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Introduction
Salt-water intrusion into surface water and groundwater 

is a frequent problem in the coastal areas of Ha Tinh 
province, as well as in other provinces and cities. With the 
current socio-economic growth rate, water demand from 
various sectors is increasing dramatically; on the other 
hand, with the impact of climate change, surface water as 
a resource is diminishing and pollution levels are rising. 
This, in turn, depletes the available store of surface water 
that sectors depend on. In this context, groundwater would 
be an effective solution to provide for the needs of socio-
economic development, especially where exploitation 
of surface water is no longer possible. However, as with 
surface water, groundwater also faces the risk of seawater 
intrusion; hence, if there are no solutions to reducing 
saltwater infiltration, or rationally using and supplementing 
fresh water for groundwater, coastal resources will diminish 
and fail to supply the needs of socio-economic development. 
In this study, the GSM is applied to simulate groundwater 
level and assess saline intrusion in climate change scenarios 
over extended periods of time in the coastal areas of Ha 
Tinh (including seven coastal districts, two towns, and one 
city: Nghi Xuan, Duc Tho, Can Loc, Loc Ha, Thach Ha, 
Cam Xuyen, and Ky Anh districts; the city of Ha Tinh; and 
the towns of Ky Anh, Hong Linh). The primary objective 
of this study is to assess the impact of climate change on 
coastal groundwater resources.

Method and data
Method

The GSM model was applied to simulate the groundwater 
resource for the coastal area of Ha Tinh province:

The GSM is a model that integrates the MODFLOW 
[1] groundwater flow model and the MT3DMS [2] water-
quality model to simulate groundwater flow and quality. 

In the MODFLOW model, the three-dimensional 
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movement of a groundwater level of a constant density 
through porous earth material may be described by the 
following partial differential equation:
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Where:   

- Kxx, Kyy, Kzz: are values of hydraulic conductivity along the x, y, and z 
coordinate axes, which are assumed to be parallel to the major axes of hydraulic 
conductivity (L/T). 

- h: is the potentiometric head (L). 

- W: is a volumetric flux per unit volume representing sources and/or sinks 
of water, with W < 0.0 for flow out of the groundwater system, and W > 0.0 for 
flow into the system (T-1). 

- S: is the specific storage capacity of the porous material (L-1).  

- t: is time (T). 

This equation describes water-level dynamics in heterogeneous and 
anisotropic environments. 

With the MT3DMS water quality model, transporting solutions in a 
porous environment is a complex chemical and physical process. Two basic 
components of the process are (i) the transporting of hydrodynamics and (ii) 
diffusion of ions and particles are dissolved in water from the high concentration 
to the low concentration. When contaminated water flows through the porous 
environment, it mixes with uninfected water by means of mechanical dispersion 
that dilutes it and reduces its concentration. Molecular diffusion and mechanical 
dispersion cannot be separated in an underground stream and both processes are 
referred to as hydrodynamic dispersion. 
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With the MT3DMS water quality model, transporting 
solutions in a porous environment is a complex chemical 
and physical process. Two basic components of the process 
are (i) the transporting of hydrodynamics and (ii) diffusion 
of ions and particles are dissolved in water from the high 
concentration to the low concentration. When contaminated 
water flows through the porous environment, it mixes with 
uninfected water by means of mechanical dispersion that 
dilutes it and reduces its concentration. Molecular diffusion 
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The partial differential equation describing the fate and 
transporting of contaminants of species k in 3D, transient 
groundwater flow systems can be written as follows:
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Where:  

 : the porosity of the sub-surface medium, considered to be 
dimensionless. 

Ck: dissolved concentration of species k, ML-3
. 

t: time, T. 
xi,j: distance along the relevant Cartesian coordinate axis, L. 
Dij:  hydrodynamic dispersion coefficient tensor, L2T-1. 
vi: seepage or linear pore water velocity, LT-1; this is related to the 

specific discharge or Darcy flux by means of the relationship vi = qi / . 
qs: volumetric flow rate per unit of the volume of the aquifer, 

representing fluid sources (positive) and sinks (negative), T-1. 
k
sC : concentration of the source or sink flux for species k, ML-3

. 

 nR : chemical reaction term, ML-3T-1
. 

