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Abstract:

Taking the model of interstitial alloy AB with a body-centred cubic structure and the condition of absolute stability
for the crystalline state, we derive analytic expression for the temperature of the limit of absolute stability for the
crystalline state, the melting temperature, and the equation for the melting curve of this alloy using the statistical
moment method. The results allow us to determine the melting temperature of alloy AB under pressure as well as
at zero pressure. In limit cases, we obtain the melting theory of main metal 4 with a body-centred cubic structure.
The theoretical results are numerically applied for alloys FeH, FeSi and FeC using different potentials.
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Introduction

Alloys in general, and interstitial alloys in particular, are
widely used in material technology and science. Therefore,
they are of particular interest to many researchers.

The melting temperature (MT) of materials under
pressure is a crucial problem in solid state physics and
material science [1, 2]. The MT of crystal is usually is the
Simon experimental equation:

b5

a

= (T, T, -1 (L.1)
where T is the MT, P is the melting pressure, a and ¢ are
constants, P, and T are the pressure and the temperature,
respectively, of the triple point on the phase diagram.

Normally, when the value of P is small, we can write
equation (1.1) in the form:

P

(T, ~Ty)" —1 (1.2)
a

However, equation (1.2) cannot describe the melting of
crystal at high pressures. Kumari, et al. [3] have introduced
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the following phenomenological equation:

— e 4eB(5,-B) (1.3)
(TR, = R)]

where T and T, are the MT at pressures P and P,
respectively, AT =T -T,, and 4 and B are constants.
Equation (1.3) allows us to determine the MT of crystal at
high pressures.

Theoretically, it is necessary to use the solid-liquid
equilibrium to determine the MT of crystal. However, this
does not allow us to explicitly express the MT. According
to some researchers, the temperature corresponding to
the absolute stability limit for crystalline state at a certain
pressure (7)) is close to the MT at the same pressure.
Therefore, according to the authors of [4], the melting
curve of crystal coincides with the curve representing the
absolute stability limit for the crystalline state. Accordingly,
the self-consistent phonon-field method and the one-
particle distribution function are used to investigate the MT.
However, the results are not consistent with experiments.
This has led some scientists to conclude that the MT can
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never be found using the stability limit for the solid phase.
Other researchers have used the correlation effect to
calculate the temperature of the absolute stability limit for
the crystalline state. Although the results of this are more
exact, they are limited at low pressures.

In support of the statistical moment method (SMM),
N. Tang and V.V. Hung [4, 5] show that we can, in fact,
determine the MT using the solid phase of crystal. First,
they determine the absolute stability temperature (7)) at
different pressures using the SMM and then carry out the
regulation in order to find 7, from 7. The results of the
SMM correspond better with experiments than those of
other methods.

The research content
Analytical results

In the model of the interstitial alloy AB, which has a
body-centred cubic (BCC) structure, the large atoms 4 are
in the peaks and the centre of the cube, and the smaller
interstitial atoms B are in the centres of the cube faces. In
[6-11], we derived the analytic expressions for the nearest
neighbour distance, the cohesive energy and the alloy
parameters for atoms B, 4, and 4, (the main atom 4 which is
closest to atom B) and 4, (the main atom 4 which is second
closest to atom B).

The equations representing the state of the BCC
interstitial alloy 4B at temperature 7 and at zero temperature,
respectively, are as follows:

Pv=-a, 1 gy +0xctth% 2.1
6 Oa, 2k, Oa,

Pv=—a, 1 Oy + heoy Oy (2.2)
6 Oa, 4k, oa, ’

From equation (2.2), we can calculate the nearest
neighbour distance a_(P, 0) (X = B, 4, A, A,) and then
the parameters k_ (P, 0), v, (P, 0),v,, (P, 0), and y_(P, 0).
The displacement of atoms from the equilibrium position
is determined as in [6, 7]. From that, we can calculate the

nearest neighbour distance a_(P, 7) as follows:
aB(PaT):aB(P70)+yAI(P=T)a aA(P’T):aA(Pa())-I-yA(PaT)
aA](P,T)zaB(P,T), aAz(PvT):aAz(Pﬁo)-I—yB(P’T)

(2.3)

