
Life ScienceS | Biotechnology

JUne 2018 • Vol.60 nUmber 2 Vietnam Journal of Science,
Technology and Engineering 73

Introduction

The development of massive parallel sequencing 
technologies has stimulated the production of a vast number 
of short-reads, which are small fragments of DNA genomes. 
As the mapping of short-read datasets to large genomes 
presents a huge challenge to the existing sequencing 
programs, more and more algorithms are being improved in 
order to reduce the execution time and increase the mapping 
accuracy. At the outset, hash table-based methods either 
hash the short-read sequences or the reference genome and 
many alignment tools have been developed to resolve this. 
The aligners based on hashing short reads are typically 
MAQ [1], ZOOM [2], and SHRiMP [3]. MAQ is one of the 
old programs that supports ungapped sequence alignments 
and shown quality scores, while ZOOM limits a number of 
mismatches. SHRiMP indexes both the short-reads and the 
genome. These aligners have a flexible memory footprint, 
which have been capable of overhead when a small number 
of reads are mapped. The tools hashing the genome, such 
as SOAP 1 [4], PASS [5], MOM [6], mrFAST/mrsFAST 
[7], and BFAST [8] can be parallelized using numerous 
threads; however, they need a large memory to build an 
index for the reference genome. Interestingly, mrFAST/
mrsFAST employs a seed-and-extend strategy that initially 
identifies candidate positions for a short-read and then 
uses different alignment algorithms, such as the Smith-
Waterman algorithm [9], for mapping. In addition to initial 
hash table-based methods, the other alignment algorithm is 
a slider that merges and sorts the reference subsequences 
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and short-reads.

As the alignment algorithms using a hash table often 
require a large amount of memory, new alignment programs 
based on suffix/prefix tries were generated to reduce the 
memory requirements. The suffix/prefix tries perform 
backward searched and the Burrows-Wheeler Transform 
(BWT) [10] for exact matching, which has led to the 
development of several aligners, including Bowtie [11], 
SOAP 2 [12], and BWA [13]. Furthermore, they also provide 
support for paired-end alignment. Bowtie, including Bowtie 
1 and 2 [14], is one of the first programs to use FM-index 
[15, 16], which is built on the BWT and mimics backward 
search. For reads shorter than about 50 bp, Bowtie 1 is 
sometimes more sensitive, while Bowtie 2 supports gapped 
alignment and works better for longer short-reads. SOAP 2 
combines the hashing and FM-index to speed up but uses 
more memory than BWA and Bowtie. The efficiency of the 
BWA aligner for inexact matching is widely known, and 
it is still used by researchers. All of these aligners are fast 
and have been optimized for multi-core Central Processing 
Units (CPUs). However, increasing the speed of alignment 
process provides time saving, especially with regard to 
processing large-scale data; hence, a multiple-core Graphics 
Processing Units (GPUs)-based method is a powerful 
choice. There are several alignment tools based on GPU, 
including SOAP3 [17] and BarraCUDA [18].  

In this research, the introduction of BWTaligner based 
on the BWT algorithm, exact and inexact matching, has 
been made. Moreover, we have evaluated the performance 
of BWTaligner on simulated data by comparing it with 
BWA in single-nucleotide polymorphism (SNP) calling - 
the finding corresponding to the variations occurring in the 
genome.

Materials and methods

Burrow-Wheeler transform

The BWT construction reduces the execution speed 
and memory in the running process. Let G be a reference 
genome sequence that is constructed by four nucleotides (A, 
C, G, T). The symbol $ is lexicographically smaller than all 

the characters in G and only appears at the end to form a 
new sequence, G$. The matrix M, which is built from the 
rotations of G$, is sorted by lexicographical order, and each 
column is a permutation of G$. The transformed B can be 
attained by taking the last column of matrix M. A suffix 
array (SA) is defined as an array of integers with the starting 
position of the i-th smallest suffix of G. This algorithm is 
illustrated in Fig. 1.
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the memory footprint of the Oc array, only a part of the Oc 
is stored and calculated using the length of Oc (L).
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substitutions mismatching correctly to the substring Q[i+1, 
W-1] (0 ≤ i ≤ W -1).

