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Introduction

Timber structure is mainly used in construction due to its 
outstanding properties such as high resistance and stability, 
aesthetic and, in particular, environment-friendly. However, 
timber behaves weakly in the direction perpendicular to the 
grain. Hence, its performance in the direction should be 
optimised to obtain a good global resistance of the timber 
structure. Various techniques with the aim of increasing the 
strength of timber structures have been used. These include 
the use of elements made from timber, iron, steel, aluminium, 
concrete and the more recent laminated timber, epoxy resins 
fibber reinforced polymers (FRP). The performance of 
timber can be extended by adding the steel elements at zones 
where the timber is weak or the timber can be reinforced 
by the manufactured technique of gluing several timber 
lamellas such as the glued laminated timber and the cross-
laminated timber. On the other hand, FRP is used because 
it has several advantages, such as being easily applicable 
and suitable for the strengthening of timber elements under 
bending, connections between different elements, local 
bridging where defects are present, confining local rupture 
and preventing crack opening. The other solution is the 
use of epoxy resins as adhesives for the strengthening of 
extremities of the beam, the filling of hollow sections due 
to biotic attack and the in situ strengthening of floor beams. 
However, all these methods require materials with high cost, 
which are not common, especially in Vietnam. Self-tapping 
screws become the first choice because of their economic 
advantages and comparatively easy handling. The European 
Standard EN 1995-1-1 [1] presents the requirements for 
self-tapping screws. The literature review shows that the 
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research works about reinforcement are mostly focused 
on testing reinforcement materials and the development of 
alternative methods [2-10]. Extremely less attention was 
paid to the calculation methods predicting the load-carrying 
capacity of reinforced structures and joints [11]. Therefore, 
the need for the development of design methods arises, 
as it is a key point to assess the strength and deformation 
properties of reinforced structures and joints.

The present paper describes the experimental results 
related to the reinforcement of a notched beam by screws 
and a simplified finite element model to simulate the global 
behaviour of self-tapping screw reinforcements in timber 
structural elements and joints. The numerical methodology 
has been applied successfully to simulate the load-slip 
behaviour of timber connections [12-14]. Here, it is 
presented and applied in the context of reinforcement of the 
notched spruce beams. The obtained results are compared 
with the experimental tests, showing good agreement.

Experimental results

Methodology

The beam specimens have been made from a spruce 
timber, which has an average density of 420 kg/m3 at the 
moisture constant that fluctuated between 10% and 12%. 
The experimental tests consist of two sets of notched beams: 
unreinforced notched beams (Fig. 1A) and reinforced 
notched beams (Fig. 1B).

2 
 

review shows that the research works about reinforcement are mostly focused on testing 
reinforcement materials and the development of alternative methods [2-10]. Extremely less 
attention was paid to the calculation methods predicting the load-carrying capacity of 
reinforced structures and joints [11]. Therefore, the need for the development of design 
methods arises, as it is a key point to assess the strength and deformation properties of 
reinforced structures and joints. 
 The present paper describes the experimental results related to the reinforcement of a 
notched beam by screws and a simplified finite element model to simulate the global 
behaviour of self-tapping screw reinforcements in timber structural elements and joints. The 
numerical methodology has been applied successfully to simulate the load-slip behaviour of 
timber connections [12-14]. Here, it is presented and applied in the context of reinforcement 
of the notched spruce beams. The obtained results are compared with the experimental tests, 
showing good agreement. 

Experimental results 

Methodology 

 The beam specimens have been made from a spruce timber, which has an average density 
of 420 kg/m3 at the moisture constant that fluctuated between 10% and 12%. The 
experimental tests consist of two sets of notched beams: unreinforced notched beams (Fig. 
1A) and reinforced notched beams (Fig. 1B). 
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 The reinforced notched beam is reinforced by one screw at the perpendicular middle of 
the beam. As the reinforcement of the screw should impact as soon as the failure of the beam 
at the notch appears, the screw should be as near to the notch as possible (Fig. 2A). 
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Fig. 1. Schematic illustration of the tested notched beams: (A) 
unreinforced beams, (B) reinforced beams.

The reinforced notched beam is reinforced by one 
screw at the perpendicular middle of the beam. As the 
reinforcement of the screw should impact as soon as the 
failure of the beam at the notch appears, the screw should 
be as near to the notch as possible (Fig. 2A).

