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Abstract – Reconfiguration is one of the most important 

capabilities of optical networks. This task is performed by 

operators to re-optimize network resource utilization. Multicast 

applications such as videoconference online learning, etc., 

emerge rapidly and cause an increase in bandwidth demand. A 

multicast connection in an optical network is provided by a light-

tree. Due to physical link failures, light-trees are protected by 

backup paths. Thus, our study focuses on the reconfiguration of 

a protected light-tree. The reconfiguration problem studied here 

is to migrate rapidly an optical flow from an old light-tree to a 

new light-tree without service disruption.  To solve this problem, 

we propose a mechanism based on dependencies graphs. This 

method establishes simultaneously groups of the final light-tree 

branches by using shared backup paths spectrum resources. The 

numerical results show that our approach avoids flow 

interruptions and reduce significantly the number of steps 

required to achieve the reconfiguration process more than 

existing methods. 

Index Terms – Optical Network, Reconfiguration, Multicast, 

Protection, Survivable, Light-Tree. 

1. INTRODUCTION 

1.1. Context 

The ever-increasing demand for bandwidth-intensive 

multicast applications such as UHD-TV (Ultra-high-definition 

television), distance learning, online gaming, makes multicast 

services are provided more on the optical layer of networks 

than on the IP layer. One of the main solutions to meet the 

new traffic characteristics is the elastic optical network 

(EON). Compared to its predecessor, Wavelength Division 

Multiplexing (WDM), EON has finer spectrum channel 

spacing called “slot”. This feature allows bandwidth 

(spectrum) to be allocated according to the data rate required 

by a connection, without having to waste a portion of a large 

channel spectrum, as in the WDM standard [1, 2]. A unicast 

connection in an optical network is provided by a 

"lightpath"[3]. In the case of a multicast connection, the path 

followed by an optical connection from a source S to a set of 

destinations D = {d1,...,dn} is called "light-tree" [4]. A light-

tree can be considered as a tree rooted at the source node 

where the leaf nodes of the tree are the destinations. In this 

context, a lightpath from the source to one of the destinations 

is called a branch. Since a single link failure may disrupt 

several downstream destinations and cause huge data loss, 

backup paths mechanisms have been implemented to 

protected light-tree against link failure in the network. The 

most advantageous of the protection scheme in terms of 

spectrum resource use is shared backup path protection 

comparing to the dedicated backup path protection approach 

[5]. In the shared backup paths mechanism, any primary 

lightpaths (or branches) can share the same backup capacity 

(slots) in a physical link as long as they do not traverse the 

same physical link. Due to traffic load, fragmentation, and 

network condition changes, the current virtual topology on the 

network needs to be reconfiguring in order to maximize the 

total network throughput [6]. This task is called 

reconfiguration. The optical network reconfiguration process 

involves establishing new lightpaths (or light-trees) and 

deleting existing lightpaths (or light-trees), where new 

lightpaths (or light-trees) and old lightpaths (or light-trees) 

have the same sources and the same destinations [7]. Usually, 

the news paths (or trees) are pre-calculated such that the 

targeted topology is known. Since spectrum resources are not 
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always available to establish new lightpaths, reconfiguration 

should be conducted in a hitless way, i.e., the existing service 

would not be disrupted due to existing lightpath teardown, 

and the reconfiguration process should be as short as possible 

to reduce the impact at the end-users. For performing properly 

the reconfiguration process should meet the below-mentioned 

requirement: 

 Minimize flow interruption: when the number of 

disrupted lightpaths is reduced, generally fewer services 

are disrupted, fewer end users are affected. 

 Minimal steps of process: Minimal steps of process: 

when the time of the reconfiguration process is reduced, 

the lost user traffic carried by lightpaths is reduced.  

 Minimal additional spectrum resources: to allow the 

network to accept new connections during the process. 

1.2. Objectives 

The purpose of this paper is to provide a mechanism to 

reconfigure an initial light-tree use to transmit a data flow to a 

final pre-computed light-tree quickly by using shared backup 

path resources without flow disruption. For the sake of 

concise, the network resource considered here is the spectrum 

resource (slots). The specific objectives of this research work 

are: (i) to model light-tree reconfiguration problem, (ii) to 

avoid flow interruption during the reconfiguration process, 

(iii) to reduce the reconfiguration process steps that impact the 

process duration, (iv) to reduce the network resources used. 

1.3. Motivation  

This paper focuses on the reconfiguration of protected light-

tree. Migrate from an initial light-tree to a final light-tree 

involve establishing the new branches on the final light-tree 

and deleted the old branches one the initial light-tree. This 

process should be conducted without flow disruption and as 

short as possible. This objective is only achievable if all the 

spectrum resources needed to establish the entire new 

branches on the final light-tree are available on the network. 

