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Introduction

In the theory of difference schemes [1-3], the maximum 
principle is used to study the stability and convergence of 
a difference solution in the uniform norm. Computational 
methods that satisfy the maximum principle are usually 
called monotone [1, 2]. The monotone schemes play an 
critical role in computational practice. They make it possible 
to obtain a numerical solution without oscillations even in 
the case of non-smooth solutions [4].

When constructing monotone difference schemes, it is 
desirable to preserve the second order approximation with 
respect to the spatial variable. Such schemes are constructed 
for parabolic and hyperbolic equations in the presence of 
lower derivatives. For example, a nonconservative scheme 
of second order approximation for linear parabolic equations 
of general form on uniform grids is given in [1, 2]. When 
solving two-dimensional partial differential equations in 
the free domain, we need to construct a difference scheme 
on a non-uniform grid. We must first confirm that a non-
uniform grid is more general than a uniform grid. While 
one can easily convert a non-uniform grid to uniform grid, 
the inverse transformation is not so straightforward, and 
it cannot preserve the conservation properties [5]. For the 
nonlinear Black-Scholes equation, it is helpful to implement 
the grid to the payoff of the option, because the price of an 
option may be more sensitive in a precise area [6]. In this 
case, the uniform grid is not appropriate. In the case of non-
uniform grids for equations in mathematical physics with 
variable coefficients without lower derivatives, a scheme 
was obtained in [7] for which the conditions of the maximum 
principle are fulfilled without relations on the coefficients 
and parameters of the grid (unconditional monotonicity). 
In [8], the unconditionally monotone and economical 
schemes of second order approximation were constructed 
on a non-uniform grid for non-stationary multidimensional 
convection-diffusion problems.

In the present work, the previously obtained results are 
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generalized to the construction of monotone difference 
schemes of second-order local approximation on non-
uniform spatial grids for the Gamma equation for the second 
derivative of the option price in financial mathematics 
[9, 10]. The construction of such schemes is based on the 
appropriate choice of the perturbed coefficient, similar to 
[1, 2, 8]. Using the difference maximum principle, two-
sided and a priori estimates are obtained in the normal c 
for solving difference schemes that approximate the above 
equation.

Problem setting and two-sided estimate of the exact 
solution

We consider the following quasilinear parabolic 
equation, which is called the Gamma equation [9, 10]:
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solution for problem (1)-(2) and all the coefficients in 
Eq. (5). We further assume the desired function to have 
continuous bounded derivatives of the required order as the 
presentation proceeds.

Using the technique from [13], we prove two-sided 
estimates for the exact solution of problem (1)-(2).

Theorem 1: let condition (7) be satisfied. Then, for the 
solution u(x, t) of the problem (1)-(2), the following two-
sided estimates are true:



Mathematics and Computer Science | Mathematics

Vietnam Journal of Science,
Technology and Engineering 5DECEMBER 2019 • Vol.61 Number 4

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

	 (8)

Proof: to prove (8), we make a transformation of the 
function u(x, t) to the new function v(x, t) associated with 
the equality 

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

where λ is an arbitrary number. The function v(x, t) satisfies 
the equation  

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

	 (9)

with initial and boundary conditions 

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

	  (10)

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

 (11)

Let the maximum of the solution, v(x, t), of problem (9)-
(11) be reached at some point (x0, t0) ∈ (-L, L) × (0, T]   

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

moreover, at the point (x0, t0), Eq. (9) and the following 
relations are satisfied  

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

It follows that 

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

           (12)

If the maximum in QT value v(x, t) is taken at the 
boundary {-L, L} × (0, T] ∪ [-L, L] × {0}, then we obtain 

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

 (13)

Thus, in all cases of Eqs. (12)-(13), the following 
estimate is valid 

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

from which it follows 

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

The case of the minimum of the solution u(x, t) is proved 
similarly. Thus, the theorem is proved.

Finite-difference scheme on non-uniform spatial grids
We introduce an arbitrary non-uniform spatial grid 

coefficients in Eq. (5). We further assume the desired function to have continuous bounded 
derivatives of the required order as the presentation proceeds. 

Using the technique from [13], we prove two-sided estimates for the exact solution of problem 
(1)–(2). 