The beams have a total length of 900 mm and a cross 
section of 100 mm x 80 mm. For the reinforcement of 
notches, a single threaded-screw of 100 mm length and 5 
mm diameter was used (Fig. 2B).
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Fig. 2. Reinforced notched beams with one screw. 
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carrying capacity of the entire beams. 

 

Fig. 4. Experimental load-deflection curves from the unreinforced 
beams. 

(B) 

Fig. 2. Reinforced notched beams with one screw.

The specimens were tested under the three-point bending 
in a standard Instron machine (Fig. 3) with 150 kN load cell 
capacity at the crosshead speed of 2 mm/min.

Fig. 3. Three-point bending test set-up.

Results

Fig. 4 and 5 display the experimental load-deflection 
curves from the unreinforced and the reinforced beams, 
respectively. Fig. 4 presents a brittle behaviour caused by 
the damage of timber in transversal tension at the notch. 
However, the curves from the reinforced beams in Fig.5 
show a plastic behaviour after an initial elastic stage. The 
beams’ performance in transversal tension is extended by 
the reinforcement of the screw. That causes the appearance 
of the elasto-plastic behaviour of the beams, and the damage 
initiates at a later stage. From these figures, it can be 
observed that the reinforced notches noticeably enhanced 
the load-carrying capacity of the entire beams.



Physical Sciences | Engineering

Vietnam Journal of Science,
Technology and Engineering28 September 2018 • Vol.60 Number 3

Fig. 4. Experimental load-deflection curves from the 
unreinforced beams.

Fig. 5. Experimental load-deflection curves from the reinforced 
beams.

Additionally, the failure of the reinforced specimens 
shows less brittleness as compared to that of the unreinforced 
specimens. The load carrying capacity values recorded from 
all the beam specimens are summarised in Table 1, where it 
can be seen that the one-screw reinforcement has delayed 
the fracture of the notch details leading to the strengthening 
of the timber beams by about 34%.
Table 1. Experimental results of the reinforced notched beam 
and the unreinforced notched beam.

Tests
N°

Fmax(kN)
Reinforced

Fmax(kN)
Unreinforced

1 15.97 10.17

2 13.57 11.21

3 12.07 08.13

4 13.37 10.22

5 11.58 /

Mean
C.o.V (%)

13.31
11.7

09.93
6.72

Modelling of the screw reinforcement

Mechanical behaviour of materials

Timber is a natural material. In the ideal model, timber 
can be considered as a homogeneous anisotropic material 
in three main directions: the longitudinal direction L (z), 
following the grain direction, the tangential direction T, 
corresponding with the tangent of the medullary ray, and the 
radial direction R, which is the centripetal direction (Fig. 
6A, 6B).

Fig. 6. (A) Longitudinal and radial direction; (B) Orthogonal 
direction: T and R; (C) Stress-deformation curve of timber in 
different directions.

The mechanical behaviour of timber in different 
directions is quite different. In tension according to 
the grain, the timber is crushed. In contrast, when it is 
compressed, the stress-strain curves appear as a flexible 
term to the endurance point. However, the strength of the 
wood subjected to the grain is significantly greater than that 
of compression in different directions (Fig. 6C).

The elastic behaviour is estimated by the Hooke’s law, 
as follows:
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 Where, εI: deformations in the main directions (I = L, T, R); γIJ: angular deformations in 
the plans IJ (I, J = L, T, R); σI: nominal stresses following the direction I; τIJ: shear stresses in 
the plan IJ; EI: Young’s modulus according to the direction I; GIJ: Coulomb’s modulus 
according to the plan IJ; υIJ: Poisson’s ratio according to the plan IJ. 
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where, εI: deformations in the main directions (I = L, T, 
R); γIJ: angular deformations in the plans IJ (I, J = L, T, 
R); σI: nominal stresses following the direction I; τIJ: shear 
stresses in the plan IJ; EI: Young’s modulus according to the 
direction I; GIJ: Coulomb’s modulus according to the plan 
IJ; υIJ: Poisson’s ratio according to the plan IJ.



Physical sciences | Engineering

Vietnam Journal of Science,
Technology and Engineering 29September 2018 • Vol.60 Number 3

The behaviour of plasticity initiates as soon as the stress 
reaches a threshold σe, called elastic limit and is expressed 
by a plastic criterion fp.

