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Introduction
Amorphous molybdenum sulfide, usually denoted 

as MoSx, represents one of the most promising catalysts 
under investigation as the replacement for the Pt catalyst 
in the hydrogen evolution reaction (HER) of water. It 
shows excellent catalytic activity in both acidic and neutral 
pH electrolytes [1]. Its preparation can be achieved by 
different approaches like reactive magnetron sputtering 
[2], acidification of a [MoS4]

2- solution, electrochemical 
oxidation or electrochemical reduction of a deposition 
solution composed of [MoS4]

2- [3, 4], [Mo2S12]
2- [5], 

or [Mo3S13]
2- [5, 6]. In our previous work, we have 

demonstrated that MoSx is a coordination polymer made 
of discrete [Mo3S13]

2- building block clusters [4]. In the 
ideal circumstance where no structural defects like Mo-� 
site are present within the polymeric structure of MoSx, it 
could be described as a (Mo3S11)n polymer. Treating MoSx 
thin films or nanoparticles in an alkaline solution causes 
depolymerization that generates [Mo3S13]

2- clusters that 
could be easily isolated, e.g. by adding Et4N

+ cation [4]. 
Inversely, we recently demonstrated that electrochemical 
oxidation of the [Mo3S13]

2- cluster via a two-electron process 
generated the MoSx material [6]. A key elemental step 

was proposed to be the electrochemical elimination of the 
terminal disulfide ligand within the [Mo3S13]

2- as the source 
of Mo-� defects that subsequently served as anchoring sites 
for other [Mo3S13]

2- clusters, thus driving polymerization. 
This means that during the growth of MoSx materials, the 
[Mo3S7] core skeleton is conserved. 

[MoS4]
2-  → MoS3 + 1/8 S8 + 2e-                                                             (eq. 1)

We then aim to revisit the polymerization of [MoS4]
2-, 

namely a mononuclear species, into MoSx which is made of 
[Mo3S13]

2- building blocks. We note that the first discussion 
of the [MoS4]

2- to MoSx polymerization mechanism was 
reported by Hu and co-workers [3, 7]. In that work, a 
rather simple reaction (eq. 1) was proposed based on the 
establishment of a relationship between the mass loss 
of the [MoS4]

2- precursor and the net charge consumed 
during the oxidation process. Furthermore, the amorphous 
molybdenum sulfide was described as MoS3 which was 
not appropriate, as recent analysis has revealed the S: Mo 
atomic ratio within MoSx should be closer to 4.0, e.g. ca. 
3.7, rather than to 3.0 [4, 8]. We hypothesize the actual 
mechanism could be much more complicated than what has 
been described. In any case, the fundamental question of 
how the [MoS4]

2- mononuclear species can assemble into a 
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[Mo3S7] cluster within the MoSx structure remains unclear. 

Herein, employing an Electrochemical Quartz 
Crystal Microbalance (EQCM) analysis we show that the 
electrochemical oxidation of [MoS4]

2- precursor into MoSx 
thin film occurs via a 10-electron process. Spectroscopic 
analyses clearly confirm the creation of the [Mo3S13]

2- 
building block within MoSx. A mechanism describing how 
[MoS4]

2- fragments assemble into the (Mo3S11)n polymer, 
namely the MoSx, is discussed.   

Materials and methods
Materials

Ammonium tetrathiomolybdate ((NH4)2[MoS4]) 99% 
and fluorine-doped tin oxide (FTO) coated glass were 
purchased from Sigma-Aldrich while Sulfuric acid (H2SO4), 
K2HPO4, KH2PO4, K3[Fe(CN)6] and K4[Fe(CN)6] were 
purchased from Xilong (99% purity). These chemicals were 
used as received without any further purification. 

Electrochemical deposition and analyses

Electrochemical deposition and measurements were 
performed using a Biologic SP-50 potentiostat in a 
conventional three-electrode system. The working electrode 
was made of an FTO substrate for deposition of the MoSx 
film which was then used for morphology and chemical 
composition characterization. For electrode mass change 
analysis, a AT-cut 5 MHz Au/Ti quartz QCM (S 1.31 
cm2) working electrode was used. A Pt plate was used as 
the counter electrode whereas the reference electrode was 
an Ag/AgCl (1 M KCl) electrode. All the potentials were 
reported on a normal hydrogen electrode (NHE). 