The left-hand side of Equation 2 can be expanded into two terms: 
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Where: 
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'  is the rate of change in transient groundwater storage (unit, T-1). 

The chemical reaction term in equation 2 can be used to include the effect 
of general biochemical and geochemical reactions on the fate and transport of 
contaminants. Considering only two basic types of chemical reactions, that is, 
aqueous-solid surface reactions (sorption) and first-order rate reactions, the 
chemical reaction term can be expressed as follows: 
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Where:   

ρb: bulk density of the sub-surface medium, ML-1
. 

kC : concentration of species k sorbed on the subsurface solids, MM-1
. 

1 : first-order reaction rate for the dissolved phase, T-1
. 

2 : first-order reaction rate for the sorbed (solid) phase, T-1
. 
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where: 

θ: the porosity of the sub-surface medium, considered to 
be dimensionless.

Ck: dissolved concentration of species k, ML-3.
t: time, T.
xi,j: distance along the relevant Cartesian coordinate axis, 

L.
Dij: hydrodynamic dispersion coefficient tensor, L2T-1.

vi: seepage or linear pore water velocity, LT-1; this is 
related to the specific discharge or Darcy flux by means of 

the relationship vi = qi /θ.

qs: volumetric flow rate per unit of the volume of the 
aquifer, representing fluid sources (positive) and sinks 
(negative), T-1.

k
sC : concentration of the source or sink flux for species

k, ML-3.

∑ nR : chemical reaction term, ML-3T-1.

The left-hand side of Equation 2 can be expanded into 
two terms:
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where:  
ρb: bulk density of the sub-surface medium, ML-1.
Ck: concentration of species k sorbed on the subsurface 

solids, MM-1.
λ1: first-order reaction rate for the dissolved phase, T-1.
λ2: first-order reaction rate for the sorbed (solid) phase, 

T-1.

Substituting equations 3 and 4 into equation 2 and 
omitting the species index in order to simplify the 
presentation, Equation 2 can be rearranged and rewritten as:
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Equation 5 is a mass balance statement, that is, the change in the mass 
storage (both dissolved and sorbed phases) at any given time is equal to the 
difference between the mass inflow and outflow due to dispersion, advection, 
sink/source, and chemical reactions. 

Local equilibrium is often assumed for the various sorption processes (i.e., 
sorption is sufficiently fast relative to the transport time scale). When the local 
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When the local equilibrium assumption is not appropriate, sorption 
processes are typically represented through a first-order kinetic mass transfer 
equation, as discussed in the section on chemical reactions. 

Data  

Input data for the GSM include: 

- Hydrometeorological data: meteorological and hydrographic data up to 
2014 from the project “Technical consultancy on the hydrological/hydraulic 
model of the Rao Cai river basin and the drainage model in the city of Ha Tinh, 
Ha Tinh province” were also part of the project “Integrated water resource 
management and urban development in Ha Tinh province”, conducted by the 
Vietnam Academy for Water Resources [3]. Additional data up to 2016 were 
collected from the Hydrometeorological Data Centre of the National Center of 
Meteorology and Hydrology (now the Meteorological and Hydrological 
Administration). 

- Land-use data: land-use status data for Ha Tinh from 2015 were 
collected from Center for Land Assessment under Center for Land Survey and 
Planning under General Department of Land Administration. 

 

(5)

Equation 5 is a mass balance statement, that is, the 
change in the mass storage (both dissolved and sorbed 
phases) at any given time is equal to the difference between 
the mass inflow and outflow due to dispersion, advection, 
sink/source, and chemical reactions.