The approximate mean nearest neighbour distance between
two atoms in the interstitial alloy 4B is determined by:
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a,(P,T)=a,(P,0)+y,(PT)
0, (P.0)=(1-¢,)a,(P,0)+,d,(P,0), @, (P,0) =+/3a, (P
yAB(P,T):(1—703)yA(P,T)+cByB(P,T)+ZCByA1(P,T)+4cByA( ) (2.4)

The free energy of interstitial alloy 4B with concentration
condition ¢, << ¢, has the form [6-11]:

Vi = (1 _7CB)V/A TCWp +2CBV’A, + 4CB§//A2 -1T8,

0 2y, Xy
v, 2U W, +3N{kx {;/MXZ 31X [1+ 5 H+

260° | 4 X X,
k4|: VaxX [1 TXJ_Z(ylz)(+271X72X)(1+ B )(1+X )}}

Uy Zuox,wox-SNﬁ[xﬁln(l ez“)]X =x,cothx, (2.5)

where ¥/, is the free ener.gy of atom 4 in the pure metal
A, W is the free energy of atom B in the interstitial alloy
4B, ¥, and Y, are the free energy values of atoms 4,
and 4, respectively, and S is the configuration entropy of
the interstitial alloy AB.

The pressure is calculated as follows:

P:_(BWABJ __ 9 [ oy j
Vg )y V5 \ Oaypg ),

Setting

(2.6)

aug| 1 ok
Vo =——48| ——4(1-Tcy)x, cothx , + ——Lcyx, cothxy +
kA da, 5 Oag
ok ok
L s 2¢,x, cothx, +L =
kA. ﬁa/,l 4, 0a,

4cyx, coth xAz} (2.7)

where, }/g is the Griineisen parameter of alloy 4B. Then,

g P B Wy e, Vo, |, 360 28
6VAB 0a, g Oag oaA1 a, | Vi
From the condition of absolute stability limit
oP 0
=0 or 29
[aVABJT (8 AB] 29

we can derive the absolute stability temperature for the
crystalline state in the form:

d &v, U, , U, . &U,
TS 2PV, +—£((1-7c 0, B 42 % tde -
MS1 %6 {( B) 6ai s a§ s aj‘ % &12
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(1=T7c,) a [ ok, a, Ok, |ha, aAB 67 ha)BaAB
2k, 6a4 ey Oay 6aE
a, () &%, ha)1a ok, ha)Aam
2eg| = — | —a—;
2k, \ a, 0a,

-Te )a41fk23a ak +e awkﬂa aks +2cﬂamk790 aﬁ +4cﬂauxkﬁo akdz (2 10)
4k, | 0a, 4k5 a, 4k, | a, 4 |

A 4 4

s =(1

1

In the case of zero pressure,

2 : : U U
S:T—Sz,TSZ =i (1—7c,,)a U;“ +, ‘ U;B 2ey— -+, — = |-
MS, 6 oa, o, " Ga ” oa

(1-7¢,)

as(th) Ok fhog, o, ) A
2 \oa, ) "od | 4, 2k, \ay ) Gy | 4,

2
N ok, y Ok, hoa, a,w ok, y azﬁ ho,a,
2%, \oa, ) o, | 4, 6aA " od, | 4k,

, 2
) ok ok,
s (l ” )a K 6kA v ke a k 6k o, akan ok e a ks o, @.11)
4]94 Oa, 4k, \ da, 4]‘4 34, 4k

Because the curve of the absolute stability limit for the
crystalline state is close to the MS of crystal, the temperature
(T) is usually high and x, cothx, ~1 at T. Therefore,

1
k(i) Al o,
(1—703)61‘43]{23” OkAj +e, a’wkf” % +c, a’“’]iﬁﬂ A +he, AB2B(I My
¥ \ds, 4k \a, 4k, \oa, 4, \da,
2 2 a U aZU
2PV 4 “307)aﬂ re, 2V e, T g T |
6 6 6(13 o’ y aaAz

(1-7c,) Ay | Ok, “a, % ha)AaAB_c | Ok, a % hawa,,
%k \da, | "ad | 4, 2k\da, | P od | 4,