Results and discussion

We evaluated the performance of the BWTaligner by 
comparing it to BWA version 0.6.2, the alignment tool using 
simulated reads that is most widely used. The paired-end 
datasets were simulated from chromosome 9 in the reference 
rice genome, Nipponbare version 7.0 (Genbank accession 
number PRJDB1747, 23,012,720 bp) using wgsim, a short-
read simulator (version 0.3.1) with a different depth of 
coverage, including 5X, 10X, and 30X 100 bp-paired-end 
reads; 0.085% mutation rates (19,560 SNPs); and 0.02% 
base error rates. First, we evaluated the alignment quality of 
each tool and subsequently called SNPs from aligned short 
reads using mpileup in SAMtools and VarScan. Finally, the 
identified SNPs were compared with the simulated SNPs. 
All the tests were carried out on a workstation with a X5650 
@ 2.67 GHz 24-core processor and 198 GB RAM running 
the Ubuntu 14.10.

Table 1 showed that over 99.0% of simulated paired-
end reads aligned with the reference genome. With regard 
to the number of aligned reads, BWA was slightly higher 
at three depths of coverage. The SNP calling performance 
of the aligners was evaluated using the precision, recall, 
and F-score (Table 2). Precision is defined as TP/(TP+FP), 
recall as TP/(TP+FN), and F-score as 2*precision*recall/
(precision+recall), where TP is a true positive, that is, the 
number of correct SNPs. FP is a false positive, performing 
the mismatch, and FN is a false negative, representing that 
the simulated SNPs were not determined along with the 
missed SNP. From Table 3, it can be seen that at the lower 
coverage (5X and 10X), BWA has better precision, while at 
30X depth, the precision of BWTaligner is higher (99.16% 
as compared to 99.03% of BWA). While the precision is 
a positive predictive value and based on the number of 
positive SNPs, the recall, i.e., the sensitivity, is considered 
as the number of negative SNPs and F-score value, which is 
the harmonic mean of the precision and recall. The results of 
our study showed that BWA always leads to a higher recall 
and F-score than BWTaligner at all coverages. Furthermore, 
F-scores tend to increase as the depth of coverage gets 
higher. This denotes that the depth of coverage plays an 
important role in the accuracy of alignment and SNP calling.

Table 1. Alignment of simulated reads. 

Depth of 
coverage

Stimulated 
paired-end 
reads

Aligned 
reads using 
BWA (%)

Aligned 
reads using 
BWTaligner 
(%)

5X 575,318 99.57 99.38

10X 1,150,636 99.58 99.41

30X 3,451,908 99.58 99.41

Table 2. Performance of SNP calling under different 
coverage.

                            bWA BWTaligner

Call SNP at 5X

TP 1,182 6.01% 891 4.55%

FP 3 0.02% 9 0.05%

FN 18,468 93.97% 18,669 95.40%

Call SNP at 
10X

TP 9,439 47.98% 8,223 41.92%

FP 21 0.11% 58 0.30%

FN 10,211 51.91% 11,337 57.79%

Call SNP at 
30X

TP 19,155 96.56% 18,951 96.10%

FP 187 0.94% 161 0.82%

FN 495 2.50% 609 3.09%

Table 3. Precision, recall and F-measure between BWA 
and BWTaligner. 

bWA BWTaligner

5X 10X 30X 5X 10X 30X

Precision 0.9974 0.9978 0.9903 0.9900 0.9930 0.9916

Recall 0.0601 0.4804 0.9748 0.0456 0.4204 0.9689

F-score 0.1134 0.6485 0.9825 0.0871 0.5907 0.9801

Conclusions

We preliminarily present the BWTaligner based on 
the basic algorithms, including the Burrows-Wheeler 
Transform, backward search for exact and inexact matching. 
This tool will be further developed and empirically studied 
so as to address the short-read alignment challenge with 
regard to time and accuracy. 
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