992; Clements & Hendry, 1995; Hoffman & Rasche, 1996; Suharsono, Aziza, & 
Pramesti, 2017; Ajayi, 2019; Shang, Gang & Cheng 2020). 

 Unlike the LVAR model, which is performed with variables in the level form, the VEC model should 
be performed with differenced variables to represent the short-run dynamics. The error correction term 
enters the equation to indicate the long-run dynamics. The mathematical representation of the VEC model 
is shown as equation (2).  

∆𝑍𝑡 = 𝛿 + ∑ Γi∆𝑍𝑡−𝑖 + Πyt−1
+ 𝜇𝑡

𝑃−1
𝑖=1                                           (2) 

 Where (∆𝑍𝑡) is (N × 1) vector of first-differenced endogenous variables, (𝛿) is (N × 1) intercept 
vector, (Γ𝑖) is (N × N) coefficient matrix for the autoregressive process or short-run dynamics, Π is the 
coefficient matrix for error correction term, which shows the speed of adjustments for the shocks towards 
the long-run equilibrium. The (𝜇𝑡) is (N × 1) vector of the white noise error term.  

 Optimal lag length selection criteria for the VAR (P) model are also applicable for the VEC model, 
whereas the lag length is reduced by one due to the differencing process. Thus, the (P) lag order in the VAR 
model equates to the (P-1) lag order in the VEC model.  
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 4. Data and Empirical Results 

 4.1. Data Description 

 This study's gathered data are monthly data from January 2009 to June 2020 for a total of 138 
months. Data from January 2009 to December 2018 (120 months) are used for model estimation, and from 
January 2019 to July 2020 (18 months) are used for model validation by the out-of-sample forecast.  

 All series are seasonally adjusted, which is mandatory for both LVAR and VEC models. For ease of 
use, all variables are indexed by January 2009 = 100. Also, for stabilizing variance, natural logarithm (Ln) 
transformation is applied to all variables. 

 According to the U.S. Bureau of Labor Statistics (BLS), the Producer Price Indexes (PPI) are based on 
the probabilistic sample of selling prices for different sizes of establishments. Thus, it makes an appropriate 
indicator for market prices. 

 For the steel prices manifestation as target variable, we use the PPI of Steel Mill Products (ST) for the 
United States (U.S. Bureau of Labor Statistics 2020c). Steel mill products are consisting of total steel products, 
which are produced from molten steel into various shapes. 

 All explanatory variables are chosen with consideration to the existing literature on the United States 
steel industry as follow: 

1. The PPI for Iron and Steel Scrap (SC) (U.S. Bureau of Labor Statistics, 2020b) 

2. The global price of Iron Ore (IO) (US$/ton) (International Monetary Fund, 2020b) 

3. The global spot prices of Coal for Australia as the largest coal exporter in the world (CO) (US$/ton) 
(International Monetary Fund, 2020a) 

4. Import Price Index (End User) for Iron and Steel Mill Products (IM) (U.S. Bureau of Labor Statistics, 
2020a) represents prices of iron and steel products that are imported into the U.S. from the rest of 
the world. 

5. The Value of Manufacturers' New Orders for Iron and Steel Mills (NO) (M$) (U.S. Census Bureau, 
2020), which is the intention of manufactures to buy urgently or with future delivery; thus, it is the 
indicator of future demand. 

 We used almost the same theoretical structure in this study as Fanchon and Wendel (1992), Yuxian,  
Xiaoling and Songke (2014), and Ajayi (2019). 

 4.2. Stationarity and Unit Root Test 

 For variables to be modeled by VAR and, eventually, VEC models, the prerequisite is being first-order 
I(1) stationarity. Firstly, for testing stationarity, we used the Augmented Dickey-Fuller (ADF) test developed 
by Said and Dickey (1984), which is the extended version of the Dickey-Fuller (DF) test introduced by  Dickey 
and Fuller (1979). The ADF test’s null hypothesis favors the unit root existence, which is evidence of non-
stationarity. The results of the ADF test for the variables are presented in Table 1. 

Table 1.  ADF Test Results for Variables 

Variables t-stat. Prob. Δ Variables t-stat Prob. 