Theorem 1: let condition (7) be satisfied. Then, for the solution  (   ) of the problem (1)–
(2), the following two-sided estimates are true: 

       2       
      

  ( )3   (   )     {       
      

  ( )}      (8) 

Proof: to prove (8), we make a transformation of the function  (   ) to the new function 
 (   ) associated with the equality  

 (   )   (   )     
where   is an arbitrary number. The function  (   ) satisfies the equation  

  
       (    )    

    
  (    )

  
  
    (    )         (9) 

with initial and boundary conditions  
 (   )    ( )             (10) 
 (    )   (   )             (11) 
Let the maximum of the solution,  (   ), of problem (9)–(11) be reached at some point 

(     )  (    )  (   -  
   

(   )  ̅ 
 (   )   (     )  

moreover, at the point (     ), Eq. (9) and the following relations are satisfied  
  (     )

           
(     )
      

   (     )
       

    
 (        )    (     )   (        )

       
It follows that  (   )   (     )             (12) 

If the maximum in  ̅  value  (   ) is taken at the boundary *    +  (   -  ,    -  
* +, then we obtain  

 (   )     
(   )  ̅ 

 (   )     {     
      

  ( )}  (13) 

Thus, in all cases of Eqs. (12)–(13), the following estimate is valid  

 (   )     {     
      

  ( )}  
from which it follows  

 (   )     {       
      

  ( )}              
The case of the minimum of the solution  (   ) is proved similarly. Thus, the theorem is 
proved. 

Finite-difference scheme on non-uniform spatial grids 

We introduce an arbitrary non-uniform spatial grid  
 ̂̅   ̂          ̂  *                        +        *          +  

and uniform grid by the time variable and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

Taking into account the identity (ku')' = 0.5((ku)'' + ku'' 
- k''u) and using standard notation [1]  

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

we construct a difference scheme for a quasilinear parabolic 
equation (5) on a non-uniform grid

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

                
(14)

where 

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

Approximation error: let us prove that the scheme (14) 
approximates problem (5) under the conditions of Eq. (4) in 
the second order with respect to the point 

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

 (in the 
case of a uniform grid 

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

). To do this, we focus on the 
relationship [7] 

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

	 (15)

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

	 (16)

when the condition of variable in space weight factors is 
fulfilled 

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

,  

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

By virtue of (15) 

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

  (17)

In view of (16) we obtain 

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

 (18)

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

 (19)

From (15)-(18), it follows that 

and uniform grid by the time variable  
 ̅  *                        +     * +  
Taking into account the identity (   )     ((  )            )  and using standard 

notation [1]  
                        (    )             (  )              (    )  
   (    )          ̅  (    )         ̅ ̂  (     ̅)     
          ̂                 (  )      ̂        (    )  

we construct a difference scheme for a quasilinear parabolic equation (5) on a non-uniform grid 
   ̂       
  (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 
  

    (  )       
      

       (14) 

where  
 (      )       (         )          
   ̂     [( ( ) ̂) ̅ ̂   (    )( ) ̂ ̅ ̂    ̅ ̂( ) ̂(    )]  
      (| ̃|   ̃)              (| ̃|   ̃)        ̃  (    )    
      ( ̃  ̅ ̂  | ̃  ̅ ̂|) (    ̅ ̂)            ( ̃  ̅ ̂  | ̃  ̅ ̂|) (   ̅ ̂)  

  ( )   
 (  

 (  )    

 ( )    

 (  ))       ( )     ( ( )  | ( )|)  

 ( )   
   ( )       ( )       

   ( )       
   ( )     

 ( )     ( ( )   (  ))       ( )     ( (  )   ( ))  
Approximation error: let us prove that the scheme (14) approximates problem (5) under the 

conditions of Eq. (4) in the second order with respect to the point  ̅      ̃  (in the case of a 
uniform grid  ̅    ). To do this, we focus on the relationship [7]  

  ̅ ̂     ( ̅)   (  )   (15) 
 (      )   ( ̅)   (  )       *   +   (16) 

when the condition of variable in space weight factors is fulfilled   ,       

               
   ̃       *   +  

By virtue of (15)  

( ( ) ̂) ̅ ̂    ( ( ) )( ̅  ̂)
     (    )       ̅ ̂( )     ( ̅)

     (  )  (17) 
In view of (16) we obtain  

 (    )( )   ( ̅)   (  )  (18) 

  (    )    ( ̅  ̂)
    (    )  (19) 

From (15)–(18), it follows that  

   ̂   
  . ( )   

  / ( ̅  ̂)   (    )  (20) 
Using the Taylor series expansion  

 (20)

Using the Taylor series expansion 

     ( ̅)       
    ( ̅)   (  )       ̅    ( ̅)       

    ( ̅)   (  )  

  ( )   ( ̅)       
   ( ̅)   (  )      ( )   ( ̅)       

   ( ̅)   (  )  
we conclude that  

  ( )   (   )( ̅)       
 (   ) ( ̅)   (  )  

 ( )  ̅  (   )( ̅)       
 (   ) ( ̅)   (  )  

Since  
  ( )    ( )   ( )  

  ( )    ( )   
 4

 
 (  )  

 
 ( )  

 
 (  )5   

 ( ̅)   (  )  

then  
  ( )  ( )     ( ) ( )  ̅  (   )( ̅)   ( )(   ) ( ̅)   (  )  (21) 

Using (21) we get  

  ( )  ( ) ̂    ( ) ( ) ̂ ̅  ( ( )     ) ( ̅  ̂)   ( )  
  ( ( )

  
  ) ( ̅  ̂)   

 (    )  (22) 
Finally, from (19)–(20), (22) we find out that the approximation error is of second order in space  

 ( ̅  ̂)     (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 

   ( )
   ( )

 
  ( ( )

  
  ) ( ̅  ̂)   (    )   (    )  

Therefore, spatial approximation order of the difference scheme (14) is 2 and its temporal 
approximation order is 1. 

