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Accurate brain tumour segmentation plays a key role 
in cancer diagnosis, treatment planning, and treatment 
evaluation. Since the manual segmentation of brain 
tumours is laborious, the development of semi-automatic 
or automatic brain tumour segmentation methods makes 
enormous demands on researchers [1]. Ultrasound, 
computed tomography (CT) and magnetic resonance 
imaging (MRI) acquisition protocols are standard image 
modalities that are used clinically. Many previous studies 
have shown that the multimodal MRI protocols can be 
used to identify brain tumours for treatment strategy, as 
the different image contrasts of these MRI protocols can 
be used to extract important complementary information. 
The multimodal MRI protocols include T2-weighted fluid-
attenuated inversion recovery (FLAIR), T1-weighted (T1), 
T1-weighted contrast-enhanced (T1c) and T2-weighted 
(T2). 

In recent years, an annual workshop and challenge, called 
Multimodal Brain Tumour Image Segmentation (BRATS), 
is held to different benchmark methods that have been 
developed to segment the brain tumour [2]. The previous 
studies on brain tumour segmentation can be categorised 
into unsupervised learning [3] and supervised learning [4, 
5] methods. We only reviewed some of the most recent and 
closely relevant studies to our method.

Unsupervised learning-based clustering has been 
successfully applied for the brain tumour segmentation. 

Brain tumour segmentation using U-Net 
based fully convolutional networks and 
extremely randomized trees

Hai Thanh Le1*, Hien Thi-Thu Pham2

1Faculty of Mechanical Engineering, Ho Chi Minh city University of Technology, VNU Ho Chi Minh city
2Department of Biomedical Engineering, International University, VNU Ho Chi Minh city

Received 12 April 2018; accepted 27 July 2018

                                               
*Corresponding author: Email: lthai@hcmut.edu.vn

Abstract: 

In this paper, we present a model-based learning 
for brain tumour segmentation from multimodal 
MRI protocols. The model uses U-Net-based fully 
convolutional networks to extract features from a 
multimodal MRI training dataset and then applies 
them to Extremely randomized trees (ExtraTrees) 
classifier for segmenting the abnormal tissues 
associated with brain tumour. The morphological 
filters are then utilized to remove the misclassified 
labels. Our method was evaluated on the Brain Tumour 
Segmentation Challenge 2013 (BRATS 2013) dataset, 
achieving the Dice metric of 0.85, 0.81 and 0.72 for 
whole tumour, tumour core and enhancing tumour 
core, respectively. The segmentation results obtained 
have been compared to the most recent methods, 
providing a competitive performance.
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In [3], the Szilagyi group proposed a multi-stage c-means 
framework for segmenting brain tumours using multimodal 
MRI scans and received promising results, although limited 
by the considered scope of the data.

On the other hand, supervised learning-based methods 
demand a pair of training data and its label to train a 
classifier that can then be segmented new data without 
training. Pinto, et al. [4] proposed an algorithm based on 
a random decision forest (RDF), using a k-fold cross-
validation approach. They extracted features for RDF which 
is intensity complemented and context based features for 
every voxel represented. Morphological filters were used for 
post-processing to reduce misclassification errors. Recently, 
Soltaninejad, et al. [5] applied extremely randomized 
trees (ExtraTrees) [6] classification with superpixel based 
segmentation using a single FLAIR scan in four modalities 
of MRI dataset. Their results achieved an overall 0.88 Dice 
score of the complete tumor segmentation for both high-
grade glioma (HGG) and low-grade glioma (LGG) cases. 
However, the final segmentation of this method could be 
influenced by the final delineation caused by the tuning 
of superpixel size. Additionally, the Soltaninejad group 
[7] presented a different method by using random forests 
classifier to segment the brain tumour. This method is based 
on the features extracted from a fully convolutional neural 
network (FCN), namely FCN-8s architecture.

