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Introduction
For many years, anaerobic digestion has been 

widely applied to the treatment of wastewater with high 
biodegradable organic content like waste sludge, an organic 
fraction of solid waste, as well as to mixtures of wastewater 
and solid waste [1]. The anaerobic digestion process 
possesses advantages such as low sludge production, low 
energy consumption, and high potential recovery of biogases, 
which can be used for cooking and electricity. However, 
anaerobic effluent has a high ammonia concentration [1]. 
Further, ammonium is discharged into receiving bodies 
from various sources, namely fertilizer [2], landfill leachate 
[3], pig wastewater [4, 5], and especially in the effluent of 
an anaerobic co-digestion of a mixture of two or more solid 
wastes and wastewaters [6]. When discharged into receiving 
sources, ammonium causes eutrophication, dissolved 
oxygen depletion, and toxicity to aquatic organisms [7]. 
Additionally, the penetration of ammonia into ground water 
causes water contamination and is the cause of blue-skinned 
disease in children and pregnant women [7]. Because of 
the risks of untreated ammonia discharge, environmental 
regulations regarding the allowable limits of ammonia 
into receiving bodies are becoming more stringent across 
every country. In Vietnam, the maximum allowable limit of 
ammonium in drinking water is 3.0 mg/l [8]. 

Ammonia can be removed from wastewater by 
biological, chemical, and physicochemical technologies 
[2]. A biological treatment based on the combination of 
nitrification-denitrification processes by microorganisms 
is the most popular method of ammonia removal from 
wastewater due to low energy consumption, non-secondary 
pollutants, and non-chemical additives [8]. However, this 
method is very sensitive to loading shock and toxicity, and 
is not suitable for anaerobic effluent with low content of 
organic compounds [1, 9]. Beyond this, oxidation with 
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chlorine consumes chemicals and forms by-products [9]. 
Meanwhile, air stripping is a simple physical separation 
process using the contact of liquid and air in opposite 
directions in a tower filled with a different medium. 
Concentrated gaseous ammonia found in effluent can be 
recovered and adsorbed by strong acidic solutions (H2So4) 
for the production of fertilizer [2, 9, 10]. The air stripping 
process is especially suitable for wastewater with high 
ammonium and low organic matter, such as the effluent 
from anaerobic co-digestion processes [6]. 

The aim of this study, thus, is to study ammonium 
removal efficiency by air stripping technology in a tower 
containing a medium of pall rings. The effect of the initial 
pH, liquid flow rate, and air-to-liquid ratio on ammonium 
removal are systematically investigated.

Materials and methods

Materials

Wastewater: influent wastewater for the air stripping 
model was taken from the effluent of the anaerobic co-
digestion process in a membrane biological reactor (MF-
AnCSTR and MF-UASB), which degrades a fraction of the 
organic food waste and domestic wastewater of an army billet 
based in Ho Chi Minh city, Vietnam. The characteristics of 
the influent wastewater from the air stripping process are 
presented in Table 1.
Table 1. The characteristics of influent wastewater of air 
stripping model.

Parameter Unit
Concentration 

MF-AnCSTR MF-UASB

pH - 7.0±0.82 7.37±0.33

N-NH4
+ mg/l 150±12.09 152±13.45

TN mg/l 163.90±17.04 171.34±24.08

CoD mg/l 81.02±2,50 85.02±2.76

TSS mg/l 5.91±2.37 8.71±2.48

Chemicals: all chemicals used in this study were 
purchased from Merck. The acidic and alkaline solutions 
used to adjust the pH to desired values were prepared as 
follows: the 1 M NaoH  solution was prepared by dissolving 
of 41.667 g NaoH in 1000 ml of deionized water. The 1 
M H2So4 solutions was diluted from 14 ml of concentrated 
98% H2So4 solution in 500 ml of deionized water. The 
5 M H2So4 solution was prepared by diluting 70 ml of 
concentrated 98% H2So4 in 500 ml of deionized water. This 
acidic solution was used to neutralize the gaseous ammonia 
output of the air stripping model.