Unfortunately, most of the time, the setup of a new branch 

may require spectrum resources of a link already used by an 

old branch in the initial light-tree. The reconfiguration of such 

a branch requires spectrum resources of the old branch to be 

released. Due to these spectrum resource conflicts, solving 

reconfiguration problems is a challenge in the literature.   To 

solve this problem, some works propose to use backup paths 

in an intermediate step. In this step, the flow of some old 

branches is shifted to their backup paths in order to free their 

spectrum resources. However, these works focus on unicast 

connections, while multicast connections are an alternative for 

deploying applications for multiple users. Using shared 

protection backup paths optimally for reconfiguration is 

complex and NP-hard [8]. Because protection resources are 

permanently shared by several different primary connections, 

we cannot shift all primary connections to their backup paths, 

delete old connections and establish new ones simultaneously 

without disrupting the flow of most of them. The complexity 

of using shared protection backup paths increases with 

multicast connections since paths in the primary tree often 

share the same links. The deletion of a branch, therefore, 

results in flow interruption in all branches with which this 

share at least one link [9]. Thus, several steps are required to 

judiciously use shared backup protection paths to reconfigure 

a light tree while reducing the number of process steps 

without interrupting the flow.     

1.4. Organization of the Paper 

The current section of the paper has briefed about 

reconfiguration, along with problem statement, objective, 

motivation, and contribution. Section 2 provides a review of 

some research work on reconfiguration techniques. Section 3 

presents a formal definition of the problem of reconfiguring 

multicast connections with shared protection resources. 

LSP_Reconf (Light-tree reconfiguration algorithm with 

Shared backup Paths) algorithm reconfiguration is proposed 

in section 4. In Section 5, the provided algorithm is tested and 

the results are analyzed and discussed. Finally, Section 6 

concludes. 

2. RELATED WORK 

Reconfiguration techniques can be grouped into two main 

approaches: Make Before Break (MBB) and Break Before 

Make (BBM). Service disruptions are significant when an old 

optical path (or branch) is first removed before the new one is 

established. This is the case in the "Break Before Make 

(BBM)" approach, where the reduction of flow interruptions 

is limited by the intrinsic capabilities of the network [10]. 

Compared to the BBM method, the "Make Before Break 

(MBB)" approach significantly reduces service disruption. 

Network resources are requisitioned and allocated to the new 

path (or branch) [11]. Thus, the new path (or branch) can be 

established before the old one is deleted. As can be seen, such 

reconfiguration significantly reduces service disruptions, but 

at the cost of increased use of network resources. 

Nevertheless, the resources to set up the news lightpaths (or 

branches) are not always available since most of the time 

some resources to be used to establish the new branches (link, 

slot) are already allocated to the old branches. In this case, the 

flow of the old branch must be interrupted, before the new 

one is established which causes service disruption. To 

modelling, the resource dependencies between new lightpaths 

and old lightpaths a directed resources dependency graph are 

used in [12].  

In this graph, a vertex is a lightpath and an arc between vertex 

A and vertex B means that the new lightpath corresponding to 

vertex A needs resources from the old lightpath corresponding 

to vertex B for been reconfigured. It showed that if the 
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directed dependency graph is acyclic (DAG), an order exists 

to reconfigure the set of lightpath without interrupt one of 

them and without use spare resources. If a cycle exists on the 

directed dependency graph, the lightpath interruption is 

necessary to complete the reconfiguration process. In this case 

minimization algorithms are used to reduce lightpath 

interruption or to minimize spare [13] resources used. 

However, this work is done in unprotected unicast 

connections, while additional dependencies are to be 

considered in multicast connections. In [14] the authors have 

presented an algorithm of reconfiguration without flow 

interruption using the shared protection resources. This 

algorithm based on a graph colouring algorithm minimizes the 

number of steps of the reconfiguration process. However, it 

concerns unicast connections while the instances of our 

problem only concern light-trees. Most multicast connection 

reconfigurations are performed in unprotected networks. This 

has an impact on the use of spectral resources as well as on 

the number of interrupted connections.  

In [15] and [16], the authors showed that MBB and BBM are 

not suitable for light-tree reconfiguration and proposed a 

multicast reconfiguration scheme without flow interruption. 

These two methods, BpBAR_1 [15] and BpBAR_2 [16] 

consist of migrating from a current light-tree to a new light-

tree by reconfiguring pairs of branches using nodes 

wavelength conversion capabilities. One branch on the current 

light-tree and the other on the final light-tree. Although it 

allows reconfiguration without lightpaths interruption, 

BpBAR_1 generates a long reconfiguration time which 

BpBAR_2 improves by performing a series of operations in 

parallel. These two methods [15] and [16] perform a 

reconfiguration without flow interruption. However, they 

require that all nodes in the network have the wavelength 

conversion capability. In addition, the two trees (current and 

final trees) are not protected by backup paths while, our 

problem concerns reconfiguration of protected, in an optical 

network where no node has the wavelength conversion 

capability. These two prerequisites mean that the algorithms 

proposed in [15] and [16] are unsuitable for our problem.  

