
Life Sciences | Biotechnology

JUne 2018 • Vol.60 Number 2 Vietnam Journal of Science,
Technology and Engineering 73

Introduction

The development of massive parallel sequencing
technologies has stimulated the production of a vast number
of short-reads, which are small fragments of DNA genomes.
As the mapping of short-read datasets to large genomes
presents a huge challenge to the existing sequencing
programs, more and more algorithms are being improved in
order to reduce the execution time and increase the mapping
accuracy. At the outset, hash table-based methods either
hash the short-read sequences or the reference genome and
many alignment tools have been developed to resolve this.
The aligners based on hashing short reads are typically
MAQ [1], ZOOM [2], and SHRiMP [3]. MAQ is one of the
old programs that supports ungapped sequence alignments
and shown quality scores, while ZOOM limits a number of
mismatches. SHRiMP indexes both the short-reads and the
genome. These aligners have a flexible memory footprint,
which have been capable of overhead when a small number
of reads are mapped. The tools hashing the genome, such
as SOAP 1 [4], PASS [5], MOM [6], mrFAST/mrsFAST
[7], and BFAST [8] can be parallelized using numerous
threads; however, they need a large memory to build an
index for the reference genome. Interestingly, mrFAST/
mrsFAST employs a seed-and-extend strategy that initially
identifies candidate positions for a short-read and then
uses different alignment algorithms, such as the Smith-
Waterman algorithm [9], for mapping. In addition to initial
hash table-based methods, the other alignment algorithm is
a slider that merges and sorts the reference subsequences

BWTaligner: a genome short-read aligner
Lam Nguyen1, Xuan Thi Trinh2, Hien Trinh3, Dang Hung Tran4, Cuong Nguyen1*

1Vinmec Research Institute of Stem Cell and Gene Technology
2Faculty of Information Technology, Hanoi Open University

3Laboratory of Genetic Engineering, Institute of Biotechnology, Vietnam Academy of Science and Technology
4Hanoi National University of Education

Received 6 April 2018; accepted 15 May 2018

*Corresponding author: Email: v.cuongn@vinmec.com

Abstract:

The development of next-generation sequencing tech-
nologies has helped sequence large genomes easily,
producing a huge number of short-reads - small frag-
ments of DNA. Despite the existence of many developed
alignment tools, mapping short-read datasets to the
reference genome, a crucial step of genome analysis,
still remains a challenge. In this study, we develop a
short-read alignment program, BWTaligner, based on
the Burrows-Wheeler transform compression - exact
and inexact matching. We tested it on the paired-end
read data simulated from chromosome 9 of the rice
genome to compare the alignment and single-nucleo-
tide polymorphism (SNP) calling between our aligner
and BWA - the preferred alignment program. The re-
sults showed that the BWA delivers higher recall and
F-score, while BWTaligner has better precision in high
coverage depth.

Keywords: Burrows-Wheeler transform, high-throughput
sequencing, paired-end short reads, sequence alignment.

Classification number: 3.5

Life Sciences | Biotechnology

JUne 2018 • Vol.60 Number 2Vietnam Journal of Science,
Technology and Engineering74

and short-reads.

As the alignment algorithms using a hash table often
require a large amount of memory, new alignment programs
based on suffix/prefix tries were generated to reduce the
memory requirements. The suffix/prefix tries perform
backward searched and the Burrows-Wheeler Transform
(BWT) [10] for exact matching, which has led to the
development of several aligners, including Bowtie [11],
SOAP 2 [12], and BWA [13]. Furthermore, they also provide
support for paired-end alignment. Bowtie, including Bowtie
1 and 2 [14], is one of the first programs to use FM-index
[15, 16], which is built on the BWT and mimics backward
search. For reads shorter than about 50 bp, Bowtie 1 is
sometimes more sensitive, while Bowtie 2 supports gapped
alignment and works better for longer short-reads. SOAP 2
combines the hashing and FM-index to speed up but uses
more memory than BWA and Bowtie. The efficiency of the
BWA aligner for inexact matching is widely known, and
it is still used by researchers. All of these aligners are fast
and have been optimized for multi-core Central Processing
Units (CPUs). However, increasing the speed of alignment
process provides time saving, especially with regard to
processing large-scale data; hence, a multiple-core Graphics
Processing Units (GPUs)-based method is a powerful
choice. There are several alignment tools based on GPU,
including SOAP3 [17] and BarraCUDA [18].