LnST 0.178783 0.7366 Δ LnST -5.518522 0.0000 

LnSC 0.097150 0.7119 Δ LnSC -8.819061 0.0000 

LnIO 0.314639 0.7752 Δ LnIO -8.868412 0.0000 

LnCO -0.449434 0.5185 Δ LnCO -9.035877 0.0000 

LnIM -0.203410 0.6113 Δ LnIM -5.395454 0.0000 

LnNO 0.528214 0.8288 Δ LnNO -4.587397 0.0000 

Notes: Δ = first difference, tested without intercept and trend. 
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 The ADF test results on variables before and after the first differencing process show evidence of 
possible integration of order 1 in all variables. Moreover, we test for the presence of the unit root in case of 
a structural break to ensure that the assumptions of our models are satisfied. 

 Financial time series often have one or more structural breaks during their life cycle. Structural breaks 
bring the ADF test validity under question since the ADF test cannot determine stationarity condition 
explicitly in case of structural breaks. However, Perron (1997) developed a test procedure that allows for 
structural breaks in both intercept and trend. In this paper, we perform the Perron test procedure by 
minimizing and maximizing the trend break t-statistics to find the breakpoint in data. The null hypothesis for 
the Perron test is the presence of unit root. The results are printed in Table 2. 

Table 2.  Perron Test Results for Variables 

Variables t-stat. Prob. Δ Variables t-stat Prob. 

LnST -0.635632 0.9885 Δ LnST -5.717894 0.0000 

LnSC -3.886775 0.1924 Δ LnSC -6.969274 0.0000 

LnIO -2.209209 0.7534 Δ LnIO -8.989905 0.0000 

LnCO -1.308185 0.9524 Δ LnCO -8.848781 0.0000 

LnIM -0.765764 0.9842 Δ LnIM -5.451431 0.0000 

LnNO -3.139833 0.4297 Δ LnNO -16.37397 0.0000 

Notes: Δ = first difference, tested without intercept and trend. 

 

 From the results of the Perron test, we can see the presence of unit root on the level form. Testing 
first differenced variables prove that our variables are the first order of integration considering structural 
breaks in the data. Thus, we can proceed with the VAR and VEC models. 

 4.3. Granger Causality Test 

 The Granger causality test procedure, which is proposed by Granger (1969), simply tests for the 
effectiveness of variable X on the predictability of variable Y, assuming that changes in the X’s past values 
affect the Y’s future values. While the correlation between variables can be spurious and senseless, causality 
shows one variable's effectiveness in forecasting another. Also, the causality can be bi-directional in which 
the changes in the Y’s past values also affect the variable X’s future values.  

 The assumption for variables in the Granger causality procedure is to be stationary to avoid distortion 
in results, so the first differenced variables are used in the Granger causality analysis. The null hypothesis for 
the Granger causality test is that the variable X does not granger cause variable Y. Thus, we investigate the 
causality of explanatory variables that are used to predict the LnST. The results of the Granger causality test 
for four lags are presented in Table 3.  

Table 3.  Granger Causality Test for LnST Variable 

Null Hypothesis: Lag 2 Prob. Lag 3 Prob. Lag 4 Prob. Lag 5 Prob. 