Monotonicity, two-sided and a priori estimates 

We write the difference scheme (14) in the canonical form [2]  
                                                   (23) 
        (    )             (    )  (24) 

with coefficients defined as follows  

                0. (    )(  )   (     )/  (      )       ̅ ̂  (  )1      (  )        
                0. (    )(  )   (     )/  (        )       ̅ ̂  (  )1      (  )            
                       (    )

        (    )    (    )     
The scheme (23)–(24) is monotone if the positivity conditions of the coefficients are satisfied 

[1], i.e.  
                                       (25) 
Base on the maximum principle, similiar to the work of [14], we formulate the following 

results for the difference schemes (14):  
Theorem 2 (Maximum principle): let positivity conditions for the coefficients in Eq. (25) be 



Mathematics and Computer Science | Mathematics

Vietnam Journal of Science,
Technology and Engineering6 DECEMBER 2019 • Vol.61 Number 4

we conclude that 

     ( ̅)       
    ( ̅)   (  )       ̅    ( ̅)       

    ( ̅)   (  )  

  ( )   ( ̅)       
   ( ̅)   (  )      ( )   ( ̅)       

   ( ̅)   (  )  
we conclude that  

  ( )   (   )( ̅)       
 (   ) ( ̅)   (  )  

 ( )  ̅  (   )( ̅)       
 (   ) ( ̅)   (  )  

Since  
  ( )    ( )   ( )  

  ( )    ( )   
 4

 
 (  )  

 
 ( )  

 
 (  )5   

 ( ̅)   (  )  

then  
  ( )  ( )     ( ) ( )  ̅  (   )( ̅)   ( )(   ) ( ̅)   (  )  (21) 

Using (21) we get  

  ( )  ( ) ̂    ( ) ( ) ̂ ̅  ( ( )     ) ( ̅  ̂)   ( )  
  ( ( )

  
  ) ( ̅  ̂)   

 (    )  (22) 
Finally, from (19)–(20), (22) we find out that the approximation error is of second order in space  

 ( ̅  ̂)     (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 

   ( )
   ( )

 
  ( ( )

  
  ) ( ̅  ̂)   (    )   (    )  

Therefore, spatial approximation order of the difference scheme (14) is 2 and its temporal 
approximation order is 1. 

Monotonicity, two-sided and a priori estimates 

We write the difference scheme (14) in the canonical form [2]  
                                                   (23) 
        (    )             (    )  (24) 

with coefficients defined as follows  

                0. (    )(  )   (     )/  (      )       ̅ ̂  (  )1      (  )        
                0. (    )(  )   (     )/  (        )       ̅ ̂  (  )1      (  )            
                       (    )

        (    )    (    )     
The scheme (23)–(24) is monotone if the positivity conditions of the coefficients are satisfied 

[1], i.e.  
                                       (25) 
Base on the maximum principle, similiar to the work of [14], we formulate the following 

results for the difference schemes (14):  
Theorem 2 (Maximum principle): let positivity conditions for the coefficients in Eq. (25) be 

Since 

     ( ̅)       
    ( ̅)   (  )       ̅    ( ̅)       

    ( ̅)   (  )  

  ( )   ( ̅)       
   ( ̅)   (  )      ( )   ( ̅)       

   ( ̅)   (  )  
we conclude that  

  ( )   (   )( ̅)       
 (   ) ( ̅)   (  )  

 ( )  ̅  (   )( ̅)       
 (   ) ( ̅)   (  )  

Since  
  ( )    ( )   ( )  

  ( )    ( )   
 4

 
 (  )  

 
 ( )  

 
 (  )5   

 ( ̅)   (  )  

then  
  ( )  ( )     ( ) ( )  ̅  (   )( ̅)   ( )(   ) ( ̅)   (  )  (21) 

Using (21) we get  

  ( )  ( ) ̂    ( ) ( ) ̂ ̅  ( ( )     ) ( ̅  ̂)   ( )  
  ( ( )

  
  ) ( ̅  ̂)   

 (    )  (22) 
Finally, from (19)–(20), (22) we find out that the approximation error is of second order in space  

 ( ̅  ̂)     (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 

   ( )
   ( )

 
  ( ( )

  
  ) ( ̅  ̂)   (    )   (    )  

Therefore, spatial approximation order of the difference scheme (14) is 2 and its temporal 
approximation order is 1. 