In this research, the introduction of BWTaligner based
on the BWT algorithm, exact and inexact matching, has
been made. Moreover, we have evaluated the performance
of BWTaligner on simulated data by comparing it with
BWA in single-nucleotide polymorphism (SNP) calling -
the finding corresponding to the variations occurring in the
genome.

Materials and methods

Burrow-Wheeler transform

The BWT construction reduces the execution speed
and memory in the running process. Let G be a reference
genome sequence that is constructed by four nucleotides (A,
C, G, T). The symbol $ is lexicographically smaller than all

the characters in G and only appears at the end to form a
new sequence, G$. The matrix M, which is built from the
rotations of G$, is sorted by lexicographical order, and each
column is a permutation of G$. The transformed B can be
attained by taking the last column of matrix M. A suffix
array (SA) is defined as an array of integers with the starting
position of the i-th smallest suffix of G. This algorithm is
illustrated in Fig. 1.

 2

including Bowtie [11], SOAP 2 [12], and BWA [13]. Furthermore, they also provide support for
paired-end alignment. Bowtie, including Bowtie 1 and 2 [14], is one of the first programs to use
FM-index [15, 16], which is built on the BWT and mimics backward search. For reads shorter than
about 50 bp, Bowtie 1 is sometimes more sensitive, while Bowtie 2 supports gapped alignment and
works better for longer short-reads. SOAP 2 combines the hashing and FM-index to speed up but
uses more memory than BWA and Bowtie. The efficiency of the BWA aligner for inexact
matching is widely known, and it is still used by researchers. All of these aligners are fast and have
been optimized for multi-core Central Processing Units (CPUs). However, increasing the speed of
alignment process provides time saving, especially with regard to processing large-scale data;
hence, a multiple-core Graphics Processing Units (GPUs)-based method is a powerful choice.
There are several alignment tools based on GPU, including SOAP3 [17] and BarraCUDA [18].

In this research, the introduction of BWTaligner based on the BWT algorithm, exact and inexact
matching, has been made. Moreover, we have evaluated the performance of BWTaligner on
simulated data by comparing it with BWA in single-nucleotide polymorphism (SNP) calling - the
finding corresponding to the variations occurring in the genome.

Materials and methods

Burrow-Wheeler transform
The BWT construction reduces the execution speed and memory in the running process. Let G

be a reference genome sequence that is constructed by four nucleotides (A, C, G, T). The symbol $
is lexicographically smaller than all the characters in G and only appears at the end to form a new
sequence, G$. The matrix M, which is built from the rotations of G$, is sorted by lexicographical
order, and each column is a permutation of G$. The transformed B can be attained by taking the
last column of matrix M. A suffix array (SA) is defined as an array of integers with the starting
position of the i-th smallest suffix of G. This algorithm is illustrated in Fig. 1.

Fig. 1. The BWT construction and suffix array of reference genome G = ATGTAC. BWT
matrix includes seven rows that are in lexicographical order. Forward BWT is defined as
CT$ATGA and SA is (6, 4, 0, 5, 2, 3, 1).