The electrolyte solution consisted of 1 mM (NH4)2[MoS4] 
in a pH 7 phosphate buffer solution. Prior to use, the solution 
was filtered to remove any precipitates and then degassed 
by an N2 flux for 30 min. 

Cyclic voltammograms were recorded on the Au QCM 
electrode immersed in the electrolyte solution. The potential 
was polarized from 0 V towards 1.4 V then backwards to -1 V 
vs. NHE with a potential scan rate of 5 mV/s. The deposition 
of MoSx was conducted using the chronoamperometric 
technique wherein the Au QCM electrodes were held at 0.33, 
0.36 or 0.41 V vs. NHE. The total amount of charge passed 
through the working electrode for the MoSx deposition was 
set at 10 mC/cm2. 

Bulk electrolysis

The number of electrons used per cluster during the 
oxidative deposition was determined using bulk electrolysis 
(chronoamperometric technique as aforementioned). 
During the electrolysis, the evolution of electrode mass was 
recorded. Because of the high sensitivity of QCM, a potential 
(e.g. 0.33 V) was only applied to deposit amorphous MoSx 

on the electrode when the recorded mass was stable. We 
define a stable mass as changes less than 10-2 μg/cm2 or 
lower. The deposition time was set for 500 s per cycle. The 
mass change was recorded in several repeated cycles. 

Spectroscopic and microscopic characterization

The surface morphology of the MoSx thin film was 
characterized by using a field emission scanning electron 
microscopy (FE-SEM, Hitachi S4800, Japan). Raman 
spectra were collected using a LabRAM HR Evolution 
Raman Microscope (Horiba) with the 532 nm green laser 
excitation. XPS analysis was conducted on a ULVAC PHI 
500 (Versa Probe II) equipped with a monochromatic Al Kα 
(1486.6 eV) X-ray source.

Results and discussion 
Electrochemical property of a [MoS4]

2- solution 

We first re-investigated the electrochemical property 
of the [MoS4]

2- from the perspective of identification of 
suitable conditions for the electrochemical polymerization 
effect that generates MoSx. Fig. 1 shows the first three 
consecutive cyclic voltammograms recorded on a clean 
FTO electrode immersed in a 1.0 mM [MoS4]

2- solution in 
pH 7 phosphate buffer. The potential polarization direction 
was set from the open circuit voltage towards the anodic 
potential with a potential scan rate of 50 mV/s. In the first 
cycle, two oxidation events are observed at potentials of 0 
V and 0.95 V, while a reduction event is observed at -0.8 V 
vs. NHE (Fig. 1, blue trace). In the second and subsequent 
scans, the 0 V oxidation and the -0.8 V reduction events 
are unchanged. However, the 0.95 V oxidation event is no 
longer observable, and a new oxidation event at 0.41 V 
emerges (Fig. 1, red and green traces). Thus, to investigate 
the electrochemical polymerization of [MoS4]

2-, we chose 
three potentials for chronoamperometry (CA) deposition, 
namely 0.33, 0.36 and 0.41 V vs. NHE, which corresponds 
to the foot-wave potential, half-wave potential and the peak 
potential of the latter oxidation event, respectively. 
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Characterization of deposited MoSx films 

In the same 1.0 mM [MoS4]
2- solution in pH 7 phosphate 

buffer, a clean FTO electrode was held at 0.33, 0.36 or 0.41 
V vs. NHE for 2 hours to deposit brown-coloured MoSx thin 
films. 

Figure 2 shows the SEM images of these films. It can be 
seen that the obtained MoSx films consist of clumps arranged 
close together in different shapes and sizes. The variation 
in clump shape and size are likely due to the different in 
the grown rate of MoSx at different applied potential. There 
is no difference of morphologies observed between films 
prepared at various anodic potentials.

Raman spectra clearly show all the characteristic 
features of a MoSx polymeric thin film with [Mo3S13]

2- 
building block clusters, as previously reported (Fig. 3) [4]. 
Vibrations at 284-382 cm-1 are assigned to the Mo-S bond, 
whereas the one at 450 cm-1 is attributed to the nMo3-Sapical 
vibration mode. Vibrations of bridged or shared disulfide 
(S-S)br/sh and terminal disulfide (S-S)t are observed at 555 
and 525 cm-1, respectively. 