Monotonicity, two-sided and a priori estimates 

We write the difference scheme (14) in the canonical form [2]  
                                                   (23) 
        (    )             (    )  (24) 

with coefficients defined as follows  

                0. (    )(  )   (     )/  (      )       ̅ ̂  (  )1      (  )        
                0. (    )(  )   (     )/  (        )       ̅ ̂  (  )1      (  )            
                       (    )

        (    )    (    )     
The scheme (23)–(24) is monotone if the positivity conditions of the coefficients are satisfied 

[1], i.e.  
                                       (25) 
Base on the maximum principle, similiar to the work of [14], we formulate the following 

results for the difference schemes (14):  
Theorem 2 (Maximum principle): let positivity conditions for the coefficients in Eq. (25) be 

then 

     ( ̅)       
    ( ̅)   (  )       ̅    ( ̅)       

    ( ̅)   (  )  

  ( )   ( ̅)       
   ( ̅)   (  )      ( )   ( ̅)       

   ( ̅)   (  )  
we conclude that  

  ( )   (   )( ̅)       
 (   ) ( ̅)   (  )  

 ( )  ̅  (   )( ̅)       
 (   ) ( ̅)   (  )  

Since  
  ( )    ( )   ( )  

  ( )    ( )   
 4

 
 (  )  

 
 ( )  

 
 (  )5   

 ( ̅)   (  )  

then  
  ( )  ( )     ( ) ( )  ̅  (   )( ̅)   ( )(   ) ( ̅)   (  )  (21) 

Using (21) we get  

  ( )  ( ) ̂    ( ) ( ) ̂ ̅  ( ( )     ) ( ̅  ̂)   ( )  
  ( ( )

  
  ) ( ̅  ̂)   

 (    )  (22) 
Finally, from (19)–(20), (22) we find out that the approximation error is of second order in space  

 ( ̅  ̂)     (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 

   ( )
   ( )

 
  ( ( )

  
  ) ( ̅  ̂)   (    )   (    )  

Therefore, spatial approximation order of the difference scheme (14) is 2 and its temporal 
approximation order is 1. 

Monotonicity, two-sided and a priori estimates 

We write the difference scheme (14) in the canonical form [2]  
                                                   (23) 
        (    )             (    )  (24) 

with coefficients defined as follows  

                0. (    )(  )   (     )/  (      )       ̅ ̂  (  )1      (  )        
                0. (    )(  )   (     )/  (        )       ̅ ̂  (  )1      (  )            
                       (    )

        (    )    (    )     
The scheme (23)–(24) is monotone if the positivity conditions of the coefficients are satisfied 

[1], i.e.  
                                       (25) 
Base on the maximum principle, similiar to the work of [14], we formulate the following 

results for the difference schemes (14):  
Theorem 2 (Maximum principle): let positivity conditions for the coefficients in Eq. (25) be 

 (21)

Using (21) we get 

     ( ̅)       
    ( ̅)   (  )       ̅    ( ̅)       

    ( ̅)   (  )  

  ( )   ( ̅)       
   ( ̅)   (  )      ( )   ( ̅)       

   ( ̅)   (  )  
we conclude that  

  ( )   (   )( ̅)       
 (   ) ( ̅)   (  )  

 ( )  ̅  (   )( ̅)       
 (   ) ( ̅)   (  )  

Since  
  ( )    ( )   ( )  

  ( )    ( )   
 4

 
 (  )  

 
 ( )  

 
 (  )5   

 ( ̅)   (  )  

then  
  ( )  ( )     ( ) ( )  ̅  (   )( ̅)   ( )(   ) ( ̅)   (  )  (21) 

Using (21) we get  

  ( )  ( ) ̂    ( ) ( ) ̂ ̅  ( ( )     ) ( ̅  ̂)   ( )  
  ( ( )

  
  ) ( ̅  ̂)   

 (    )  (22) 
Finally, from (19)–(20), (22) we find out that the approximation error is of second order in space  

 ( ̅  ̂)     (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 

   ( )
   ( )

 
  ( ( )

  
  ) ( ̅  ̂)   (    )   (    )  

Therefore, spatial approximation order of the difference scheme (14) is 2 and its temporal 
approximation order is 1. 

Monotonicity, two-sided and a priori estimates 

We write the difference scheme (14) in the canonical form [2]  
                                                   (23) 
        (    )             (    )  (24) 

with coefficients defined as follows  

                0. (    )(  )   (     )/  (      )       ̅ ̂  (  )1      (  )        
                0. (    )(  )   (     )/  (        )       ̅ ̂  (  )1      (  )            
                       (    )

        (    )    (    )     
The scheme (23)–(24) is monotone if the positivity conditions of the coefficients are satisfied 

[1], i.e.  
                                       (25) 
Base on the maximum principle, similiar to the work of [14], we formulate the following 

results for the difference schemes (14):  
Theorem 2 (Maximum principle): let positivity conditions for the coefficients in Eq. (25) be 

 

(22)

Finally, from (19)–(20), (22) we find out that the 
approximation error is of second order in space 