Exact matching
Let Q be a query sequence that is a substring of reference genome G. A backward search based

on FM index [15] was used to find each occurrence of Q (Fig. 2), which is actually the search for
an SA interval. Oc(α,i) is the number of occurrences of α in B[0,i]. C(α) is the number of symbols
in Q[0,n-2] that are lexicographically smaller than α ϵ G. Ferragina and Manzini showed the SA
interval for searching for all occurrences of Q in G using the forward BWT as follows:
�� = 	�(�[�]) + ��(�[�], ��(� + 1) 1) + 1,			�	 ∈ [0, |�|]

�� = �(�[�]) + ����[�], ��(� + 1)�,																			�	 ∈ [0, |�|]
where Rs and Re indicate the start and end of the SA interval, respectively. Q is a substring of G if
and only if Rs(i) ≤ Re(i). However, as the total array of Oc is sorted, more memory and execution
time are required. For reducing the memory footprint of the Oc array, only a part of the Oc is stored
and calculated using the length of Oc (L).

Fig. 1. The BWT construction and suffix array of reference
genome G = ATGTAC. BWT matrix includes seven rows
that are in lexicographical order. Forward BWT is defined
as CT$ATGA and SA is (6, 4, 0, 5, 2, 3, 1).

Exact matching

Let Q be a query sequence that is a substring of reference
genome G. A backward search based on FM index [15]
was used to find each occurrence of Q (Fig. 2), which is
actually the search for an SA interval. Oc(α,i) is the number
of occurrences of α in B[0,i]. C(α) is the number of symbols
in Q[0,n-2] that are lexicographically smaller than α ϵ G.
Ferragina and Manzini showed the SA interval for searching
for all occurrences of Q in G using the forward BWT as
follows:

where: Rs and Re indicate the start and end of the SA
interval, respectively. Q is a substring of G if and only if
Rs(i) ≤ Re(i). However, as the total array of Oc is sorted,
more memory and execution time are required. For reducing

 2

including Bowtie [11], SOAP 2 [12], and BWA [13]. Furthermore, they also provide support for
paired-end alignment. Bowtie, including Bowtie 1 and 2 [14], is one of the first programs to use
FM-index [15, 16], which is built on the BWT and mimics backward search. For reads shorter than
about 50 bp, Bowtie 1 is sometimes more sensitive, while Bowtie 2 supports gapped alignment and
works better for longer short-reads. SOAP 2 combines the hashing and FM-index to speed up but
uses more memory than BWA and Bowtie. The efficiency of the BWA aligner for inexact
matching is widely known, and it is still used by researchers. All of these aligners are fast and have
been optimized for multi-core Central Processing Units (CPUs). However, increasing the speed of
alignment process provides time saving, especially with regard to processing large-scale data;
hence, a multiple-core Graphics Processing Units (GPUs)-based method is a powerful choice.
There are several alignment tools based on GPU, including SOAP3 [17] and BarraCUDA [18].

In this research, the introduction of BWTaligner based on the BWT algorithm, exact and inexact
matching, has been made. Moreover, we have evaluated the performance of BWTaligner on
simulated data by comparing it with BWA in single-nucleotide polymorphism (SNP) calling - the
finding corresponding to the variations occurring in the genome.

Materials and methods

Burrow-Wheeler transform
The BWT construction reduces the execution speed and memory in the running process. Let G

be a reference genome sequence that is constructed by four nucleotides (A, C, G, T). The symbol $
is lexicographically smaller than all the characters in G and only appears at the end to form a new
sequence, G$. The matrix M, which is built from the rotations of G$, is sorted by lexicographical
order, and each column is a permutation of G$. The transformed B can be attained by taking the
last column of matrix M. A suffix array (SA) is defined as an array of integers with the starting
position of the i-th smallest suffix of G. This algorithm is illustrated in Fig. 1.

Fig. 1. The BWT construction and suffix array of reference genome G = ATGTAC. BWT
matrix includes seven rows that are in lexicographical order. Forward BWT is defined as
CT$ATGA and SA is (6, 4, 0, 5, 2, 3, 1).