Besides, our previous method [8] trained ExtraTrees 
classifier for brain tumour segmentation based on a region 
of interest (ROI) of tumour in FLAIR sequence. This 
method obtained a 0.9 Dice score of the complete tumour 
but received a low score of enhancing and core tumour with 
the BRATS 2013 dataset [2].

In the recent years, a lot of researchers have used the 
convolutional neural networks (CNNs) to classify images, 
specifically deep CNNs, which makes it possible to train 
extremely deep neural networks from the random initialised 
weights with complex and big data. The deep CNNs are 
constructed by combining many convolutional layers, 
which convolve an image with kernels to extract features 
that are more robust and adaptive for discriminative models. 
Currently, various deep learning methods have achieved the 

high score in BRATS challenges [9-11]. A detailed review 
of various medical image classification, segmentation, and 
registration methods can be found in [12]. Biomedical images 
have many patterns of the object such as the tumours, and 
their intensities are usually variable. Ronneberger, et al. [13] 
developed the U-Net-based fully convolutional networks 
(FCNs), which consist of a down-sampling (encoding) 
pathway and an up-sampling (encoding) pathway with 
residual connections between the two that concatenate 
feature maps at different spatial scales in order to segment 
the cell cancer. Based on the original U-Net architecture, 
some groups [14, 15] proposed a method for brain tumour 
segmentation and achieved the competitive performance of 
those built models with BRATS datasets.

However, there are still several challenges: (1) most 
methods obtain the promising results for HGG cases, but 
the performance of LGG cases is still poor; (2) especially, 
the segmentation of enhancing and core tumor always has 
a low score compared to complete tumor score; (3) finally, 
the demand for reducing computation time and memory is 
still unsatisfied.

In this study, we propose a novel segmentation method 
that uses the U-Net architecture [13] to extract features 
and then inputs these to train ExtraTrees classifier [8]. 
Furthermore, we apply a simple filter in a postprocessing 
step to eliminate misclassified labels.

Methods

Discriminative models create a decision function that 
describes the input vectors and assigns each vector to a 
class. The decision function aims to make the needful 
informational relation based on the training samples. 
Additionally, the performance of segmentation depends on 
the quality of the input data and the extraction of effective 
features. The models for segmentation tasks create the 
relational space based on the intensity information of input 
images to ground truth images.

The general structure of our model is shown in Fig. 1. In 
the following part, we will describe the role of each part of 
brain tumour segmentation.
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Dataset

The proposed method is trained and validated on the 
BRATS 2013 dataset [2], which consists of 30 patient MRI 
scans, of which 20 are HGG and 10 are LGG. Each patient 
has four MRI sequences including FLAIR, T1c, T2 and T1. 
This dataset with multimodal MRI data has already been 
skull-stripped, registered into the T1c scan and interpolated 
into 1×1×1 mm3 with a sequence size of 240×240×155. 
Moreover, the ground truth images of dataset were manually 
labeled into four types of intra-tumoral classes (labels): 
1-necrosis (red), 2-edema (green), 3-non-enhancing (blue) 
and 4-enhancing tumour (yellow) and the others are 
0-normal (healthy) tissue (black) as shown in Fig. 2 (GT). 
The ground truth data have been used in two steps: model 
training and performance evaluation for final segmentation.

Pre-processing

In this study, we applied the N4ITK method [16] 
to reduce inhomogeneity in MR images. A histogram 
normalisation method [17] was then employed to ensure 
that addresses data heterogeneity caused by multi-scanners 
acquisitions of MR images. Finally, the intensities of each 
MRI sequence were normalised by subtracting the average 
of intensities of each sequence and then dividing them by 
its standard deviation. Fig. 2 shows the sample of four MRI 
modalities and their ground truth from HGG patient 0001 
after pre-processing.