The authors in [17] propose a reconfiguration of a set of 

multicast connections in a WDM optical network having a 

single wavelength. In this approach, the dependencies 

between the multicast connections (current light-trees and 

new light-trees) are modeled through a weighted dependency 

graph, and then an MFVSA (Minimum Feedback Vertex Set 

Algorithm) is computed to minimize the number of flows 

interrupted. This approach, in addition to producing 

interruption, concerns a set of unprotected multicast 

connections. However, our goal is to reconfigure a single 

protected light-tree using the protection resources. Therefore, 

the approach proposed in [17] cannot be the solution to our 

problem. Usually, reconfiguration techniques are not suitable 

for multicast connections. However, the existing methods use 

intrinsic network resources, which increase network 

congestion and, the reconfiguration process duration. The use 

of protection resources can be a solution to save intrinsic 

network resources and reduce process duration if they are 

used wisely. Our goal is to migrate from an initial light-tree to 

a final light-tree, by using existing protection resources to 

avoid flow interruption and reduce the duration. 

3. PROBLEM MODELLING 

3.1. Network Model 

Let a physical network topology represented by a graph G = 

(V, E) where V represents the set of nodes and E the set of 

links. A node in the graph is a variable bandwidth optical 

switch (BV-WXC) in the physical network and a link in the 

graph represents a fiber in the physical network. Let T0 = (V0, 

E0) and Tz = (Vz, Ez) two trees. T0 is the tree carrying the 

current flow (initial tree) and Tz is the new tree to which to 

migrate (final tree). The two trees T0 and Tz have the same 

source and the same set of destinations nodes included in G. 

L0 the set of shared backup paths from T0 given by the 

network. We assume that each link in T0, Tz, and L0 has the 

same continuous and contiguous slots on each of their links. 

An optical path from the source to one of the destinations of a 

tree (initial or final) is called a branch (resp. initial or final). 

Backup paths of each branch of T0 can share backup spectrum 

resources (slots) as long as the branches they protect are links 

disjoint according to the SBPP principle [18]. In addition:  

 As in [19] all nodes in the network are multicast 

capabilities (MC) but without frequency conversion 

capabilities  

 We assume failure-free during the reconfiguration 

process, i.e. all shared backup resources are available for 

the reconfiguration purpose. The resource considered 

here is slots (spectrum resources). 

3.2. Problem Formulation 

The problem is formulated as follows:  

Given: 

 A current light-tree (T0, S, D, N, L0), {S: source, D: set 

of destination nodes, N: slots required, L0: set of backup 

paths for T0} where b0(S, dk) is a current branch from 

source S and destination node dk); (Tz, S, D, N) a final 

light-tree with the same source and the same set of 

destinations nodes than T0, where bz(S, dk) is the new 

branch from source S and destination node dk 

corresponding to b0(S,dk). 

Goal: 

 Migrate from T0 to Tz quickly and without flow 

interruption using shared backup paths if necessary. 
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Constraints: 

 Backup paths can share protection spectrum resources 

(slots) if the branches they protect are links disjoints. 

 If a branch is deleted or interrupted, it causes flow 

interruption in all branches that share at least one link 

with it. 

 If a new branch (or backup path) is established, then the 

resources to establish new branches (or backup paths) 

that shares at least one link with it become unavailable. 

It is a deadlock. 

An interruption here is a destination that is not served from 

the source at each step of the reconfiguration process. A step 

here is one of the following reconfiguration operations: pre-

establishing, establishing or deleting a lightpath. Three 

topologies are to be considered in our problem T0, Tz, and L0. 

Therefore, the flow from source S to a destination dk is 

interrupted if there is no lightpath from S to dk in T0 or in L0 

or in Tz at each step. In this case, we say that the branch b0(S, 

dk) is interrupted either: 

𝐼𝑁𝑇𝑖_(𝑑𝑘)  = {

 𝟏 𝑖𝑓 𝑎 𝑙𝑖𝑔ℎ𝑡𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑆 𝑡𝑜 𝑑𝑘 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 

     𝑖𝑛 𝑡ℎ𝑒 𝑖𝑖𝑡ℎ 𝑠𝑡𝑒𝑝  𝑒𝑖𝑡ℎ𝑒𝑟 𝑖𝑛  𝑏𝑜𝑡ℎ 𝑇0  𝑜𝑟 𝐿0 𝑜𝑟 𝑇𝑧 
   

𝟎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1) 

𝑁𝑢𝑚_𝐼𝑁𝑇𝑖 , the total number of branches interrupted at the iith 

step: 

𝑁𝑢𝑚_𝐼𝑁𝑇𝑖  = ∑ 𝐼𝑁𝑇𝑖_(𝑑𝑘)𝑑𝑘∈𝐷                 (2) 

Suppose that the reconfiguration process is performed in m 

steps, therefore the total number of interruption during the 

process, 𝑇𝑜𝑡_𝑁𝑢𝑚_𝐼𝑁𝑇 is equal to: 

𝑇𝑜𝑡_𝑁𝑢𝑚_𝐼𝑁𝑇 = ∑  𝑁𝑢𝑚_𝐼𝑁𝑇𝑖𝑚
𝑖=0   (3) 

Since our goal is to avoid any interruptions during the 

reconfiguration process, we need to make sure that at each 

step we have:  

𝑁𝑢𝑚_𝐼𝑁𝑇𝑖  = 0                              (4) 

Let a group gi of branches to be reconfigured in parallel. 