Ok, Ok, [ho,a,
~dc, aAB—Z2 it
2k a Oay | 4k,

><

a, (k) &k, |hoa,
2c, — | e
2, | aa, o | 4,

W y
Ok ok
b 2170 Ly L B L ]
aB

0 (2.12)
oV 5 a, oa, 5% a,

U au
kP+aAB{(1—7 )58(/0,1+ Uy +26,— 2 1 4e, “lﬂ
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This is the equation for the curve of the absolute stability
limit for the crystalline state. Therefore, the pressure

is a function of the mean nearest neighbour distance:

P=Pla,y) (2.13)

Temperature 7 (0) at zero pressure has the form:

U U,
T.0)=—2— (1-7c, )%w%m,, W a2 1(2.14)
1875k, iy Oag 0a,, da,,
oUyx 1 )
where the parameters a4z, 0. Ve are determined
X
at T(0). Temperature 7T, at pressure P has the form:
T
n~mm+’@f2f%] 7, (2.15)
3/(30 (}/g) or a4B

where k, is the Boltzmann constant, Vgve,0yl/or are

determined at 7, and T is approximately the same as 7. In

order to solve equation (2.15), we can use the approximate

iteration method. In the first approximate iteration,
V(T (0)P

T, ~T,0)+
3kp,7 6 (T5(0))

(2.16)
where T(0) is the temperature of the absolute stability
limit for the crystalline state at pressure P. Inserting T,
into equation (2.15), we obtain a better approximate value
(T,) for T at pressure P in the second approximate iteration:

(2.17)

T
Tszsz(O)_l_ VAB(T;I)P VAB(T )P [aij T

Y160y kg ATl T ), "

Analogously, we can obtain better approximate values
for T at pressure P in the third, fourth, and subsequent
approximate iterations. These approximations are applied at
low pressures.

In the case of high pressure, the MT of the alloy at
pressure P is calculated by:
1
LOB% Gy
GO) —
(By+ByP)™

T (P)= (2.18)

where 7 (P) and T (0) are the MT at pressure P and
zero pressure, respectively, G (P) and G (0) are the shear
modulus at pressure P and zero pressure, respectively,
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B is the isothermal elastic modulus at zero pressure,

0
By = (dﬁj ,and B, = B (P) is the isothermal elastic
P=0

dpP
modulus at pressure P.

Numerical results for alloys FeH, FeSi and FeC

For alloys FeH, FeSi, and FeC, we use the Morse
potential, the m - n potential, and the Finnis-Sinclair
potential as follows:

o(r) = D[ 2 .19
o(r) _L{m(ﬁj" _n(r_oﬂ (2.20)
n—m r r
(1)
U=-4 ;p ' +%Z(P(’},)
p(r):tl(r_R1)2+t2(r_R1)3 (r<R)
(p(r):(rfRz)z(kl+k21’+k3r2) (r<R,) (2.21)

The Morse potential parameters for Fe-Fe and Fe-H are
shown in Table 1, the m - n potential parameters for Fe-Si
are presented in Table 2, and the Finnis-Sinclair potential
parameters for Fe-C are shown in Table 3.

Table 4. The MT (T ) of metal Fe under pressure obtained from
the SMM and the experimental data (EXPT) [16].

P(GPa) 1 2 3 4 5 6
T -SMM 186143 1911.07 1959.08 2005.61 2050.77 2094.69
T _-EXPT 1873 1908 1943 1978 2013 2033

Note that the MT of Fe at P = O is taken from EXPT [17], the MT
of FeH at P = 0 is taken from EXPT [18], and the MT of FeSi and
FeC at P = 0 are taken from EXPT [19].

Table 5. The MT (T ) of alloy FeH under pressure obtained from
the SMM.

¢, (%) P(GPa) 1 2 3 4 S 6 8 10

0 1861.43 1911.07 1959.08 2005.61 2050.77 2094.69 2179.09 2259.44

1 1858.50 190528 1950.51 199431 2036.80 2078.08 2157.38 2232.78

2 1855.41 1899.17 1941.47 1982.40 2022.09 2060.64 2134.61 2204.87
T, (K)

3 1852.16 1892.77 1932.00 1969.95 2006.73 2042.42 2110.87 2175.82

4 1848.77 1886.11 1922.15 1957.00 1990.76 2023.50 2086.24 2145.70

5 1845.26 1879.20 1911.94 1943.59 1974.23 2003.93 2060.77 2114.58

Table 6. The MT (T ) of alloy FeSi under pressure obtained from
the SMM.