The plastic criterion can be written by [15, 16]:

( ) ;0=+−= ep Rf σσ   ( )λ∆−
−=

b
e

b
QR 1 	   (2)

where, σ  is the standard of stress tensor; R is the stress 
of isotropic hardening; Δλ is the cumulative deformation of 
plasticity; Q and b are the parameters of isotropic hardening.

The anisotropic plasticity is estimated by the Hill 
quadratic criterion [17]. The criterion assumes that the 
stress of isotropic hardening R is given by 0, so the equation 
(2) becomes as follows:

0::0 =−⇔=−= eep Hf σσσσσ
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where, σL, σR, σT, are the threshold stress in compression 
according to the longitudinal, radial, tangential direction of 
the grain, respectively, as estimated by the experiment.
τRT, τLT, τLR, are the threshold stress in shear according to 
the plans RT, LT and LR, respectively, as estimated by the 
experiment.

During the bending test, the cracking initiates within 
the notch detail of the beams and propagates along the 
grain direction under the mode I crack growth. The bi-
linear traction-separation law was adequately used for the 
mode I crack growth [18]. The parameters of the traction-
separation law to simulate cracking of timber under mode 
I have been determined with an appropriate experimental 
procedure based on the modified DCB test similar to that 
used in [19, 20].

The linear traction-separation law is assumed to compose 
of three states: the first is the linear elastic behaviour, the 
second is the initiation of the damage and then, the last is the 
evolution of the damage (Fig. 7).
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respectively. δn, δs and δt are the relative displacements (separations) in the normal and 
tangential directions, respectively. Kij is the rigidities in the plan ij (i, j = n, s, t). 

 The quadratic maximum stress is selected to evaluate the initiation of damage, as follows: 

1

222














































c

t

t
c

s

s
c

n

n












                                         (5) 

Where, σn
c, σs

c and σt
c are the maximum stresses according to the nominal and transversal 

directions. 
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where, σn
c, σs

c and σt
c are the maximum stresses according to 

the nominal and transversal directions.

The evolution of the damage is assumed to be a linear 
displacement-based softening:
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where, D is a scalar damage variable, which allows the 
simulation of the degradation of the cohesive stiffness. It 
is evaluated by a function of the effective separation as 
follows:
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where, δm
0 and δm

f is the effective displacement at the 
initiation and ending moment of the damage, respectively; 
δm

max is the maximum effective displacement during 
charging history.

Numerical approach and Finite element models

The behavior of the contact between the screw and the 
timber is described by three internal forces: tension, shearing 
and bending (Fig. 8). In this, the shearing and the bending 
are due to the contact between two bodies of timber. The 
tension is caused by the contact between the screw and the 
timber such as the screw-head embedment and the friction 
between the screw and the timber. In relation to the tension, 
if the friction between the screw and timber is neglected, the 
remaining force will be due to the screw-head embedment.

  

Fig. 8. Internal forces of the reinforced screw.

The basic idea is to build a model with the beam element 
for the screw’s part and the 3D solid element for the timber’s 
part (Fig. 9). However, the problem is the incompatibility of 
the degree of freedom (dof) between the beam element and 
the solid element. Therefore, the 2-node beam element has 
to modified to obtain a modified element beam with only 
translational dof, which is compatible with the solid element 
[14]. In this model, the element beam is coupled to the mesh 
of the solid timber element. The approach has been earlier 
validated in the context of timber-to-timber and timber-
to-concrete connections [12, 13]. Here, it is applied in the 
context of timber reinforcement based on full continuity 
between screw and timber similar to steel reinforcement in 
concrete structures.

Fig. 9. Beam-to-solid element approach of the reinforced timber 
by screw.

In order to demonstrate the main advantages of the 
proposed approach, the simulation of the reinforced beams 
was undertaken in two ways:

- Model 1: both the screws and the timber beams have 

been modelled using 3D constitutive laws involving brick-
solid element meshes (Fig. 10A).

- Model 2: the timber beam was simulated using 3D 
constitutive law, whereas the screw was modelled using 
a one-dimensional beam element (Fig. 10B), leading to a 
beam-to-solid coupling (proposed approach).

Note that the first model (Model 1) is not efficient in 
the case of large number of screws. In order to reduce 
the computational time, only one half of the model was 
simulated, sine the symmetry of the model (Fig. 10). 
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Fig. 10. Finite element meshes (one half) of the notched beams: 
(A) Model 1; (B) Model 2.

For the timber, the 8-node solid element was used. 
Orthotropic-anisotropic non-linear material model [15, 16, 
20-23] has been assumed for the timber behaviour. The 
mechanical properties of timber are shown in  Table 2.