If the backup paths are not used during the reconfiguration 

process (i.e. resources for setup all branches of the group are 

available), the operations performed are:  

 Simultaneously pre-establishing the new branches of 

gi from the source, 

  Simultaneously establishing them,  

 And simultaneously deleting the old branches of 

group gi 

The number of steps 𝑁𝑢𝑚_𝑆𝑇𝐸𝑃  according to the process 

operations is: 

𝑁𝑢𝑚_𝑆𝑇𝐸𝑃 = 3  (5) 

If the backup paths are used during the reconfiguration 

process (i.e. resources for setup some new groups are already 

used by old branches), the operations performed are:  

Simultaneously pre-establishing the dependencies backup 

paths, 

 Simultaneously establishing the dependencies backup 

paths, 

 Simultaneously deleting the old branches of 

dependencies, 

 Simultaneously pre-establishing the new branches of gi 

from the source, 

 Simultaneously establishing them,  

 Simultaneously deleting the old branches of group gi 

and the backup paths used. 

In this case, the number of steps 𝑁𝑢𝑚_𝑆𝑇𝐸𝑃  according to the 

process operations is: 

𝑁𝑢𝑚_𝑆𝑇𝐸𝑃 = 7  (6)  

In conclusion, the number of steps for a given reconfiguration 

instance is related to resource dependencies. If there are 

resource dependencies then we get 7 steps. If there are no 

resource dependencies then 3 steps are necessary to 

reconfigure the light-tree. 

 

 

 

Figure 1. An Instance of the Reconfiguration Problem. The 

Currents Branches (Lightpaths) on T0  are {{S-a-d1},{S-a-d2}, 

{S-d3}}, and the News Branches on Tz {{S-f-d1},{S-f-d2}, {S-

a-d3}}. d2 and d3 Shared the Same Backup Resources(Link, 

Slots) on Links S-g and g-d3 

 

Figure 2 Directed Dependency Acyclic Graph of the Instance 

of Light-Tree Reconfiguration Problem in Figure 1. 

Backup paths 

Current Tree T0 = {S{d1,d2,d3}} 

Final Tree Tz = {S{d1,d2,d3}} 
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Figure 3 Bipartite Graph Gd=(N,O,E) Shows Resources 

Dependencies Between New Groups of Branches and Old 

Groups of Branches 

 

Figure 4 Dependencies Graph of the Instance of Light-Tree 

Reconfiguration Problem in Figure 1 (a) Initial Tree 

Dependency, Graph (b) Resources Dependency Graph, (c) 

Backup Paths Dependency Graph (d) Final Tree Dependency 

Graph 

3.3. Problem Description 

The reconfiguration of a lightpath (i.e. a branch) consists of 

first pre-establishing the new branch, then establishing the 

new branch, and finally deleting the old one. 

According to [20] if the dependency graph is a DAG 

(Directed Acyclic Graph) reconfiguration schedule exists 

allowing reconfiguring each lightpath without spare 

resources. However, considering the resource dependency 

graph in figure 2 of the reconfiguration instance of figure 1 no 

order allows reconfiguring the branches of the initial tree T0 

without flow interruption. Indeed, the reconfiguration process 

cannot be started from the branch {S-d3} since the resources 

to set up the new branch S-a-d3 are already used by the old 

branches {S-a-d1} and {S-a-d2}, on the link S-a. Similarly, if 

the process starts with branch {S-a-d2}, although the 

resources are available on the new branch {S-f-d2}, the 

deletion of the old path {S-a-d2} induces flow interruption on 

old branch {S-a-d2}, since {S-a-d1} and {S-ad2} share the 

same link (cf. S-a). Finally, if the reconfiguration process is 

initiated with {S-a-d1}, the deletion of the old path {S-a-d1} 

induces flow interruption on old branch {S-a-d2}. In 

additional the setup of it new branch {S-f-d1} create a 

deadlock for the new branch {S-f-d2} since {S-f-d1} and {S-f-

d2} share the link S-f. It is obvious that a resource 

dependency-oriented graph alone cannot correctly model our 

problem because other dependencies have to be considered. 