Exact matching
Let Q be a query sequence that is a substring of reference genome G. A backward search based

on FM index [15] was used to find each occurrence of Q (Fig. 2), which is actually the search for
an SA interval. Oc(α,i) is the number of occurrences of α in B[0,i]. C(α) is the number of symbols
in Q[0,n-2] that are lexicographically smaller than α ϵ G. Ferragina and Manzini showed the SA
interval for searching for all occurrences of Q in G using the forward BWT as follows:
�� = 	�(�[�]) + ��(�[�], ��(� + 1) 1) + 1,			�	 ∈ [0, |�|]

�� = �(�[�]) + ����[�], ��(� + 1)�,																			�	 ∈ [0, |�|]
where Rs and Re indicate the start and end of the SA interval, respectively. Q is a substring of G if
and only if Rs(i) ≤ Re(i). However, as the total array of Oc is sorted, more memory and execution
time are required. For reducing the memory footprint of the Oc array, only a part of the Oc is stored
and calculated using the length of Oc (L).

 = ([]) + ([], (+ 1) 1) + 1, ∈ [0, | |]

= ([]) + [], (+ 1) , ∈ [0, | |]

Life Sciences | Biotechnology

JUne 2018 • Vol.60 Number 2 Vietnam Journal of Science,
Technology and Engineering 75

the memory footprint of the Oc array, only a part of the Oc
is stored and calculated using the length of Oc (L).

 3

Fig. 2. The pseudocode of backward search.

Inexact matching
Sequencing errors and the differences between the sequence and reference genome are inexact

matches. The inexact matches can be attained by comparing input sequences with the reference
genome in order to identify variations, such as substitutions, insertions, and deletions. However, the
exact matching only provides ungapped alignment; therefore, insertions and deletions were not
allowed. Hence, inexact match searching could be converted to exact matches based on all the
permutations of short reads. A total of permutations can be performed by the 4-ary tree, where each
permutation represents different routes (Fig. 3).

Fig. 3. A 4-ary tree example for searching the inexact matches of sequence “GAC” using
BWT. The circles are defined as the original bases and rectangles as the mutated bases.

Each node denotes a base in the query with the same position. Currently, there are two

approaches to searching for all inexact matches - depth-first search (DFS) and breadth-first search
(BFS). The BFS approach requires a large memory capacity for storing all the results, so this
approach is impractical for GPU computing. Our aligner implemented the DFS approach, where
the memory expenditure is small and equivalent to the size of the tree. Nevertheless, recursive
functions are still supported for the Fermi architecture [19]. Fig. 4 illustrates the pseudocode of
inexact matching. The number of inexact matching of sequences can be estimated through
calculating the number of bases that do not exactly match the genome. z(*) is defined as the full
length of the query sequence (Q), where z(i) is defined as the number of inexact matches in the
query Q[i + 1, |Q|-1] (0 ≤ i ≤ |Q| -1). For seed alignment, zw(*) is calculated, where zw(i)
represents the number of substitutions mismatching correctly to the substring Q[i+1, W-1] (0 ≤ i ≤
W -1).

Fig. 2. The pseudocode of backward search.

Inexact matching

Sequencing errors and the differences between the
sequence and reference genome are inexact matches.
The inexact matches can be attained by comparing input
sequences with the reference genome in order to identify
variations, such as substitutions, insertions, and deletions.
However, the exact matching only provides ungapped
alignment; therefore, insertions and deletions were
not allowed. Hence, inexact match searching could be
converted to exact matches based on all the permutations
of short reads. A total of permutations can be performed by
the 4-ary tree, where each permutation represents different
routes (Fig. 3).

 3

Fig. 2. The pseudocode of backward search.

Inexact matching
Sequencing errors and the differences between the sequence and reference genome are inexact

matches. The inexact matches can be attained by comparing input sequences with the reference
genome in order to identify variations, such as substitutions, insertions, and deletions. However, the
exact matching only provides ungapped alignment; therefore, insertions and deletions were not
allowed. Hence, inexact match searching could be converted to exact matches based on all the
permutations of short reads. A total of permutations can be performed by the 4-ary tree, where each
permutation represents different routes (Fig. 3).