Local equilibrium is often assumed for the various 
sorption processes (i.e., sorption is sufficiently fast relative 
to the transport time scale). When the local equilibrium 



Environmental Sciences | Climatology

84 Vietnam Journal of Science,
Technology and Engineering December 2018 • Vol.60 Number 4

assumption is invoked, it is customary to express equation 5 
in the following form:
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of interviews with local people using pre-designed table 
templates, and by means of direct water sampling. The 
scope and subjects of the survey were the current status 
of water use in 330 households and 20 organisations in 10 
coastal districts/cities/towns of Ha Tinh province.

- Climate-change scenarios: climate-change in Ha Tinh 

province was examined in terms of two scenarios, RCP4.5 
and RCP8.5, for temperature (Table 1), precipitation (Table 
2) and sea level rise (Table 3) extraction from climate 
change and sea-level rise scenarios for Vietnam, which were 
updated by Ministry of Natural Resources and Environment 
in 2016 [5].   

Table 1. Changes in temperature (oC) compared to the period 
1986-2005 in terms of different climate change scenarios in Ha 
Tinh province. 

Temperature
RCP4.5 RCP8.5

2016-2035 2046-2065 2080-2099 2016-2035 2046-2065 2080-2099

Annual 0.6
(0.3÷1.0)

1.5
(1.0÷2.1)

2.0
(1.4÷2.9)

0.9
(0.6÷1.3)

1.9
(1.3÷2.8)

3.5
(2.8÷4.8)

Winter 0.6
(0.3÷1.0)

1.3
(0.7÷1.8)

1.6
(1.0÷2.1)

0.9
(0.6÷1.2)

1.7
(1.2÷2.4)

2.8
(2.0÷3.7)

Spring 0.6
(0.1÷1.2)

1.3
(0.7÷1.9)

2.0
(1.2÷2.9)

0.9
(0.5÷1.3)

1.8
(0.9÷2.8)

3.2
(2.0÷4.5)

Summer 0.8
(0.4÷1.3)

1.9
(1.2÷3.0)

2.6
(1.8÷3.6)

1.0
(0.5÷1.5)

2.3
(1.4÷3.6)

4.1
(3.2÷5.7)

Autumn 0.6
(0.3÷1.1)

1.5
(1.0÷2.2)

2.0
(1.2÷2.9)

0.8
(0.4÷1.4)

2.0
(1.3÷3.0)

3.6
(2.7÷5.0)

Source: Vietnam Institute of Meteorology, Hydrology and Climate 
Change (IMHEN).

Table 2. Changes in rainfall (%) relative to the period 1986-2005 
in terms of climate change scenarios in Ha Tinh province.

Rainfall
RCP4.5 RCP8.5

2016-2035 2046-2065 2080-2099 2016-2035 2046-2065 2080-2099

Annual 11.3
(6.0÷16.6)

16.3
(8.5÷24.4)

13.0
(3.4÷22.6)

12.9
(6.8÷18.9)

14.1
(8.9÷19.0)

17.4
(10.6÷24.4)

Winter 12.0
(4.1÷19.5)

21.0
(11.4÷30.4)

12.8
(5.4÷20.0)

3.5
(-2.1÷9.2)

13.0
(1.6÷24.4)

19.8
(6.5÷33.2)

Spring 2.8
(-3.7÷9.2)

14.5
(4.3÷23.9)

9.4
(-1.8÷20.5)

-4.2
(-14.4÷5.8)

5.0
(-3.5÷13.0)

16.1
(2.1÷30.5)

Summer 21.1
(-3.7÷44.7)

9.1
(-2.1÷20.3)

4.8
(-5.7÷16.1)

40.6
(5.0÷70.7)

18.6
(-6.5÷43.4)

22.2
(3.0÷41.8)

Autumn 9.9
(3.8÷16.1)

19.0
(5.2÷31.6)

17.6
(3.8÷30.3)

8.2
(-0.1÷15.8)

15.1
(6.6÷23.4)

17.6
(8.2÷27.0)

Source: IMHEN.

Table 3. Sea-level rise scenarios for the coastal areas of Ha Tinh 
province (cm). 