When backup paths are used as transient paths to handle the 

dependencies modelled in Figure 2, the flows of {S-a-d1} and 

{S-a-d2}, must be switched to their backup paths before 

established the new branch {S-a-d3}. Such an operation also 

causes interruptions. Indeed, if {S-a-d1} is first toggle on her 

backup path {S-d1}, the deletion of the primary path {S-a-d1} 

interrupts the flow to {S-a-d2} ({S-a-d1} and {S-a-d2} share 

the link S-a). If {S-a-d2} is the first to be shifted on her 

backup path {S-g-d3-d2}, the deletion of its primary path {S-

a-d2} interrupts the flow to {S-a-d1} (({S-a-d1} and {S-a-d2} 

share the link S-a). Therefore, {S-a-d1} and {S-a-d2}, must be 

simultaneously shifted on their backup paths {S-d1} and {S-g-

d3-d2} and simultaneously deleted in the initial tree T0 to 

prevent any interruption of the flow. 

However, if the branches are divided into a group we can find 

a sequence to migrate from T0 to Tz without any flow 

interruption. Instead of considering resource dependencies 

between branches of the final tree and the initial tree that 

cause interruptions, we consider resource dependencies 

between groups of branches of the final tree and groups of 

branches of the initial tree. Thus two branches of the final tree 

belong to the same group if they share at least one link, and 

two branches of the initial tree belong to the same group if 

they share at least one link. According to the instance of 

figure 1, the new branches {S-f-d1} and {S-f-d2} belong to the 

same group and the new branch {S-a-d3} belongs to another 

group. The old branches {S-a-d1} and {S-a-d2} are in the 

same group and {S-d3} in another group. Now we can 

construct a bipartite resources dependency graph Gd = 

(N,O,E) where N contain all the new groups and O all the old 

groups and there is an arc between two groups (a group of 

new branches and a group of old branches) if the first needs 

resources already used par by the second for being 

established. In addition, the backup path of a group is the set 

of backup paths of all primary branches belonging to this 

group. 

If we designate a branch by its destination node we obtain two 

groups in the final tree: g1
new ={d1 ,d2} and g2

new = {d3} and 

two groups in the initial tree: g1
old ={d1,d2} and g2

old = {d3}. 

Graph Gd of the instance of figure 1 is represented in figure 3. 

In this case, the group g2
new needs the resources from the 

group g1
old

 for being reconfigured. Therefore the group g2
new is 

shifted from the source S on his backup paths (cf {S-g-d3} 

and {S-g-d3-d2}}, then g1
new and g2

new
 can be established in 

parallel before backup paths {S-g-d3},{S-g-d3-d2} and the old 

branch {S-d3} are deleted in parallel. 

So, all dependencies relationships between branches and 

between backup paths induced by a shared protected light-tree 

reconfiguration instance must be highlighted in order to make 

the best use of the backup resources and for reconfiguring a 

light-tree with shared backup paths quickly without flows 

interruption. To solve this problem while minimizing the 

interruption, the dependency relationships will be modelled as 

a graph (cf. Figure 4), and an algorithm is provided for 

reconfiguring a protected light-tree without flow interruption, 

which reduces the processing time. 
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4. PROPOSED SCHEME 

The previous section showed that a resource dependency 

graph alone is not sufficient to model all the dependencies of 

our problem. This is why an algorithm based on four 

dependency graphs is proposed in this section in order to take 

into account all the dependencies of the problem, which will 

allow us to avoid flow interruptions and reduce the time of the 

reconfiguration process. 

4.1. Dependency Modeling and Notation 

4.1.1. Initial Tree Dependency 

A dependency between two branches of the initial tree implies 

that these two branches share at least one link. So the deletion 

of one leads to the interruption of flow in the other. We model 

the whole of this sort of dependency through a digraph which 

we call "initial tree dependency graph". This graph is denoted 

by GT0
(Vd, ET0

) where each vertex in Vd represents a branch 

in the initial tree and there is a link between two nodes of the 

graph if their corresponding branches share at least one link. 

In this graph, two related vertexes belong to the same group. 

It allows to determinate all the groups of old branches (cf. 

Figure 4-a). 

4.1.2. Resources Dependency 

A dependency of resources between two branches means that 

the first needs the resources (link, slots) of the second to be 

established. We model this relationship by a directed graph 

that we call the "resource dependency graph". This graph is 

denoted by GR(Vd,ER) thus, a vertex in the graph represents a 

branch in the final tree and there is an arc in the graph 

between two vertices A and B if the new branch 

corresponding to A needs the resources of the old branch 

corresponding to B to be established. An example of this 

graph is found in figure 2 where the new branch {S-a-d3} 

representing by the vertex d3 needs the resources of the old 

branches {S-a-d2} and {S-a-d1} representing respectively by 

the vertex d1 and d2 for being established. It allows 

determining all the resource dependencies of a reconfiguration 

instance and constructs the bipartite graph Gd. 

4.1.3. Backup Paths Dependency 

A backup path dependency between two branches of the 

initial tree implies that they share at least one link. So, the 

establishment of one backup path before the other creates a 

deadlock for the second backup path since they share the 

same resources. We model such a relationship through a 

digraph that we call the "backup path dependency graph". 