     ( ̅)       
    ( ̅)   (  )       ̅    ( ̅)       

    ( ̅)   (  )  

  ( )   ( ̅)       
   ( ̅)   (  )      ( )   ( ̅)       

   ( ̅)   (  )  
we conclude that  

  ( )   (   )( ̅)       
 (   ) ( ̅)   (  )  

 ( )  ̅  (   )( ̅)       
 (   ) ( ̅)   (  )  

Since  
  ( )    ( )   ( )  

  ( )    ( )   
 4

 
 (  )  

 
 ( )  

 
 (  )5   

 ( ̅)   (  )  

then  
  ( )  ( )     ( ) ( )  ̅  (   )( ̅)   ( )(   ) ( ̅)   (  )  (21) 

Using (21) we get  

  ( )  ( ) ̂    ( ) ( ) ̂ ̅  ( ( )     ) ( ̅  ̂)   ( )  
  ( ( )

  
  ) ( ̅  ̂)   

 (    )  (22) 
Finally, from (19)–(20), (22) we find out that the approximation error is of second order in space  

 ( ̅  ̂)     (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 

   ( )
   ( )

 
  ( ( )

  
  ) ( ̅  ̂)   (    )   (    )  

Therefore, spatial approximation order of the difference scheme (14) is 2 and its temporal 
approximation order is 1. 

Monotonicity, two-sided and a priori estimates 

We write the difference scheme (14) in the canonical form [2]  
                                                   (23) 
        (    )             (    )  (24) 

with coefficients defined as follows  

                0. (    )(  )   (     )/  (      )       ̅ ̂  (  )1      (  )        
                0. (    )(  )   (     )/  (        )       ̅ ̂  (  )1      (  )            
                       (    )

        (    )    (    )     
The scheme (23)–(24) is monotone if the positivity conditions of the coefficients are satisfied 

[1], i.e.  
                                       (25) 
Base on the maximum principle, similiar to the work of [14], we formulate the following 

results for the difference schemes (14):  
Theorem 2 (Maximum principle): let positivity conditions for the coefficients in Eq. (25) be 

Therefore, spatial approximation order of the difference 
scheme (14) is 2 and its temporal approximation order is 1.

Monotonicity, two-sided and a priori estimates
We write the difference scheme (14) in the canonical 

form [2] 

     ( ̅)       
    ( ̅)   (  )       ̅    ( ̅)       

    ( ̅)   (  )  

  ( )   ( ̅)       
   ( ̅)   (  )      ( )   ( ̅)       

   ( ̅)   (  )  
we conclude that  

  ( )   (   )( ̅)       
 (   ) ( ̅)   (  )  

 ( )  ̅  (   )( ̅)       
 (   ) ( ̅)   (  )  

Since  
  ( )    ( )   ( )  

  ( )    ( )   
 4

 
 (  )  

 
 ( )  

 
 (  )5   

 ( ̅)   (  )  

then  
  ( )  ( )     ( ) ( )  ̅  (   )( ̅)   ( )(   ) ( ̅)   (  )  (21) 

Using (21) we get  

  ( )  ( ) ̂    ( ) ( ) ̂ ̅  ( ( )     ) ( ̅  ̂)   ( )  
  ( ( )

  
  ) ( ̅  ̂)   

 (    )  (22) 
Finally, from (19)–(20), (22) we find out that the approximation error is of second order in space  

 ( ̅  ̂)     (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 

   ( )
   ( )

 
  ( ( )

  
  ) ( ̅  ̂)   (    )   (    )  

Therefore, spatial approximation order of the difference scheme (14) is 2 and its temporal 
approximation order is 1. 

Monotonicity, two-sided and a priori estimates 

We write the difference scheme (14) in the canonical form [2]  
                                                   (23) 
        (    )             (    )  (24) 

with coefficients defined as follows  

                0. (    )(  )   (     )/  (      )       ̅ ̂  (  )1      (  )        
                0. (    )(  )   (     )/  (        )       ̅ ̂  (  )1      (  )            
                       (    )

        (    )    (    )     
The scheme (23)–(24) is monotone if the positivity conditions of the coefficients are satisfied 

[1], i.e.  
                                       (25) 
Base on the maximum principle, similiar to the work of [14], we formulate the following 

results for the difference schemes (14):  
Theorem 2 (Maximum principle): let positivity conditions for the coefficients in Eq. (25) be 

 (23)

     ( ̅)       
    ( ̅)   (  )       ̅    ( ̅)       

    ( ̅)   (  )  

  ( )   ( ̅)       
   ( ̅)   (  )      ( )   ( ̅)       

   ( ̅)   (  )  
we conclude that  

  ( )   (   )( ̅)       
 (   ) ( ̅)   (  )  

 ( )  ̅  (   )( ̅)       
 (   ) ( ̅)   (  )  

Since  
  ( )    ( )   ( )  

  ( )    ( )   
 4

 
 (  )  