Fig. 3. A 4-ary tree example for searching the inexact matches of sequence “GAC” using
BWT. The circles are defined as the original bases and rectangles as the mutated bases.

Each node denotes a base in the query with the same position. Currently, there are two

approaches to searching for all inexact matches - depth-first search (DFS) and breadth-first search
(BFS). The BFS approach requires a large memory capacity for storing all the results, so this
approach is impractical for GPU computing. Our aligner implemented the DFS approach, where
the memory expenditure is small and equivalent to the size of the tree. Nevertheless, recursive
functions are still supported for the Fermi architecture [19]. Fig. 4 illustrates the pseudocode of
inexact matching. The number of inexact matching of sequences can be estimated through
calculating the number of bases that do not exactly match the genome. z(*) is defined as the full
length of the query sequence (Q), where z(i) is defined as the number of inexact matches in the
query Q[i + 1, |Q|-1] (0 ≤ i ≤ |Q| -1). For seed alignment, zw(*) is calculated, where zw(i)
represents the number of substitutions mismatching correctly to the substring Q[i+1, W-1] (0 ≤ i ≤
W -1).

Each node denotes a base in the query with the same
position. Currently, there are two approaches to searching
for all inexact matches - depth-first search (DFS) and
breadth-first search (BFS). The BFS approach requires a
large memory capacity for storing all the results, so this
approach is impractical for GPU computing. Our aligner
implemented the DFS approach, where the memory
expenditure is small and equivalent to the size of the tree.
Nevertheless, recursive functions are still supported for the
Fermi architecture [19]. Fig. 4 illustrates the pseudocode
of inexact matching. The number of inexact matching of
sequences can be estimated through calculating the number
of bases that do not exactly match the genome. z(*) is
defined as the full length of the query sequence (Q), where
z(i) is defined as the number of inexact matches in the
query Q[i + 1, |Q|-1] (0 ≤ i ≤ |Q| -1). For seed alignment,
zw(*) is calculated, where zw(i) represents the number of

 4

Fig. 4. The pseudocode for inexact matching.

Results and discussion

We evaluated the performance of the BWTaligner by comparing it to BWA version 0.6.2, the
alignment tool using simulated reads that is most widely used. The paired-end datasets were
simulated from chromosome 9 in the reference rice genome, Nipponbare version 7.0 (Genbank
accession number PRJDB1747, 23,012,720 bp) using wgsim, a short-read simulator (version 0.3.1)
with a different depth of coverage, including 5X, 10X, and 30X 100 bp-paired-end reads; 0.085%
mutation rates (19,560 SNPs); and 0.02% base error rates. First, we evaluated the alignment quality
of each tool and subsequently called SNPs from aligned short reads using mpileup in SAMtools
and VarScan. Finally, the identified SNPs were compared with the simulated SNPs. All the tests
were carried out on a workstation with a X5650 @ 2.67 GHz 24-core processor and 198 GB RAM
running the Ubuntu 14.10.

Table 1 showed that over 99.0% of simulated paired-end reads aligned with the reference
genome. With regard to the number of aligned reads, BWA was slightly higher at three depths of
coverage. The SNP calling performance of the aligners was evaluated using the precision, recall,
and F-score (Table 2). Precision is defined as TP/(TP+FP), recall as TP/(TP+FN), and F-score as
2*precision*recall/(precision+recall), where TP is a true positive, that is, the number of correct
SNPs. FP is a false positive, performing the mismatch, and FN is a false negative, representing that
the simulated SNPs were not determined along with the missed SNP. From Table 3, it can be seen

Fig. 4. The pseudocode for inexact matching.

Fig. 3. A 4-ary tree example for searching the inexact
matches of sequence “GAC” using BWT. The circles are
defined as the original bases and rectangles as the mutated
bases.

Life Sciences | Biotechnology

JUne 2018 • Vol.60 Number 2Vietnam Journal of Science,
Technology and Engineering76

substitutions mismatching correctly to the substring Q[i+1,
W-1] (0 ≤ i ≤ W -1).