This graph is denoted by GL0
(Vd,EL0

) and, a vertex in the 

graph represents a branch in the initial tree and two vertices 

are related in the graph if their respective backup paths share 

at least one link. An example is showed in figure 4-c. The 

vertex d2 and d3 are related because their respective backup 

paths {S-g-d3} and {S-g-d3-d2} share at least on link. This 

graph allows finding the backup paths of each old group. 

4.1.4. Final Tree Dependency 

A dependency of the final tree between two branches of the 

final tree implies that these two branches share at least one 

link. So the establishment of one before the other creates a 

deadlock. We model this type of relationship by a digraph that 

we call the "final tree dependency graph". This graph is 

denoted by GTz
(Vd,ETz

) where each vertex in Vd represents a 

branch in the final tree and there is a link between two 

vertices of the graph if their corresponding branches share at 

least one link. This graph allows to determinate all the groups 

of new branches (cf. Figure 4-c) need to be reconfigured in 

parallel. So, in this graph two related vertex means that their 

corresponding groups belong to the same group. 

4.2. Proposed Algorithm 

In this section of our paper, an algorithm to reconfigure a 

light-tree with shared protection (LSP_Reconf) Algorithm 1 is 

proposed. In, this algorithm resource dependency is not 

considered between two branches, but between two groups of 

branches (cf. between new branches group and old branches 

groups), then some of the old groups are shifted together on 

their backup paths to process the dependencies of the 

resources. Finally, all the new groups are established in 

parallel. The algorithm takes as input:  

 An initial tree T0, a final tree Tz, and the set of  

 Backup paths L0 of T0, given by the network. 

And as output: 

 A series of steps 𝑆 = (𝑠0,....,𝑠k) allowing to migrate 

from 𝑇0 to 𝑇z quickly and without flow interruption  

The LSP_Reconf algorithm is described as follows: (a) First 

construct the 4 graphs of section 4.1 i.e. the "initial tree 

dependency graph", the "resources dependency graph", the 

"final tree dependency graph", the "backup path dependency 

graph". (b) According to the final tree dependency graph, 

divide the new branches into groups such that branches in the 

same group share at least one link. Let   Gnew = 

{ g0
new,…, gn

new} a set of group where  gi
new is a group of 

branches of the final tree sharing at least one link. (cf. line 4 

Algorithm 1) (c) According to the initial tree dependency 

graph divide the old branches into groups such that branches 

in the same group share at least one link. Let   Gold = 

{ g0
old,…, gn

old }  where gi
old is a group of branches of the 

initial tree sharing at least one link (cf. line 4 Algorithm 1). 

(d) Build according to the resource dependency graph a 

bipartite graph Gd= (N, O, E) where a vertex in N represents a 

group element of  Gnew, a vertex in O represents an element 

of   Gold  and there is an arc between a vertex xi of N and a 
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vertex yj of O if the group  gi
new corresponding to xi needs the 

resources of at least one branch of the group  gj
old  

corresponding to yj  for being reconfigured. (cf. line 5 

Algorithm 1). The rest of the algorithm is based on the 

bipartite graph Gd and allows reconfiguring in parallel the 

groups of branches without interruption of flow, without 

additional resources and quickly (line 5 to line 27). (e) To 

start with, we remove from the set of old branch groups O of 

the graph Gd all the groups whose resources are not needed 

for the reconfiguration process. (line 6 to line 13 Algorithm 

1). (f) Also, remove from the groups of new branch N all new 

groups that do not need to be reconfigured (line 6 to line 13). 

(g) An update of the graph Gd is performed (line 14). (h) If set 

O is empty after the update then no backup paths will be used 

to migrate from T0 to Tz. In this case, pre-establish in parallel 

all the new groups of set N, establish in parallel all the new 

groups of set N, and delete their old branches in parallel (line 

15 to 19). (i) If, on the other hand, the set O is not empty, then 

the set O contains the old groups whose resources are needed 

for the reconfiguration process. In this case, shift all the 

groups of set O simultaneously to their backup path to free the 

resources (line 21 to line 23). Then establish in parallel all the 

groups of set N and simultaneously delete their old branch 

and the set of backup paths established in 23 (line 24 to 26). 

The algorithm ends with the construction of the new rescue 

paths of the final tree Tz. 

Algorithm: light-tree reconfiguration algorithm with shared 

backup paths LSP_Reconf 

1:Begin 

2: If T0 = Tz Go to line 27 // new light-tree and old light-

tree are equal 

3: If (T0 = Tz ) 

4:  Determine the set of groups   𝑮𝒏𝒆𝒘  

 and  𝑮𝒐𝒍𝒅 

5:  Construct 𝐺𝑑= (N, O, E) 