Scenarios
Timeline of the 21st century

2030 2040 2050 2060 2070 2080 2090 2100

RCP4.5 13
(8÷18)

17
(10÷24)

22
(13÷31)

27
(16÷39)

33
(20÷47)

39
(24÷56)

46
(28÷65)

53
(32÷75)

RCP8.5 13
(9÷18)

18
(12÷26)

25
(17÷35)

32
(22÷45)

40
(28÷57)

50
(34÷71)

60
(41÷85)

72
(49÷102)

Source: IMHEN.
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Results and discussion

The GSM model constructed for the coastal area of Ha 
Tinh province

- The computational domain includes the coastal districts 
of Nghi Xuan, Duc Tho, Can Loc, Loc Ha, Thach Ha, Cam 
Xuyen, and Ky Anh; the city of Ha Tinh; and the towns of 
Ky Anh, Hong Linh (Fig. 1).

- The computational grid includes 563,060 grid points, 
including 294,865  computational points. Grid cell size is 
200 m x 200 m. 

- Boundary conditions:

+ The sea boundary is approximately 143 km, from the 
Lam river mouth to the end of Ky Anh town, next to Quang 
Binh province.

+ The river boundary comprises four major rivers, the 
Lam, Ha, Lui, Quyen, and their major branches (Fig. 2).

+ The groundwater restoration boundary was calculated 
by subtracting the evaporation boundary from the 
precipitation boundary in the corresponding exposure area 
of geological layers in the research area (Fig. 3 and Table 4).

Table 4. Classification of the groundwater restoration area in 
the coastal area of Ha Tinh province.

No. Restoration area Restoration rate 
from rainfall (%)

1 Holocene 35

2 Pleistocene 35

3 Neogen, Triat, Ordovic-Silur 15

- A 3-year period was used to warm up the model to 
reduce the effect of initial conditions.

- Computational time step: daily. 

Calibration and validation

For model calibration, this research employs monitoring 
data from January 2014 to December 2016 from four 
groundwater level stations within research area (Table 5).

Table 5. Differences between the simulated water level and the 
water level measured at groundwater level monitoring wells in 
the research area.

No. Station Mean absolute 
difference

Root mean square 
deviation

Maximum 
difference (m)

1 QT2a-HT_0 0.05 0.004 0.15

2 QT5a-HT_0 0.13 0.023 0.32

3 QT6-HT_0 0.18 0.057 0.91

4 QT6b-HT_0 0.13 0.039 0.81
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Fig. 2. Sea and river boundaries in the 
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Fig. 3. Exposure area of geological layers in 
the research area. 
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The results of the model calibration and validation show 
that the model parameters are reliable and can be applied 
to research on groundwater in the coastal area of Ha Tinh. 

Salt-water reserve in terms of the climate change 
scenarios

The results of calculating the salt-water storage in the 
Holocene and Pleistocene layers in 2020 and 2030 in terms 
of scenarios RCP4.5 and RCP8.5 compared to the current 
situation (the average of the period 1986-2005) in the 
coastal area of Ha Tinh province are shown in Figs. 4A , 4B.

The results in Fig. 4 show that groundwater salinity in 
the research area in 2020 in terms of scenarios RCP4.5 
and RCP8.5 tends to decrease compared with the current 
situation. By 2020, the level of salinity intrusion tends to 
decrease in all months of the year in both the RCP4.5 and 
RCP8.5 scenarios. For both scenarios, the largest decrease 
occurs in July, and the smallest in January for RCP4.5, and 
in December for RCP8.5. This phenomenon occurs due to 
the hypothesis of the problem claims that the amount of 
groundwater extraction remains unchanged relative to the 
current situation; this change may primarily be due to the 

change of rainfall and a sea level rise of 0.09 m. By 2030, 
in terms of scenarios RCP4.5 and RCP8.5, the storage tends 
to decrease relative to the current situation. In that year, the 
level of salinity intrusion tends to decrease in all the months 
of the year in terms of both RCP4.5 and RCP8.5 scenarios, 
with the largest decrease occurring in August. This change 
is primarily due to a change in rainfall by 2030, which is 
quite similar for both RCP4.5 and RCP8.5 scenarios and the 
scenario of a 0.13 m rise in sea level.