¢, (%) P(GPa) 1 2 3 4 5 6 8 10
Table 1. The Morse potential parameters for Fe-Fe [12] and Fe-H " 186143 191107 1959.08 200561 205077 209469 2179.09 225944
[13]. I 183856 188448 192886 197184 201354 205406 213186 220584
Interaction  D(eV) o (A) n(A) 2 - 192181 186413 190500 194456 198290 202013 209157 215941
Fe-Fe 0.42 1.40 2.85 3 T 180502 184368 198101 191700 195207 198599 205102 211268
Fe-H 0.32 1.34 1.73 4 1788.18 182316 185690 1889.50 1921.06 195166 201023 2065.69
5 177130 180256 183268 186177 1889.89 1917.04 196922 201845

Table 2. The m - n potential parameters for Fe-Si [14].

Interaction m n D(eV) ro(./ﬂx)

Fe-Si 2.0 5.5 1.06 2.3845

Table 3. The Finnis-Sinclair potential parameters for Fe-C [15].

A R ' ) R, 3 k, i,
(V) A AT AT A @AY @AY VA
2958787 2545937 10024001 1638980 2.468801 8972488 -4.086410 1483233

Our numerical results for the MT of alloys FeH, FeSi
and FeC are summarized in Tables 4-7 and described in
Figs. 1-6.
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Table 7. The MT (T ) of alloy FeC under pressure obtained from
the SMM.

¢, (%) P(GPa) 1 2 3 4 5 6 8 10

0 1861.43 1911.07 1959.08 2005.61 2050.77 2094.69 2179.09 2259.44
1 180102 184545 188822 1929.66 1969.88 200896 2084.05 2155.50
2 175524 1794.55 1832.56 186938 1905.12 1939.84 200655 2069.98

T, (K)

3 1709.51 17412 1777.60 1810.03 184151 1872.09 1930.84 1986.69
4 1664.07 169429 1723.53 175185 177934 1806.04 185732 1906.07
5 1618.98 1645.12 167040 169491 1718.68 174178 1786.14 182829
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For the pure metal Fe, the SMM’s results correspond
well with experiments [16]. In the range of pressure from 0
to 6 GPa, the differences are lower than 3%. When pressure
increases, the MT of Fe also increases.

For the interstitial alloys FeH, FeSi, and FeC with
the same concentration of interstitial atoms, the MT also
increases when pressure increases. For example, at ¢, = 5%,
when the pressure (P) increases from 1 to 10 GPa, the MT
(T ) of FeH increases from 1845.26 to 2114.58 K, the MT
(T ) of FeSi increases from 1771.30 to 2018.45 K, and the
MT (T) of FeC increases from 1618.98 to 1828.29 K.

At the same pressure, the MTs of alloys FeH, FeSi
and FeC decrease when the concentration of interstitial
atoms increases. For example, at P = 10 GPa when the
concentration (c,) increases from 0 to 5%, the MT (T ) of
FeH decreases from 2259.44 to 2114.58 K, the MT (7)) of
FeSi decreases from 2259.44 to 2018.45 K, and the MT
(T ) of FeC decreases from 2259.44 to 1828.29 K. When
their the physical conditions are the same, the MT of FeC
is lower than that of FeSi, the MT of FeSi is lower than that
of FeH, and the MTs of the interstitial alloys FeH, FeSi and
FeC are lower than the MT of Fe.

Figures 5 and 6 show that the MT (7)) of FeC from the
SMM corresponds well with EXPT [20]. The differences
are lower than 4.3% at P = 5 GPa and lower than 8.3% at
P =10 GPa.

Conclusions

Using the SMM, we derive the analytic expressions
for the temperature of the limit of absolute stability for the
crystalline state, the MT, and the melting curve of the binary
interstitial alloy at different pressures and concentrations
of interstitial atoms. In limit cases, we obtain the melting
theory of main metal 4 with a BCC structure. The theoretical
results are numerically applied for alloys FeH, FeSi and
FeC using the Morse potential, the m - n potential, and the
Finnis-Sinclair potential.

The authors declare that there is no conflict of interest
regarding the publication of this article.
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