6:  Remove all vertices have degree equal to 0 

 from O 

// Their corresponding groups resources are not necessary for 

the //reconfiguration process 

7:  For each 𝑥𝑖 from the set N and 𝑦𝑗 from the 

  set O  

8:   If a group 𝑥𝑖 = 𝑦𝑗  and vertex 𝑦𝑗 has 

a    degree equal to 1  

9:    Remove 𝑥𝑖 from   𝑮𝒏𝒆𝒘 

10:    Remove 𝑦𝑗   from   𝑮𝒐𝒍𝒅 

//Remove their corresponding groups from  

11:   End If 

12:  End For 

13  Update   𝑮𝒐𝒍𝒅,   𝑮𝒏𝒆𝒘 

14:                       If the set   𝑮𝒐𝒍𝒅  is empty 

// No dependencies exist 

15:   Pre-establish simultaneously all the 

   groups of  𝑮𝒏𝒆𝒘 

16:   Establish simultaneously all the 

  groups of  𝑮𝒏𝒆𝒘 

17    Delete simultaneously all the old 

  branches of all the groups of  𝑮𝒏𝒆𝒘 

18:  End If 

19:  If the set   𝑮𝒐𝒍𝒅 is no empty  

// Resources dependencies exist 

20:   Pre-establish simultaneously all the 

   backup paths of all the groups 

    𝑮𝒐𝒍𝒅 

21:   Establish simultaneously all the 

  backup paths of all the groups  

 of  𝑮𝒐𝒍𝒅 

22:   Delete all the branches of all the 

  groups of  𝑮𝒐𝒍𝒅 

23:   Pre-establish all the groups 

  of  𝑮𝒏𝒆𝒘 

24:   Establish all the groups of  𝑮𝒏𝒆𝒘 

25:   Delete the old branches of   𝑮𝒏𝒆𝒘 

 and the backup paths Establish in 22  

26:  End If 

27: Building the new backup paths of Tz 

28: End 

Algorithm 1 Light-Tree Shared Protection Reconfiguration 

Algorithm 

5. RESULTS AND DISCUSSIONS 

5.1. Simulation Setting and Performance Metrics 

To assess the performance of LSP_Reconf in elastic optical 

networks, simulation experiments were employed using two 

existing topologies (US-backbone and the pan-European 

COST-236) and the FlexGridSim [21] simulator. The metrics 

used here for comparison are:  

 The total number of flow interruption to the destination 

nodes of a light-tree (cf. equation 3),  

 The number of the reconfiguration process steps that 

impact the process time (cf. equation 5 and 6) 

 The number of additional resources assigned to the 

reconfiguration process.  

An instance of our light-tree reconfiguration problem takes as 

parameters: an initial light-tree T0(S,D), a final light-tree 

Tz(S,D) with the same source and destination set as T0, and a 

set of shared backup paths L0 of initial light-tree T0. For each 

topology (cf. US-backbone and the pan-European COST-

236), two experiments are conducted. In the first experiments, 



International Journal of Computer Networks and Applications (IJCNA)   

DOI: 10.22247/ijcna/2021/209185                 Volume 8, Issue 3, May – June (2021) 

  

 

 

ISSN: 2395-0455                                                  ©EverScience Publications       147 

    

RESEARCH ARTICLE 

2500 instances are generated where the initial light-tree is an 

approximation of the Minimum Steiner Tree (MST) and the 

final light-tree is the Shortest Paths Tree.  In the second 

experiment, another 2500 instances are generated where the 

initial light-tree is the Shortest Path Tree (SPT) and the final 

tree is an approximation of the Minimum Steiner Tree (MST), 

from source to the destinations. The proposed algorithm (i.e 

LSP_Reconf) is run for each instance. Finally, an average of 

the different metrics is computed over the 2500 processed 

instances on each topology used. An instance of the problem 

is generated as follows: 

 The initial light-tree: For each multicast connection, the 

source, destinations, and the number of destinations are 

randomly selected from the network nodes. The light-

tree is obtained by using SPT or MST algorithm 

according to experiments conducted and used 5 slots in 

each link.  

 The final light-tree: For each multicast connection, the 

source, the destinations, and the number of destinations 

are the same as the initial light-tree. The light-tree is 

obtained by using SPT or MST algorithm according to 

experiments conducted and used 5 slots in each link.  

 Shared Backup paths: For each branch of the initial 

light-tree a shared backup path is constructed using 

Dijkstra algorithm and SBPP algorithm [22]. Each 

shared backup path used 5 slots in each link. 

The proposed algorithm (LSP_Reconf) is compared with 

Bp_Bar2 and MBB1, the other light-tree reconfiguration 

scheme with the same parameters. 

5.2. Performance Evaluation 

5.2.1. Number of Flow Interruption Analysis 

 

Figure 5 Comparison of the Average Number of Flow 

Interruptions 

Figure 5 clearly shows that our LSP_Reconf algorithm and 

the Bp_Bar2 algorithm do not produce any flow interruption 

during the reconfiguration process like Bp_Bar2, unlike the 

MBB1 algorithm. This is due that the MMB1 algorithm does 

not use any other spectrum resources apart from the ones 

available in the network in its light-tree reconfiguration 

approach. The corresponding value of Figure 5 is provided in 

Table 1. 

Topologies  COST 239 USA BACK. 