Results and discussion

We evaluated the performance of the BWTaligner by
comparing it to BWA version 0.6.2, the alignment tool using
simulated reads that is most widely used. The paired-end
datasets were simulated from chromosome 9 in the reference
rice genome, Nipponbare version 7.0 (Genbank accession
number PRJDB1747, 23,012,720 bp) using wgsim, a short-
read simulator (version 0.3.1) with a different depth of
coverage, including 5X, 10X, and 30X 100 bp-paired-end
reads; 0.085% mutation rates (19,560 SNPs); and 0.02%
base error rates. First, we evaluated the alignment quality of
each tool and subsequently called SNPs from aligned short
reads using mpileup in SAMtools and VarScan. Finally, the
identified SNPs were compared with the simulated SNPs.
All the tests were carried out on a workstation with a X5650
@ 2.67 GHz 24-core processor and 198 GB RAM running
the Ubuntu 14.10.

Table 1 showed that over 99.0% of simulated paired-
end reads aligned with the reference genome. With regard
to the number of aligned reads, BWA was slightly higher
at three depths of coverage. The SNP calling performance
of the aligners was evaluated using the precision, recall,
and F-score (Table 2). Precision is defined as TP/(TP+FP),
recall as TP/(TP+FN), and F-score as 2*precision*recall/
(precision+recall), where TP is a true positive, that is, the
number of correct SNPs. FP is a false positive, performing
the mismatch, and FN is a false negative, representing that
the simulated SNPs were not determined along with the
missed SNP. From Table 3, it can be seen that at the lower
coverage (5X and 10X), BWA has better precision, while at
30X depth, the precision of BWTaligner is higher (99.16%
as compared to 99.03% of BWA). While the precision is
a positive predictive value and based on the number of
positive SNPs, the recall, i.e., the sensitivity, is considered
as the number of negative SNPs and F-score value, which is
the harmonic mean of the precision and recall. The results of
our study showed that BWA always leads to a higher recall
and F-score than BWTaligner at all coverages. Furthermore,
F-scores tend to increase as the depth of coverage gets
higher. This denotes that the depth of coverage plays an
important role in the accuracy of alignment and SNP calling.

Table 1. Alignment of simulated reads.

Depth of
coverage

Stimulated
paired-end
reads

Aligned
reads using
BWA (%)

Aligned
reads using
BWTaligner
(%)

5X 575,318 99.57 99.38

10X 1,150,636 99.58 99.41

30X 3,451,908 99.58 99.41

Table 2. Performance of SNP calling under different
coverage.

 BWA BWTaligner

Call SNP at 5X

TP 1,182 6.01% 891 4.55%

FP 3 0.02% 9 0.05%

FN 18,468 93.97% 18,669 95.40%

Call SNP at
10X

TP 9,439 47.98% 8,223 41.92%

FP 21 0.11% 58 0.30%

FN 10,211 51.91% 11,337 57.79%

Call SNP at
30X

TP 19,155 96.56% 18,951 96.10%

FP 187 0.94% 161 0.82%

FN 495 2.50% 609 3.09%

Table 3. Precision, recall and F-measure between BWA
and BWTaligner.

BWA BWTaligner

5X 10X 30X 5X 10X 30X

Precision 0.9974 0.9978 0.9903 0.9900 0.9930 0.9916

Recall 0.0601 0.4804 0.9748 0.0456 0.4204 0.9689

F-score 0.1134 0.6485 0.9825 0.0871 0.5907 0.9801

Conclusions

We preliminarily present the BWTaligner based on
the basic algorithms, including the Burrows-Wheeler
Transform, backward search for exact and inexact matching.
This tool will be further developed and empirically studied
so as to address the short-read alignment challenge with
regard to time and accuracy.