In XPS analysis, MoIV species is characterized by a 
doublet having Mo3d5/2 of 229.38 eV. The doublet at higher 
binding energy, Mo3d5/2 of 230.30 eV, is attributed to MoV 

species, e.g. due to the presence of MoV=O defects. The 
presence of some MoVI species, like excess [MoS4]

2- or 

MoO3, within the deposit is also likely as a doublet having 
Mo3d5/2 of 232.44 eV is observed. The (S-S)br/sh disulfide 
ligand and the apical sulfide are characterized by a doublet 
having S2p3/2 of 163.18 eV. While the doublet at S2p3/2 of 
162.07 eV is assigned to the terminal (S-S)t disulfide ligand 
(Fig. 4). The binding energies of Mo and S from XPS results 
are in consensus with the reported literatures [4, 6] and 
proving the obtained materials is amorphous molybdenum 
sulfide, labeled as MoSx. 

These results confirm that at the potentials applied, 
[MoS4]

2- is electrochemically oxidized, which grows the 
MoSx thin film consisting of [Mo3S13]

2- building block 
clusters. In following section, we employ EQCM analysis to 
identify the number of electrons involved in each elemental 
electrochemical oxidation event. 

Electrochemical quartz crystal microbalance analysis

A clean Au QCM electrode was first equilibrated in a 
1.0 mM [MoS4]

2- solution in a pH 7 phosphate buffer for 30 
minutes at the open circuit voltage. Subsequently, an anodic 
potential of 0.33 V vs. NHE is applied for a period of 500 s. 
We observed a linear increment of the electrode mass (Fig. 
5A) that indicated growth, by electrodeposition, of material 
on the Au QCM electrode surface. When the applied potential 
was removed, no mass increment was recorded. This clearly 
confirmed that the MoSx deposition is solely driven by the 
applied oxidation potential. From the mass increment we 
are able to deduce the amount of MoSx deposited in moles 
under the assumption that the MoSx is a perfect (Mo3S11)n 

polymer without any structural defects or impurities. At the 
same time, the amount of charge involved in the process 
was recorded. We then plot the number of electrons (in mol) 
against the amount of Mo3S11 clusters deposited (Fig. 5B). 
A slope of 9.65 is found. The same value was determined 
when we repeated the same deposition-relaxation process 
on the same electrode for several cycles (Figs. 5C, D). 
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At a higher applied potential, namely 0.36 V and 0.41 
V vs. NHE, we observed the same phenomenon and a 
similar value of ca. 10 electrons over a (Mo3S11) cluster 
was determined (Figs. 6A, B). When the deposited film 
got thicker, e.g. after longer deposition time, the number of 
electrons involved was higher to generate the same (Mo3S11) 
cluster (Figs. 6C-F). This observation can be explained by 
the fact that MoSx is not a good conductor. Thus, a thick 
layer of MoSx may inhibit the electron transfer process. A 
similar phenomenon was also observed for the case of MoSx 
films grown via an electrochemical oxidation of [Mo3S13]

2- 
clusters [6].

Thus, based on the available data, we conclude that the 
MoSx thin film is grown from the [MoS4]

2- solution via a 
10-electron oxidation process during the early stages of 
deposition when the MoSx film is not too thick. In other 
words, each Mo3S11 unit comprising the MoSx film is 
created via a 10-electron oxidation. This result is different 
compared with that reported by Hu, et al. [3, 7] where a 
2-electron oxidation process was proposed (eq. 1) [3, 7]. 
The 10-electron oxidation process is given below:

3[MoS4]
2- → Mo3S11 + 1/8S8 + 10 e-                       (eq. 2)

Proposed mechanism for the growth of MoSx film

We propose a mechanism for the growth of the (Mo3S11)n 
polymer, namely the MoSx film, via the electrochemical 
oxidation of [MoS4]

2-. Our primary focus is on the 
mechanism behind the construction of a [Mo3S11] skeleton 
by assembling three [MoS4]

2- fragment species through a 
10-electron oxidation process. Firstly, a [MoS4]