Table 2. Elasto-plastic properties of timber.

Elasticity Plasticity

EL = 10000 MPa fL = 25 MPa

ER = ET = 490 MPa fR = fT = 2.9 MPa

υ LR = υLT = 0.41 fRT = 5.5 MPa

ΥRT = 0.33 σe = 25 MPa

GLR = GLT = 650 MPa
GRT = 100 MPa

Q = 10 MPa; b = 2.5
F = 73,8; G = H = 0.5
N = M = L = 10.3

To simulate the mode I crack growth in timber, the 
cohesive zone model (CZM), exhibited in ABQAUS, is 
used, with the optimal damage parameters summarised in 
Table 3.
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Table 3. The optimal damage parameters of the mode I crack 
growth.

Stiffness
(N/mm3)

Failure stress 
(N/mm2)

Total failure displacement 
(mm)

Knn = 2 σn
c = 0.9  δm

f = 0.02

The isotropic elasto-plastic behaviour is used for the 
screw material and modelled using the modified one-
dimensional beam element. The elastic modulus of the 
screw is selected as Es = 210 GPa and its yield strength is σy 
= 400 N/mm2. The nodes of the element beam of the screw 
and the corresponding nodes of the solid element of the 
timber were coupled with the constraint condition.

Results and discussion

The numerical simulation of the unreinforced notched 
beams has been undertaken, and the results were compared 
with the experiment. It can be seen that the numerical load-
deflection curve fits well with the experimental curve (Fig. 
11). Thus, it can be concluded that the CZM can adequately 
simulate the progressive cracking of the timber under 
opening fracture mode. Fig. 12 displays the comparison 
between the numerical and the experimental failure modes, 
which shows a good correlation.

Fig. 11. Comparison between numerically predicted load-
deflection curve and experimental curves from unreinforced 
beams.
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Fig. 11. Failure of the notch detail: (A) FE model, (B) experiment. 

 
 Figure 13 shows the numerically predicted load-deflection curves against experimental 

ones. It can be seen that both Model 1 and Model 2 perfectly predict the global response of 

the reinforced specimens including the progressive failure of the notches. 

 
 
Fig. 12. Comparison between numerically and experimentally predicted load-deflection 
curves. 

 

  
 

 
 
Fig. 14. Comparison between numerically and experimentally predicted failure modes: 
(A) Model 1, (B) Model 2, (C) Experiment. 

  Figure 14 illustrates the experimental mode of failure as well as those predicted by the 

numerical simulations, where a good correlation can be observed. Both the models show good 

(B) 
(A) 
 

(A) (B) 

(C
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Figure 13 shows the numerically predicted load-
deflection curves against experimental ones. It can be 
seen that both Model 1 and Model 2 perfectly predict the 
global response of the reinforced specimens including the 
progressive failure of the notches.

Fig. 13. Comparison between numerically and experimentally 
predicted load-deflection curves.
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Fig. 14. Comparison between numerically and experimentally 
predicted failure modes: (A) Model 1, (B) Model 2, (C) 
Experiment.

Figure 14 illustrates the experimental mode of failure 
as well as those predicted by the numerical simulations, 
where a good correlation can be observed. Both the models 
show good and similar quality results; however, Model 2 
has shown a higher amount of simplicity and quickness, as 
it requires six times less computational time as compared to 
Model 1.

Conclusions

This paper presents a simple method for reinforcing 
the timber structure in using the screws. The research is 
focused on the notched beam. Two sets of unreinforced and 
reinforced notched beams have been carried out, in order 
to find out the mechanism of this structure. Effectively, 
the notched beam reinforced by a screw shows 34% gain 
when compared with the unreinforced beam. Through the 
experiment, it seems that the failure mode of the notched 
beam is similar to the mode I crack growth. Therefore, in 
the numerical part, the finite element models were realised, 
using the cohesive behavior, to simulate the behavior of 



Physical Sciences | Engineering

Vietnam Journal of Science,
Technology and Engineering32 September 2018 • Vol.60 Number 3

the unreinforced notched beam and the reinforced notched 
beam by a screw. The results present a good correlation in 
comparison with the experiment. In particular, a fast finite 
element model has been established, using a beam element 
with one translational degree of freedom for the screw’s 
model, which allows the reduction of the computational 
time by six times as compared to the full 3D model.
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