Reconf. Process AVG Min/Max AVG Min/Max 

BpBar_2 0 0/0 0 0/0 

LSP_Reconf 0 0/0 0 0/0 

MBB_1 9,63 0/18 27,97 0/315 

Table 1 Average Number of Interruption of the 

Reconfiguration Process 

5.2.2. Additional Resources Analysis 

 

Figure 6 The Average Additional Resources (T0=MST, Tz= 

SPT)   

Table 2 Additional Cost of the Reconfiguration Process T0 

=MST and Tz =SPT 

Figure 6, and figure 7 show the average number of additional 

resources used in the reconfiguration process. In figure 6, the 

initial light-tree is a MST and final light-tree is a SPT. In 

figure 7 the initial light-tree is a SPT and final light-tree is a 

MST. An additional resource is a spectrum resource (slots) 

intended to establish incoming connections that are diverted 

to meet the lack of spectrum resources for the reconfiguration 

process. From figure 6, and figure 7 it can be identified that 

LSP_Reconf required no additional resources. Backup paths 

spectrum resources used during LSP_Reconf cannot be 

considered as additional resources because, under normal 

operation, the backup resources do not carry any traffic. On 
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the other hand, Bpbar_2 generates additional resources 

because it uses wavelength converters to overcome the lack of 

resources in its approach. So LSP_Reconf is more hitless 

Bpbar_2 considering network resources. The corresponding 

values of figures 6 and 7 are provided respectively in Table 2 

and 3. 

 

Figure 7 The Average Additional Resources (T0=SPT, Tz= 

MST) 

Table 3 Additional Resources of the Reconfiguration Process 

T0 =SPT and Tz =MST 

5.2.3. Number of Steps Analysis 

 

Figure 8 Average of the Number of Steps ( T0 =MST and 

Tz=SPT) 

Topologies  COST 239 USA BACK. 

Reconf. 

Process 

AVG Min/Max AVG Min/Max 

BpBar_2 18,21 6/61 58,48 6/153 

LSP_Reconf 4,32 0/6 4,77 0/6 

Table 4 Duration of the Reconfiguration Process (Number of 

Steps) T0 =MST and Tz=SPT 

 

Figure 9 Average Number of Steps (T0 =SPT and Tz=MST) 

Topologies  COST 239 USA BACK. 

Reconf. process AVG Min/Max AVG Min/Max 

BpBar_2 20,75 6/43 57,24 6/130 

LSP_Reconf 4,5 0/6 4,9 0/6 

Table 5 Duration of the Reconfiguration Process (Number of 

Steps) T0 =MST and Tz=SPT 

The reconfiguration process should be as short as possible in 

order to quickly re-optimize all network resources and reduce 

the impact on the end-user. So speed is an essential metric to 

assess the reconfiguration scheme. Here the process duration 

is the number of steps necessary to perform the process. 

Figures 8 and 9 performed a comparison of the average of the 

number of steps. In figure 8, the initial light-tree is an MST 

and final light-tree is a SPT. In figure 9 the initial light-tree is 

a SPT and final light-tree is a MST. It shows that LSP_Reconf 

takes between 70% and 90 % fewer steps than Bpbar_2. 

BpBar_2 does not group the branches and performs several 

sequential operations on the nodes. This makes Bpbar_2 need 

more steps than LSP_Reconf. In another hand LSP_Reconf 

group the branches to be reconfigured and setup them 
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simultaneously, which reduces significantly the number of 

steps. The corresponding values of figures 6 and 7 are 

provided respectively in Tables 4 and 5. 

Topologies Cost 239 USA Back. 

T0  = SPT , Tz = MST  68% 87% 

T0  = MST ,  Tz =  SPT 88% 91% 

Table 6 Ratio of Backup Resources Used by LSP_Reconf 

6. CONCLUSION 

This paper presents a novel light-tree reconfiguration scheme 

that use shared backup paths spectrum resources.  A modified 

bipartite dependency graph was constructed to modelled the 

light-tree reconfiguration problem. The spectrum resources 

dependencies between new branches and old branches are 

extended to dependency between groups of new branches and 

groups of old branches. This scheme reconfigures in parallel 

the groups of branches in the final light-tree. The metrics 

considered here are first the number of flows interruption, 

then the number of additional spectrum resources used, and 

finally the number of steps. These three metrics were 

evaluated through a reconfiguration algorithm propose and 

compare with MBB_1 and BpBar_2.  The results show that 

our proposed algorithm (i.e LSP_Reconf) avoids flow 

interruptions and considerably reduces the number of steps 

than MBB_1 and BpBar_2. Nevertheless, even if no 

additional spectrum resources are mobilized in the 

reconfiguration process, the shared backup paths spectrum 

resources used to conduct the process still huge compared to 

all existing resources spectrum (between 70% and 90% cf. 

table 6). This last point makes the algorithm energy-intensive 

and unable to effectively handle link failure during the 

reconfiguration process. A lower protection resource ratio 

could be a solution to this problem. 
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