2- molecule 
adsorbs to the electrode surface and loses 1 electron to 
create a Au-S covalent bond (Fig. 7A). Two other [MoS4]

2- 

molecules approach (Fig. 7B) and remove 6 electrons, 
which create three (S-S)2- ligands as well as a Mo3-Sapical 
mode (Fig. 7C). Actually, each (S-S)2-

 is generated from two 
S2- ligands via a two-electron reaction:

2S2- → (S-S)2- + 2e-                                              (eq. 3)

MoVI + 2e- → MoIV                                                            (eq. 4)

Here, the [Mo3S7] skeleton grafted onto the electrode 
surface via a sulfide covalent bond is readily  (Fig. 7D). 
In this [Mo3S7] species, two Mo atoms are bound to two 
terminal S2- ligands. These S2- ligands could also be 
oxidized via a two-electron reaction, creating the terminal 
(S-S)2- ligand. This oxidation can also occur in parallel with 
the reduction of MoVI into MoIV (eq. 4). Alternatively, a 
S2- ligand is oxidized by a two-electron process producing 
elemental sulfur and leaving a coordination vacancy on the 
Mo atom (Fig. 7E). Indeed, the presence of an elemental 
sulfur impurity in the MoSx film has been discussed 
elsewhere [9, 10]. This vacancy then acts as an anchoring 
position to host a new [MoS4]

2- molecule. At this step, a 
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Fig. 6. Plot of electrode mass against the amount of electrons 
involved. (A) MoSx film grown at 0.36 V and (B) 0.41 V vs NHE 
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grown at 0.41 V vs NHE for longer deposition periods.
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new (S-S)2- ligand is generated after removing two more 
electrons (Fig. 7F). The newly [MoS4]

- species grafted on 
the [Mo3S7] cluster now continues its reaction in the same 
manner as the [MoS4]

- grafted on the Au electrode described 
above (Fig. 7G). Through such a reaction sequence, the 
(Mo3S11)n polymer is grown on the Au electrode surface via a 
10-electron oxidation process as determined experimentally 
in this work. 

Conclusions 

To conclude, the electrochemical oxidation of a [MoS4]
2- 

solution in neutral pH can grow an amorphous molybdenum 
sulfide (MoSx) thin film, which is constructed of [Mo3S13]

2- 
building blocks. Employing an electrochemical quartz 
crystal microbalance (EQCM) analysis, we revealed that 
the [MoS4]

2- molecule goes through a 10-electron oxidation 
process to create the (Mo3S11) structure unit and subsequently 
the (Mo3S11)n polymer. A mechanism has been proposed to 
describe the elemental steps of such a 10-electron oxidation 
process. This work enriches the current knowledge of the 
formation, structure, and attractive redox property of the MoSx. 
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Fig. 7. Proposed mechanism of electro-oxidation synthesis of a-MoSx from [MoS4]2- 
precursor.

 

 
 

2S2- �  (S-S)2- + 2e-                                                                                              (eq. 
3) 

MoVI + 2e- �  MoIV                                                                                              (eq. 4) 
Here, the [Mo3S7] skeleton grafted onto the electrode surface via a sulfide covalent 

bond is readily  (Fig. 7D). In this [Mo3S7] species, two Mo atoms are bound to two 
terminal S2- ligands. These S2- ligands could also be oxidized via a two-electron reaction, 
creating the terminal (S-S)2- ligand. This oxidation can also occur in parallel with the 
reduction of MoVI into MoIV (eq. 4). Alternatively, a S2- ligand is oxidized by a two-
electron process producing elemental sulfur and leaving a coordination vacancy on the 
Mo atom (Fig. 7E). Indeed, the presence of an elemental sulfur impurity in the MoSx film 
has been discussed elsewhere [9, 10]. This vacancy then acts as an anchoring position to 
host a new [MoS4]2- molecule. At this step, a new (S-S)2- ligand is generated after 
removing two more electrons (Fig. 7F). The newly [MoS4]- species grafted on the [Mo3S7] 
cluster now continues its reaction in the same manner as the [MoS4]- grafted on the Au 
electrode described above (Fig. 7G). Through such a reaction sequence, the (Mo3S11)n 
polymer is grown on the Au electrode surface via a 10-electron oxidation process as 
determined experimentally in this work.  
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