ΔLnSC on ΔLnST 2. × 10-11 5. × 10-10 2. × 10-9 2. × 10-8 

ΔLnST on ΔLnSC 0.2526 0.0958 0.625 0.9626 

ΔLnIO on ΔLnST 0.0005 0.0025 0.0045 0.0060 

ΔLnST on ΔLnIO 0.9516 0.6596 0.8141 0.5250 

ΔLnCO on ΔLnST 0.0027 0.0156 0.0179 0.0258 

ΔLnST on ΔLnCO 0.9310 0.5856 0.3308 0.3664 

ΔLnIM on ΔLnST 3. × 10-5 0.0023 0.0133 0.0123 

ΔLnST on ΔLnIM 2. × 10-7 7. × 10-6 0.0001 0.0003 

ΔLnNO on ΔLnST 4. × 10-5 0.0002 6. × 10-7 3. × 10-6 

ΔLnST on ΔLnNO 0.2526 0.2556 0.0727 0.3546 

Notes: LnSC on LnST: that LnSC does not Granger Cause LnST.  
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 As seen from Table 3, there is a uni-directional causality running down from LnSC, LnIO, LnCO and, 
LnNO to LnST, which means they affect LnST separately, and by contrast, LnST has no Granger causality on 
none of them. For LnIM, there is a bi-directional causality, which means both variables Granger causes each 
other. since our aim in this paper is forecasting LnST, we concentrate on causalities from explanatory 
variables to the LnST. Following the fact that selected variables Granger cause LnST, we include all variables 
to forecast models. 

 The t-statistics and related p-values for coefficients are not reported for models as it is not essential 
to consider the significance of coefficients whenever the main objective is solely forecasting, especially in 
real-world conditions as long as the model forecasts well (Anderson, Burnham, & Thompson, 2000; 
Armstrong, 2007; Kostenko & Hyndman, 2008). In full system VAR models, it is expected to have insignificant 
coefficients due to multicollinearity between lags of variables. However, significance tests using p-values are 
thresholds that are contingent on sample sizes and unable to capture the actual level of the effect, which is 
subject to measurement (Kostenko & Hyndman, 2008).  

 4.4. LVAR Model 

 For selecting the optimal lag length, the minimization of the AIC is considered after forming the 
unrestricted VAR model for a maximum length of 6 months. It is acquired that the optimal lag length of (4) is 
most appreciated for our data. The model statistics for the LnST equation in the LVAR model and information 
criteria for the whole system are presented in Table 4. 

Table 4.  LVAR (4) Estimation Results 

Full LVAR model Statistics: 

AIC: -23.51084 SCI: -19.95016 No. of Coefficients: 150 

LnST Equation: 

R2: 0.991742 AIC: -6.211192   

SSE: 0.008857 SCI: -5.617746   

F-statistic: 455.3759     

Notes: SSE: Sum of Squared Errors 

 

 To investigation the cointegration relationship among variables, the Johansen test procedure is used 
in this study. The process uses Trace and Maximum Eigenvalue test approaches with the null hypothesis that 
there is no cointegration between variables for both of them. However, there is a difference between these 
two approaches in the alternate hypothesis. The Trace test approach is more desirable when it is expected 
to have more than one cointegration combination among the variables ( Lütkepohl, Saikkonen, & Trenkler, 
2001; Cheung & Lai, 2009). 

 Here, the Johansen test is performed considering intercept in the cointegration equation and no 
trend in variables. The trace test statistics and related p-values for the cointegration rank with the optimal 
lag length of (3), required to form the VEC model, are reported in Table 5. 

Table 5.  Johansen Cointegration test Results for Lag (3) 

No. of Cointegrations Trace Stat. Prob. 

None*  139.9078 0.0000 

At most 1*  76.62493 0.0129 

At most 2  43.70409 0.1163 

At most 3  24.75459 0.1704 

At most 4  8.470328 0.4166 

At most 5  0.292014 0.5889 

Notes: * = 5% significant. 
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 The result of the Johansen test confirms the evidence of two underlying cointegration vectors. Thus, 
two combinations of the variables exist as a long-run equilibrium. Shoesmith (1995) pointed out some 
problems with multiple cointegration vectors when the underlying relationship is not originated from the 
framework of economic theory. Thus, defining the proper cointegration equation with consideration to 
logically expected results is desirable. Nevertheless, including the cointegration equation in the model, even 
if not relied on economic theory, may increase the forecast accuracy (Shoesmith, 1995). To represent both 
short-run and long-run relationships between the variables separately, the VEC model is estimated. 

 4.5. VEC Model 

 The lag length selected from the unrestricted VAR model is reduced by one lag to VEC (3) due to the 
first differencing process. The result of VEC (3) model information criteria with two cointegration equations 
and the model statistics for the LnST equation is reported in Table 6. 

Table 6.  VEC (3) Estimation Results 

Full VECM Statistics: 

AIC: -23.34098 SCI: -20.06515 No. of Coefficients: 138 

LnST Equation: 

R2: 0.742321 AIC: -6.175226   

SSE: 0.009837 SCI: -5.676732   

F-statistic: 13.68378      

Notes: SSE: Sum of Squared Errors. 