Life Sciences | Biotechnology

JUne 2018 • Vol.60 Number 2 Vietnam Journal of Science,
Technology and Engineering 77

REFERENCES
[1] H. Li, J. Ruan, R. Durbin (2008), “Mapping short DNA sequencing

reads and calling variants using mapping quality scores”, Genome
Research, 18(11), pp.1851-1858.

[2] H. Lin, Z. Zhang, M.Q. Zhang, B. Ma, M. Li (2008), "ZOOM!
Zillions of oligos mapped”, Bioinformatics, 24(21), pp.2431-2437.

[3] S.M. Rumble, P. Lacroute, A.V. Dalca, M. Fiume, A. Sidow, M.
Brudno (2009), “SHRiMP: accurate mapping of short color-space reads”,
PLoS Computational Biology, 5(5), pp.e1000386.

[4] R. Li, Y. Li, K. Kristiansen, J. Wang (2008), “SOAP: short
oligonucleotide alignment program”, Bioinformatics, 24(5), pp.713-714.

[5] D. Campagna, A. Albiero, A. Bilardi, E. Caniato, C. Forcato, S.
Manavski, G. Valle (2009), “PASS: a program to align short sequences”,
Bioinformatics, 25(7), pp.967-968.

[6] H.L. Eaves, Y. Gao (2009), “MOM: maximum oligonucleotide
mapping”, Bioinformatics, 25(7), pp.969-970.

[7] F. Hach, F. Hormozdiari, C. Alkan, F. Hormozdiari, I. Birol, E.E.
Eichler, S.C. Sahinalp (2010), “mrsFAST: a cache-oblivious algorithm for
short-read mapping”, Nature Methods, 7(8), pp.576-577.

[8] N. Homer, B. Merriman, S.F. Nelson (2009), “BFAST: an
alignment tool for large scale genome resequencing”, PLoS ONE, 4(11),
pp.e7767.

[9] R. Mott (2005), “Smith-Waterman Algorithm”, Encyclopedia of
Life Sciences, Chichester: John Wiley & Sons, Ltd.

[10] M. Burows, D.J. Wheeler (1994), A block sorting lossless data
compression algorithm, CA, Digital Equipment Corporation.

[11] B. Langmead, C. Trapnell, M. Pop, S.L. Salzberg (2009),

“Ultrafast and memory-efficient alignment of short DNA sequences to the

human genome”, Genome Biology, 10(3), pp.R25.

[12] R. Li, C. Yu, Y. Li, T.W. Lam, S.M. Yiu, K. Kristiansen, J. Wang

(2009), “SOAP2: an improved ultrafast tool for short read alignment”,

Bioinformatics, 25(15), pp.1966-1967.

[13] H. Li, R. Durbin (2009), “Fast and accurate short read alignment

with Burrows-Wheeler transform”, Bioinformatics, 25(14), pp.1754-

1760.

[14] B. Langmead, S.L. Salzberg (2012), “Fast gapped-read alignment

with Bowtie 2”, Nature Methods, 9(4), pp.357-359.

[15] P. Ferragina, G. Manzini (2005), “Indexing compressed text”,

Journal of the ACM, 52(4), pp.552-581.

[16] P. Ferragina, G. Manzini (2000), “Opportunistic data structures

with applications”, Proceedings of the 41st annual symposium on

foundations of computer science, pp.390-398, IEEE.

[17] C.M. Liu, T. Wong, E. Wu, R. Luo, S.M. Yiu, Y. Li, T.W. Lam

(2012), “SOAP3: ultra-fast GPU-based parallel alignment tool for short

reads”, Bioinformatics, 28(6), pp.878-879.

[18] P. Klus, S. Lam, D. Lyberg, M. Cheung, G. Pullan, I. McFarlane,

B.Y. Lam (2012), “BarraCUDA - a fast short read sequence aligner using

graphics processing units”, BMC Research Notes, 5(1), p.27.

[19] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym (2008),

“NVIDIA Tesla: a unified graphics and computing architecture”, IEEE

Micro, 28(2), pp.39-55.