 
 ( )  

 
 (  )5   

 ( ̅)   (  )  

then  
  ( )  ( )     ( ) ( )  ̅  (   )( ̅)   ( )(   ) ( ̅)   (  )  (21) 

Using (21) we get  

  ( )  ( ) ̂    ( ) ( ) ̂ ̅  ( ( )     ) ( ̅  ̂)   ( )  
  ( ( )

  
  ) ( ̅  ̂)   

 (    )  (22) 
Finally, from (19)–(20), (22) we find out that the approximation error is of second order in space  

 ( ̅  ̂)     (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 

   ( )
   ( )

 
  ( ( )

  
  ) ( ̅  ̂)   (    )   (    )  

Therefore, spatial approximation order of the difference scheme (14) is 2 and its temporal 
approximation order is 1. 

Monotonicity, two-sided and a priori estimates 

We write the difference scheme (14) in the canonical form [2]  
                                                   (23) 
        (    )             (    )  (24) 

with coefficients defined as follows  

                0. (    )(  )   (     )/  (      )       ̅ ̂  (  )1      (  )        
                0. (    )(  )   (     )/  (        )       ̅ ̂  (  )1      (  )            
                       (    )

        (    )    (    )     
The scheme (23)–(24) is monotone if the positivity conditions of the coefficients are satisfied 

[1], i.e.  
                                       (25) 
Base on the maximum principle, similiar to the work of [14], we formulate the following 

results for the difference schemes (14):  
Theorem 2 (Maximum principle): let positivity conditions for the coefficients in Eq. (25) be 

 (24)

with coefficients defined as follows 

     ( ̅)       
    ( ̅)   (  )       ̅    ( ̅)       

    ( ̅)   (  )  

  ( )   ( ̅)       
   ( ̅)   (  )      ( )   ( ̅)       

   ( ̅)   (  )  
we conclude that  

  ( )   (   )( ̅)       
 (   ) ( ̅)   (  )  

 ( )  ̅  (   )( ̅)       
 (   ) ( ̅)   (  )  

Since  
  ( )    ( )   ( )  

  ( )    ( )   
 4

 
 (  )  

 
 ( )  

 
 (  )5   

 ( ̅)   (  )  

then  
  ( )  ( )     ( ) ( )  ̅  (   )( ̅)   ( )(   ) ( ̅)   (  )  (21) 

Using (21) we get  

  ( )  ( ) ̂    ( ) ( ) ̂ ̅  ( ( )     ) ( ̅  ̂)   ( )  
  ( ( )

  
  ) ( ̅  ̂)   

 (    )  (22) 
Finally, from (19)–(20), (22) we find out that the approximation error is of second order in space  

 ( ̅  ̂)     (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 

   ( )
   ( )

 
  ( ( )

  
  ) ( ̅  ̂)   (    )   (    )  

Therefore, spatial approximation order of the difference scheme (14) is 2 and its temporal 
approximation order is 1. 

Monotonicity, two-sided and a priori estimates 

We write the difference scheme (14) in the canonical form [2]  
                                                   (23) 
        (    )             (    )  (24) 

with coefficients defined as follows  

                0. (    )(  )   (     )/  (      )       ̅ ̂  (  )1      (  )        
                0. (    )(  )   (     )/  (        )       ̅ ̂  (  )1      (  )            
                       (    )

        (    )    (    )     
The scheme (23)–(24) is monotone if the positivity conditions of the coefficients are satisfied 

[1], i.e.  
                                       (25) 
Base on the maximum principle, similiar to the work of [14], we formulate the following 

results for the difference schemes (14):  
Theorem 2 (Maximum principle): let positivity conditions for the coefficients in Eq. (25) be 

The scheme (23)-(24) is monotone if the positivity 
conditions of the coefficients are satisfied [1], i.e. 

     ( ̅)       
    ( ̅)   (  )       ̅    ( ̅)       

    ( ̅)   (  )  

  ( )   ( ̅)       
   ( ̅)   (  )      ( )   ( ̅)       

   ( ̅)   (  )  
we conclude that  

  ( )   (   )( ̅)       
 (   ) ( ̅)   (  )  

 ( )  ̅  (   )( ̅)       
 (   ) ( ̅)   (  )  

Since  
  ( )    ( )   ( )  

  ( )    ( )   
 4

 
 (  )  

 
 ( )  

 
 (  )5   

 ( ̅)   (  )  

then  
  ( )  ( )     ( ) ( )  ̅  (   )( ̅)   ( )(   ) ( ̅)   (  )  (21) 

Using (21) we get  

  ( )  ( ) ̂    ( ) ( ) ̂ ̅  ( ( )     ) ( ̅  ̂)   ( )  
  ( ( )

  
  ) ( ̅  ̂)   

 (    )  (22) 
Finally, from (19)–(20), (22) we find out that the approximation error is of second order in space  

 ( ̅  ̂)     (    )   ( )   ̂    ( )  ( ) ̂    ( ) ( ) ̂ ̅ 

   ( )
   ( )

 
  ( ( )

  
  ) ( ̅  ̂)   (    )   (    )  

Therefore, spatial approximation order of the difference scheme (14) is 2 and its temporal 
approximation order is 1. 