The magnitude of saline intrusion in 2020 and 2030 
is less than that of the (current) baseline period due to a 
significant increase in rainfall in these years.

The results of calculating salt-water storage in the 
Holocene and Pleistocene layers for the periods 2016-2035, 
2046-2065, and 2080-2099 in terms of the RCP4.5 and 
RCP8.5 scenarios compared to the current situation in the 
coastal area of Ha Tinh province are shown in Figs. 5A,  5B.

Figure 5 shows the trends of salinity intrusion into 
groundwater in the research area, which are very complex. 
With scenario RCP4.5, in the early years of the 21st century 
(2016-2035) the level of salinity intrusion tends to decrease; 
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Fig.  4. Salt -water storage diagrams in the Holocene and Pleistocene layers  
in 2020 ( A) and 2030 ( B ) in the research area according to scenarios 
RCP4.5 and RCP8.5 . 
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then it increases gradually at the end of the century (2080-2099). With scenario 
RCP8.5, in the early years of the 21st century (2016-2035) groundwater salinity 
intrusion increases in July, August, September, November, and December 
compared to the current situation, and decreases in the remaining months. 
However, in the last years of the 21st century (2080-2099), saline intrusion into 
groundwater tends to increase sharply in comparison with that of all months of 
the year. 
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Fig. 4. Salt-water storage diagrams in the Holocene and 
Pleistocene layers in 2020 (A) and 2030 (B) in the research 
area according to scenarios RCP4.5 and RCP8.5.

Fig. 5. Saltwater storage charts in the Holocene and Pleistocene 
layers of the research area for the periods 2016-2035, 2046-
2065, and 2080-2099 in terms of scenarios RCP4.5 (A) and 
RCP8.5 (B).
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then it increases gradually at the end of the century (2080-
2099). With scenario RCP8.5, in the early years of the 
21st century (2016-2035) groundwater salinity intrusion 
increases in July, August, September, November, and 
December compared to the current situation, and decreases 
in the remaining months. However, in the last years of the 
21st century (2080-2099), saline intrusion into groundwater 
tends to increase sharply in comparison with that of all 
months of the year.

Area of salinity intrusion in terms of the climate 
change scenarios

As shown in Fig. 6, by 2020 and 2030, salinity will 
intrude into both the Holocene and Pleistocene layers in 
terms of both climate change scenarios, RCP4.5 and RCP8.5; 
however, in the 1986-2005 baseline period, intrusion only 
occurred near the river banks and rivermouth area. 

The results in Fig. 6 show that, in terms of all climate 
change scenarios considered, the area of saline groundwater 
in both the Pleistocene and Holocene layers slightly varies 
from month to month during the year. The changing trends 
in the area of saline groundwater intrusion in the Holocene 

and Pleistocene layers are similar in each climate change 
scenario. In terms of the RCP4.5 scenario, the area of saline 
groundwater is lower than the current one in the early and 
mid-21st century and is higher at the end of the century. In 
terms of the RCP8.5 scenario, the area of saline groundwater 
does not change substantially relative to the status in the 
early and mid-21st century, and increases at the end of the 
century. 

As shown in Fig. 7, the area of salt-water intrusion in 
the Holocene layer is primarily in Ky Anh town and Nghi 
Xuan, Thach Ha, and Cam Xuyen districts, with area itself 
ranging from 1,500 ha to over 2,000 ha; while in the coastal 
districts, the area of saline intrusion into the groundwater 
ranges from 300 ha to over 600 ha. In the Pleistocene layer, 
the largest areas of saltwater intrusion are in Ky Anh district 
and Ky Anh town with over 2,000 ha. Nghi Xuan and 
Cam Xuyen districts experience 1,900 ha of intrusion and 
Thach Ha district approximately 1,500 ha. In the remaining 
districts, the area of saltwater intrusion is approximately 
equal to that which occurs in the Holocene layer. This trend 
of changes in the area of saline intrusion into groundwater is 
similar to that in the other areas in coastal Ha Tinh.
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Fig. 6. Surface area of groundwater salinisation in terms of the climate change scenarios in the coastal area of Ha Tinh province.
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Conclusions	