 

 The error correction terms (ECT) for VEC model are shown in equations (3) and (4). 

Π𝑦𝑡−1
=  −0.135(𝐿𝑛𝑆𝑇𝑡−1 + 0.026𝐿𝑛𝐼𝑂𝑡−1 − 0.094𝐿𝑛𝐶𝑂𝑡−1 − 0.687𝐿𝑛𝐼𝑀𝑡−1 +

0.114𝐿𝑛𝑁𝑂𝑡−1)  
(3) 

Πyt−1
=  −0.068(𝐿𝑛𝑆𝐶𝑡−1 − 0.122𝐿𝑛𝐼𝑂𝑡−1 + 0.067𝐿𝑛𝐶𝑂𝑡−1 − 0.485𝐿𝑛𝐼𝑀𝑡−1 −

1.03𝐿𝑛𝑁𝑂𝑡−1)   
(4) 

 In the normalized cointegration equation with constraints on LnST and LnSC, all the signs for 
coefficients are consistent with the economic theory reviewed in the literature. According to Shoesmith 
(1995a), the interpretation of signs in the cointegration equation is opposite, where the positive sign 
represents an inverse relationship; the negative sign represents a direct relationship. The LnIM has a direct 
relationship with LnST in both equations. For the LnNO, LnIO, and LnCO, there are different signs in each 
equation. They correct each other in favor of a direct relationship, which means an increase in each variable, 
results in an increase in LnST in the long run. 

 Inherently, the LnNO indicates the growing demand, which can cause an increase in LnST. For the 
LnIM, There is robust economic proof that it affects the LnST directly (Liebman, 2006). Also, LnCO and LnIO, 
as raw materials for steel production, are expected to have a direct and positive effect on LnST.  

 It is worth noting that the sign of ECT is negative in both equations, which refers to the convergence 
of the target variable (LnST) to the long-run equilibrium at the speeds of 13.5% and 6.8% per month. 

 4.6. Diagnosis Tests 

 The residuals are checked for assumptions that apply to the OLS estimations. The Breusch-Godfrey 
LM test is applied to investigate the serial correlation in residuals. The null hypothesis is in favor of no 
autocorrelations in residuals. The Breusch-Pagan-Godfrey test is used to present heteroscedasticity in 
residuals, where the null hypothesis is homoscedasticity. The diagnosis test results for each model are 
arranged in Table 7. 
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Table 7.  Diagnosis Tests Results 

Models: LVAR  VEC 

Test P-Values 

Serial correlation for five lags 0.1293 0.3511 

heteroscedasticity 0.2415 0.0750 

Notes: * = 5%, **= 1% significant. 

 

 As observed from the diagnostic test result, there are no serial correlation and heteroscedasticity 
evidence in the residuals, and thus the models are efficiently fitted to the data. 

 4.7. Impulse Response Function (IRF) 

 The impulse response function (IRF) determines the reaction of one variable across time to alteration 
of another variable(s) at various time periods ( Pesaran & Shin, 1998; Ederer, Heumesser, & Staritz, 2016). 
The recognition of IRF resulted from diagonal one standard deviation of the residuals for impulses. The IRF 
graphs for the LVAR and VEC models within 36 periods are shown in Figure 1 and Figure 2.  

Figure 1. The IRF for LVAR Model 

 
 
 

Figure 2. The IRF for VEC Model 
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 The IRF for LVAR and VEC models is similar in the short run. For a few first periods, all variables’ 
impulses, except LnIO, have an increasing impact on the response of LnST, which then LnST’s own lags have 
a decreasing effect after the 2nd period in both models. The LnSC tends to have a negative effect after six 
periods in the VEC model and not positive until the 12th period, which afterward tends to have a positive 
effect. While, in the VEC model, after approximately 25 periods, variables’ impulses on the LnST responses 
tend to their long-run position, in the LVAR model, responses seem  to dump the impulses’ effects. The 
similarity among LVAR and VEC models short-run IRF suggests consistent results with Naka and Tufte's (1997) 
analysis. 