Monotonicity, two-sided and a priori estimates 

We write the difference scheme (14) in the canonical form [2]  
                                                   (23) 
        (    )             (    )  (24) 

with coefficients defined as follows  

                0. (    )(  )   (     )/  (      )       ̅ ̂  (  )1      (  )        
                0. (    )(  )   (     )/  (        )       ̅ ̂  (  )1      (  )            
                       (    )

        (    )    (    )     
The scheme (23)–(24) is monotone if the positivity conditions of the coefficients are satisfied 

[1], i.e.  
                                       (25) 
Base on the maximum principle, similiar to the work of [14], we formulate the following 

results for the difference schemes (14):  
Theorem 2 (Maximum principle): let positivity conditions for the coefficients in Eq. (25) be 

 (25)

Base on the maximum principle, similiar to the work of 
[14], we formulate the following results for the difference 
schemes (14): 

Theorem 2 (Maximum principle): let positivity conditions 
for the coefficients in Eq. (25) be fulfilled. Then, for the 
solution of the difference scheme given by Eqs. (23)-(24), 

the following two-sided estimate is valid: 
fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

  (26)

Proof: suppose that the maximum of the solution, y(x), of 
the difference problem (23)-(24) is reached on the boundary 
point such that

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

 (27)

If the grid function, y(x), reaches its maximum at an 
interior grid-point xi*, 1 ⩽ i* ⩽ N-1, then  

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

In view of the conditions of the theorem 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

, we have 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

 (28)

From Eqs. (27)-(28) we obtain the right-hand side of the 
estimate in Eq. (26). In a similar way, the lower bound can 
be proved. The theorem is proved.

Now we need to find a condition such that 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

 for 
all i, n. When n = 0, it is obvious that 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

. 
Assume that, for any arbitrary 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

, is also true for 
all i. From this assumption for the case of 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

,  
(we do not consider trivial cases of 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

 and 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

) we 
obtain the following concrete values of the weights 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

It follows that 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

. It is easy to show that  

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

 

and 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

. In a similar way we can investigate all 

the other cases.

Therefore, the inequality 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

 (29)

guarantees the fulfilment of the positivity of the coefficients 
of Eq. (25) (i.e. the difference scheme (14) is monotone). 
According to Theorem 2 on the basis of the estimate of Eq. 
(26) for arbitrary t = tn ∈ ωτ and all i = 0,1,..., N, we have 

fulfilled. Then, for the solution of the difference scheme given by Eqs. (23)–(24), the following 
two-sided estimate is valid:  

   {               
       

   

   
}           {                      

   

   
}             (26) 

Proof: suppose that the maximum of the solution,  ( ), of the difference problem (23)–(24) 
is reached on the boundary point such that 

         
     

         *           +. (27) 

If the grid function,  ( ), reaches its maximum at an interior grid-point    ,        
 , then  

                                          (         )             
In view of the conditions of the theorem                      , we have  

         
     

             
   
 

   
     

       
   

   
  (28) 

From Eqs. (27)–(28) we obtain the right-hand side of the estimate in Eq. (26). In a similar 
way, the lower bound can be proved. The theorem is proved. 

Now we need to find a condition such that      ̅  for all    . When    , it is obvious 
that       (  )   ̅ . Assume that, for any arbitrary  ,      ̅  is also true for all  . From 
this assumption for the case of  ̃   ,   ̅ ̂    (we do not consider trivial cases of  ̃    and 
  ̅ ̂   ) we obtain the following concrete values of the weights  

    ̃                           ̃      

 (    )( )  
 ̃
  
 (  )  4  

 ̃
  
5  ( )   ̃

  
 (  )  

     
   

 ( )     

     ̅ ̂( )  
 ̃
   ̅ ̂( )     

It follows that      . It is easy to show that       at   (      ̅  )|         | 
(   ),  ̅     

     
  , and          ̅ 

| ( )|
 ( ) . In a similar way we can investigate all the other cases. 