U-Net based deep convolutional neural networks

Our network is similar in spirit to the U-Net [14], which 
is different from the original U-Net [11]. The U-Net [14] 
described in Fig. 3 uses the deconvolution operator instead 
of an up-sampling operator in the decoding pathway and 
applies zero padding to keep the same resolution of output 
images as the input images. Therefore, the network does not 
need a cropping operator of the border regions. Every block 
in the encoding pathway has two convolutional layers with 
a 3×3 filter, a stride of 1 and rectified linear unit (ReLU) 
activation, which increases the number of feature maps 
from 1 to 1024. For the down-sampling, max pooling with 
stride 2×2 is used to the end of every block except the last 
block. Therefore, the size of feature maps decrease from 
240×240 to 15×15. In the decoding pathway, every block 
starts with a deconvolutional layer with same size filter in 
the decoding pathway and a stride of 2×2, which doubles 
the size of feature maps in both directions but decreases the 
number of feature maps by two. Thus, the size of feature 
maps increases from 15×15 to 240×240. In every up-
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Fig. 2. Four MRI modalities and their ground truth from HGG 
patient.
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Fig. 1. The proposed discriminative model.
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sampling block, two convolutional layers reduce a half of 
the feature maps after concatenating the deconvolutional 
feature maps and the feature maps from the encoding path.

Our proposed network is then added to the batch 
normalization [18] layer after each convolutional layer for 
regularization purposes.

Feature extraction

Image processing provides many algorithms for the 
extraction of characteristics from images. In the field of 
biomedical image analysis, many studies are trying to find 
the tumour characteristics with a high correlation to the 
appearance of the brain images. Nonetheless, no proper 
feature sets have been extracted yet, which is why various 
groups need to use a large feature set based on many feature 
extraction methods such as texture features, spatial context 
features and higher order operators.

The U-Net model uses the powerful CNN to filter the 
useful features from input data in encoding pathway and 
then embeds these features in the output map with the same 
position in the decoding pathway. It makes the collected 
features easier to calculate for the next step or compare with 
the desired output. In this study, we extracted the features 
in all MRI protocols from the U-Net model, but we did not 
obtain the output of the model from a top layer, as it was only 

two values. We collected the features from the convolutional 

layer next to the concatenated layer in the final block of the 

decoding pathway as shown a red rectangle in Fig. 3. This 

T1cT2

Flair T1

Fig. 4. Feature maps from four MRI multimodalities.

Fig. 3. The U-Net architecture [14].
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output has 64 feature maps with the size of 240×240 and 
total parameters of 73792 for each image of MRI scans. Fig. 
4 shows the feature maps of each image of FLAIR, T1c, T2 
and T1 sequences extracted from the U-Net model.

Training set and test set

From the BRATS 2013 dataset, we used the first half 
of HGG and LGG cases with all MRI modalities for the 
training set and the second half of dataset including 10 
HGG and 5 LGG cases to evaluate the performance of our 
method. In this study, the HGG and LGG training sets are 
combined, trained and cross-validated together.

Classifier

In our method, the Extremely Randomized Trees 
(ExtraTrees) [6] classifier is the main part of the brain 
tumour segmentation system. In our previous work [8], we 
had described the reason for choosing this classifier with the 
following advantages:

- High accuracy

- Easy handling of large datasets

- Estimating feature importance.

In the ExtraTrees classifier, the splitting rule differs from 
the Random Decision Forests in how the randomness is 
applied to choose the cut-points for each candidate feature 
during the training. It means that a single threshold is chosen 
at random instead of searching the best threshold for each 
feature. This classifier usually allows to reduce the variance 
of the model a bit more. Thus, it can provide slightly better 
results than the Random Decision Forests.

The main parameters of the ExtraTrees classifier are 
the number of trees, depth of tree and the set of attributes 
(K) that performs the random split. For the classification 
tasks, the optimum value of K is K=√n, with n being the 
total number of features; in our study, K=16. After that 
calculation, we tuned the other parameters with different 
number of trees and depths of the tree on the training set 
and evaluated the accuracy of classification. The highest 
accuracy was achieved with the number of trees Ntree=50 
and depth Dtree=15 as in [7]. Finally, the ExtraTrees classifier 
was trained by combining the features extraction described 
above to a 256-dimensional feature vector.