Saline water intrusion tends to decrease in terms of the 
two climate change scenarios considered - RCP4.5 and 
RCP8.5 - by 2020 and 2030: salt-water storage will decrease 
by 0.53 to 0.96% and by 0.65 to 0.70% by 2020 and 2030, 
respectively.

In terms of both RCP4.5 and RCP8.5 scenarios, the 
average for the future periods 2016-2035, 2046-2065, and 
2080-2099 shows that the development of groundwater 
salinity in the research area is quite complex. In the early 
and mid-century, the level of saline intrusion tends to 

decrease slightly, and thereafter it increases gradually at the 
end of the century.

According to the climate change scenarios, at the 
beginning of the century, rainfall in Ha Tinh increased and 
so did the reserve of underground water in the province; at 
the end of the century, the sea level in Ha Tinh will rise (by 
68 cm), saline intrusion into groundwater will increase, and 
groundwater saline storage will tend to decrease slightly 
relative to the beginning of the century.

These results are calculated based on the averages 
for periods of heavy and light rainfall, so the trend of an 
increase in levels of salinity in groundwater is not clear. In 
fact, salt-water intrusion frequently occurs during the years 
of light rainfall, especially in the months of the dry season. 
It is therefore necessary to undertake a more detailed 
examination for each year, especially those of lighter rainfall 
in order to obtain a more specific assessment of the impact 
of climate change on groundwater. The results of this study 
provide the premise and basis for further research.
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Fig. 7. Surface area of groundwater salinisation in terms of the 
climate change scenarios in the coastal districts of Ha Tinh 
province. 
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Fig.  7. Surface a rea of groundwater salinisation in terms of the climate 
change scenarios in the coastal districts of Ha Tinh province .  

As shown in Fig.  7, the area of salt-water intrusion in the Holocene layer 
is primarily in Ky Anh town and Nghi Xuan, Thach Ha, and Cam Xuyen 
districts, with area itself ranging from 1,500 ha to over 2,000 ha; while in the 
coastal districts, the area of saline intrusion into the groundwater ranges from 
300 ha to over 600 ha. In the Pleistocene layer, the largest areas of saltwater 
intrusion are in Ky Anh district and Ky Anh town with over 2,000 ha. Nghi 
Xuan and Cam Xuyen districts experience 1,900 ha of intrusion and Thach Ha 
district approximately 1,500 ha. In the remaining districts, the area of saltwater 
intrusion is approximately equal to that which occurs in the Holocene layer. T his 
trend of changes in the area of saline intrusion into groundwater is similar to that 
in the other areas in coastal Ha Tinh. 

Conclusion s  

Saline water intrusion tends to decrease in terms of the two climate 
change scenarios considered - RCP4.5 and RCP8.5 - by 2020 and 2030: salt-
water storage will decrease by 0.53% to 0.96% and by 0.65% to 0.70% by 2020 
and 2030, respectively. 

In terms of both RCP4.5 and RCP8.5  scenarios, the average for the future 
periods 2016-2035, 2046-2065, and 2080-2099 shows that the development of 
groundwater salinity in the research area is quite complex. In the early and mid-
century, the level of saline intrusion tends to decrease slightly, and thereafter it 
increases gradually at the end of the century. 

According to the climate change scenarios, at the beginning of the 
century, rainfall in Ha Tinh increased and so did the reserve of underground 
water in the province; at the end of the century, the sea level in Ha Tinh will rise 
(by 68 cm), saline intrusion into groundwater will increase, and groundwater 
saline storage will tend to decrease slightly relative to the beginning of the 
century. 
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