 5. Forecasting Results and Discussion 

 Monthly out-of-sample forecasts from January 2019 to June 2020 (18 months) for LVAR and VEC 
models, along with the forecast accuracy measures, are reported in Figure 3 and Table 8. For comparing 
forecast accuracy in models, the mean absolute error (MAE), mean absolute percentage error (MAPE), and 
root mean square error (RMSE) are used considering the literature. The RMSE is superior to MAE, where the 
model's residuals are normally distributed (Chai and Draxler 2014). Armstrong and Collopy (1992) conclude 
that using RMSE is not appropriate to compare the forecast accuracy of the models that use different 
modeling methods due to low authenticity. The MAPE is the most common error measurement for 
forecasting models. According to Hyndman and Koehler (2006), for the data that are positive and relatively 
large to zero, using MAPE is suitable given the inherent clarity for the comparison purpose. Çuhadar (2020) 
stated the benefits of using the MAPE measure in  comparing different model and interpretation feasibility 
without considering size of the sample. According to Lewis (1982) the MAPE value under 10% demonstrate 
high degree of accuracy for the model, while above 50% value showed a poor performance. 

Table 8. Forecast Accuracy Measures for LnST 

 LVAR VEC 

RMSE 0.023766 0.047488 

MAPE 0.423052% 0.804208% 

Notes: MAPE in Percentage, RMSE: Same level as variables. 

 

Figure 3. Forecast Results for LVAR and VEC Models 
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 While both models perform accurate results, comparing the results of the LVAR and VEC models 
reveal that the LVAR model yields smaller MAPE and RMSE for 18 months forecast. The findings seem to 
contradict Engle and Yoo's (1987) results, which suggest the superiority of Engle-Granger error correction 
models in the long-term forecast horizon over LVAR models. However, Hoffman and Rasche (1996) and 
Clements and Hendry (1995) showed mixed outcomes about the performance of VEC over LVAR models, 
which latter study presented moderate superiority of LVAR compare to VEC models. Fanchon and Wendel 
(1992) and Ajayi (2019) obtained the same outcome, in which LVAR outperforms the VEC model both in short 
and long-run forecasts. They concluded that one possible reason is that the time-span of short-run dynamics 
might be influenced by lag length. 

 6. Conclusion  

 To forecast the producer price index for steel mill products in the U.S., we used leading indicators as 
iron and steel scrap PPI, global price of iron ore, global price of coal, import price index for iron and steel 
products, and the value of manufacturers’ new orders for iron and steel mills. The VAR in levels and VEC 
models are used in this study. Where the VAR model in differences eliminates long-run relationships in case 
of existence, performing the VAR model in levels does not suffers from this issue. However, most of the 
literature advises using the VEC model to investigate and forecast cointegrated data. we derive that our data 
are non-stationary and integrated of order 1 using ADF test for stationarity and unit root. The Granger 
causality test demonstrates the significant causal relationships among the variables of interest. We perform 
the LVAR model by selecting optimal lag length using AIC, considering the absence of serial correlation in 
errors. We find the evidence of two cointegration vectors from the Johansen cointegration test. Performing 
of the VEC model approved reveals the short-run and long-run relationships explicitly. Our results show the 
better forecasting performance of the LVAR model rather than VEC regarding MAPE and RMSE accuracy 
measures. However, these results should be noticed suspiciously since the forecast accuracy depends on 
several items. Variables’ time span, model specifications, and forecast horizon are major determinants to 
select the suitable model to forecast steel prices. 

 The current study results show that a simple VAR model can be adequately used to forecast short-
term and mid-term horizons with confidence in practice. On the other hand, this is applicable when the goal 
is pure forecasting since the application of the VAR model in cointegrated data for determination purposes 
is not appreciate due to mixed interpretation of both short-run and long-run relationships.  

 Future studies can be done more comprehensively by examining different indicators, forecast 
horizons, and model settings. Another study is possible through using data from another region which in this 
study, we have limited sources for our data. Also, future models can be done by hybrid models using ANN 
algorithms and econometric models to achieve more reliable results. 
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