Postprocessing

Our model is applied without a priori information about 
the classified objects; hence, the obtained results have to be 
refined by postprocessing. In this step, we employ simple 
morphological filters including dilation and erosion with a 
structuring element of a 3×3 square to remove small false 
positives (the misclassified labels or ‘salt’ noises) in the 
segmented image while keeping the large tumorous regions 
unaffected.

Performance evaluation

The final step of segmentation is an evaluation of the 
obtained results. In this study, we evaluate the tumour 
segmentation on three sub-tumoral regions, following [2], 
which are the enhancing tumour, the core (necrosis + non-
enhancing tumour + enhancing tumour) and the complete 
tumour (all classes combined), by using the measurements 
in Dice coefficient and Sensitivity [19]. The Dice score 
provides the overlap measurement between the ground truth 
images from the BRATS 2013 dataset and the segmentation 
results of our proposed method:
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time is only around one hour, but for the prediction, the 
computation time is about 3–4 minutes per case. Compared 
to some studies, our computational time is more efficient 
than [7-8] and less efficient than [14].

The results of our proposed model and the recent state-
of-the-art methods validated on the BRATS 2013 dataset 
is shown in Table 1. These results are uploaded on the 
BRATS 2015 server, which evaluates the segmentation 
and provides measurements in Dice and sensitivity scores 
of whole tumour, tumour core and enhancing tumour core. 
Table 1 shows that our method achieves competitive results 
in the Dice score and performs slightly better in sensitivity 
measurement for all types of brain tumour with the smaller 
data for learning.

Figure 5 shows some examples of our qualitative 

overlaid segmentation results for both HGG and LGG 
cases on FLAIR MR images compared to the ground truth 
images. The segmented results are coloured as described in 
the Dataset section.

Due to the limitation of computational resource, our 
proposed model is only trained and evaluated on the BRATS 
2013 dataset, which contains much less HGG and LGG 
patient cases than the BRATS 2015 dataset. Furthermore, 
our model segmenting the enhancing tumour for LGG cases 
is less successful than for HGG cases because there are 
fewer LGG cases than HGG cases and because most of the 
LGG cases rarely have regions of enhancing tumour.

Conclusions

In this paper, we developed a learning-based automatic 
method for brain tumour segmentation in MR images. 

FLAIR Ground TruthSegmentation FLAIR Ground TruthSegmentation

HGG

LGG

Fig. 5. Segmentation results for the HGG and LGG cases compared to their ground truth.

Method
Dice score Sensitivity

Complete Core Enhancing Complete Core Enhancing

Proposed 0.85 0.81 0.72 0.87 0.85 0.82

Pinto [4] 0.86 0.71 0.74 0.82 0.66 0.72

Soltaninejad [7] 0.88 0.80 0.73 0.89 0.77 0.70

Our previous [8] 0.90 0.63 0.61 0.87 0.72 0.65

Dong [14] 0.86 0.86 0.65 0.88 0.90 0.78

Table 1. Dice and sensitivity scores of our proposed method compared to the results from other groups recently published random 
forests, ExtraTrees and U-Net based methods for the BRATS 2013 dataset.



Physical sciences | EnginEEring

Vietnam Journal of Science,
Technology and Engineering 25September 2018 • Vol.60 Number 3

This method used the features extracted from the U-Net-
based deep convolutional networks and applied them to 
the ExtraTrees classifier as the input data. Additionally, 
we refined the segmentation results by removing the false 
labels using the simple morphological filters. Based on the 
BRATS 2013 dataset, in comparing to other state-of-the-art 
methods, we demonstrated that our approach can achieve 
comparable results with average Dice scores of 0.85, 0.81 
and 0.72 for whole tumour, tumour core and enhancing 
tumour core, respectively.
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