Therefore, the inequality  

  (      ̅  )‖      ‖ 
   

      ̅     
     

                ̅ 

| ( )|
 ( )   (29) 

guarantees the fulfilment of the positivity of the coefficients of Eq. (25) (i.e. the difference 
scheme (14) is monotone). According to Theorem 2 on the basis of the estimate of Eq. (26) for 
arbitrary         and all            , we have  

   2     
       

 (    )
 3           {            

 (    )
 }  (30) 

With the help of inequalities    
       

 (    )
     

       
        

       
       

       
 (    )
  

(since variable weight factors   ,    are non-negative) from Eq. (30) we have  

   2     
     

   3           {          
   }  (31) 

Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  

 (30)

     ( ̅)       
    ( ̅)   (  )       ̅    ( ̅)       

    ( ̅)   (  )  

  ( )   ( ̅)       
   ( ̅)   (  )      ( )   ( ̅)       

   ( ̅)   (  )  
we conclude that  

  ( )   (   )( ̅)       
 (   ) ( ̅)   (  )  

 ( )  ̅  (   )( ̅)       
 (   ) ( ̅)   (  )  

Since  
  ( )    ( )   ( )  

  ( )    ( )   
 4

 
 (  )  

 
 ( )  

 
 (  )5   

 ( ̅)   (  )  

then  
  ( )  ( )     ( ) ( )  ̅  (   )( ̅)   ( )(   ) ( ̅)   (  )  (21) 

Using (21) we get  

  ( )  ( ) ̂    ( ) ( ) ̂ ̅  ( ( )     ) ( ̅  ̂)   ( )  
  ( ( )

  
  ) ( ̅  ̂)   

 (    )  (22) 
Finally, from (19)–(20), (22) we find out that the approximation error is of second order in space  
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Therefore, spatial approximation order of the difference scheme (14) is 2 and its temporal 
approximation order is 1. 

Monotonicity, two-sided and a priori estimates 

We write the difference scheme (14) in the canonical form [2]  
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The scheme (23)–(24) is monotone if the positivity conditions of the coefficients are satisfied 

[1], i.e.  
                                       (25) 
Base on the maximum principle, similiar to the work of [14], we formulate the following 

results for the difference schemes (14):  
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Using induction on  , according to Eq. (31) we acquire the two-sided estimate of the 
difference solution via the input data without assumption of its sign-definiteness  
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In view of Eq. (32) we conclude that        ̅  for all      . Therefore, the following 
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Theorem 3: let the conditions of Eq. (29) be fulfilled. Then, the finite-difference scheme of 
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Numerical implementation  
Because the Gamma equation has no exact solutions (only analytical solutions), to assess the 
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we must add a residual term  (   ) to the right-hand side of Eq. (5). We consider Eq. (5) in the 
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Eq. (34) is parabolic (Fig. 1).  
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In view of Eq. (32) we conclude that        ̅  for all      . Therefore, the following 
theorem is proved.  
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Remark 1: note that the maximum and minimum values 
of the difference solution do not depend on the diffusion 
coefficient nor the convection coefficient. 

Remark 2: the estimates obtained in Eq. (32) are fully 
consistent with the estimates of the exact solution of the 
differential problem given by Eq. (8). 

Remark 3: if the grid is uniform in space (h+ = h), then 
the scheme given by Eq. (14) is transformed into the well-
known purely implicit scheme:
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for which the a priori estimates of Eqs. (32)-(33) have 
already been fulfilled without the restrictions of Eq. (29) 
on the relation between the grid steps (unconditional 
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of the proposed difference scheme and to maintain 
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residual term f(x, t) to the right-hand side of Eq. (5). 
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Conclusions 
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these problems has caused rapid development of numerical methods for their solution. By virtue 
of its comparative simplicity and versatility, the finite difference method is often used. 

In the present paper we proposed a new second-order in a space monotone difference scheme 
on a non-uniform grid that approximates the Dirichlet IBVP for a quasi-linear parabolic equation, 
namely, the one-dimensional non-linear Gamma equation in financial mathematics. Under several 
constraints on the grid, two-side estimates of the solution of the scheme are established. Note that 
the proven two-side estimates of difference solution are fully consistent with estimates of the 
solution of the differential problem. Moreover, the maximum and minimum values of the 
difference solution are not dependent on the diffusion and convection coefficients. 
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Conclusions
Problems requiring a solution to nonlinear partial 

differential equations arise in elasticity theory, financial 
mathematics, physical chemistry, biology, and other fields. 
The demand to solve these problems has caused rapid 
development of numerical methods for their solution. By 
virtue of its comparative simplicity and versatility, the finite 
difference method is often used.

In the present paper we proposed a new second-order 
in a space monotone difference scheme on a non-uniform 
grid that approximates the Dirichlet IBVP for a quasi-linear 
parabolic equation, namely, the one-dimensional non-linear 
Gamma equation in financial mathematics. Under several 
constraints on the grid, two-side estimates of the solution 
of the scheme are established. Note that the proven two-
side estimates of difference solution are fully consistent 
with estimates of the solution of the differential problem. 
Moreover, the maximum and minimum values of the 
difference solution are not dependent on the diffusion and 
convection coefficients.
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Table 1. Numerical results on non-uniform spatial grids for problem (34), (35) at t = 0.5 with τ = 0.01.

xi -π -2.9 -2.8 -2.5 -2 -1.6 -1.4 -1 -0.5 -0.3

‖z‖c 0 0.009 0.009 0.009 0.001 0.003 0.0004 0.01 0.02 0.01
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