Experimental setup

The laboratory-scale air stripping system: a plastic 
column (PAC) manufactured by the Binh Minh Company 
(Vietnam) was used for the design of the air stripping 
experiments. The column diameter and height was 11.4 
cm and 130 cm, respectively. The column was filled with 
plastic spring carriers (size 2 cm x 3 cm) and the height of 
plastic carriers in the column was 75 cm. The air and liquid 
flows were continuously introduced into the air stripping 
column along the opposite direction of the carrier layer. The 
wastewater was adjusted to the desired pH and contained in 
10-l tank. The wastewater was pumped at a pre-determined 
flow to the top of the column and was sprayed over the 
packing surface through a shower. The air was introduced 
into the bottom of the column by a fan with a capacity of 
2.2 kW, the current strength of 7.8 A with a frequency of 
50 Hz. The air was blown through the packing material. 
The ammonia containing output air was released at the top 
of the column and was adsorbed into a tank containing 5 
M H2So4. The scheme of the laboratory-scale ammonia 
stripping system is described in Fig. 1. 
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Determination of parameters for design of the air 
stripping model: the parameters of the air stripping model 
were calculated using mass transfer theory for the removal 
of NH4

+-N (from 150 to 10 mg/l of QCVN 14:2008/BTNMT, 
column B) with 10 l volume of wastewater at 25±1oC.

The amount of air required to reduce the ammonia 
concentration from 150 to 10 mg/l in treated wastewater 
was calculated based on the text “Wastewater engineering: 
treatment and resource recovery” [11]. The parameters 
obtained for the design of the air stripping model are 
presented in Table 2.
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Table 2. The parameters for design the air stripping to treat 
ammonium in anaerobic effluent.

Parameter Unit Value

Provided air flow l/min 650

Provided liquid flow l/min 50

Air-to-liquid ratio - 2000-6000:1

Diameter of column mm 114

Height of packing m 0.75

Height of column m 1.3

Mass transfer coefficient 1/s 0.0125

The influent and effluent ammonia concentrations were 
determined according to the standard method by the APHA 
(American Public Health Association), AWWA (American 
Water Works Association), and WEF (Water Environment 
Federation) [12]. The pH was measured by a WTW pH 
meter 304. 

Operating condition: the air stripping (AS) method used 
to treat the anaerobic co-digestion effluent was continuously 
operated to assess the effect of initial solution pH, liquid flow 
and air-to-liquid ratio on ammonium removal efficiency in 
anaerobic co-digestion effluent with packing column. The 
detailed operating conditions of the model were as follows:

The effect of solution pH on ammonia stripping was 
conducted by changing the pH values from 8 to 12 at an 
air flow rate of 650 l/min, wastewater volume of 10 l, and 
contact time of 25 min, under a constant influent ammonia 
concentration of 150±20 mg/l. The stripping process 
was examined over 15 experiments, where each of the 
15 experiments were triplicated for each set of operating 
conditions.

The experiments used to evaluate the effect of the liquid 
flow on ammonia stripping were conducted by changing 
the influent liquid flow rate between 0.25 l/min, 0.5 l/min, 
0.75 l/min, and 1.0 l/min at pH of 11 with air flow rate of 
650 l/min, wastewater volume of 10 l and contact time of 
25 min under a constant influent ammonia concentration of 
150±20 mg/l. All the samples were analysed in triplicates.

The effect of the air-to-liquid ratio was conducted over 
15 experiments, where each experiment was triplicated for 
each set of operating conditions. The air-to-liquid ratio was 
varied from 0, 2084, 2260, 2632, and 2925 at a pH of 11 
with an air flow of 650 l/min, wastewater volume of 10 l and 
contact time of 25 min with influent ammonia concentration 
of 150±20 mg/l.

Results and discussion

Effect of pH on ammonia stripping

The pH solution was chosen based on the theory of air 
stripping by George Tchobanoglous, et al. (2014) [11]. The 
effect of initial pH on ammonia stripping is presented in 
Fig. 2. 
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Figure 3 also indicates that the contact time had an 
insignificant effect on ammonia removal efficiency. The 
N-NH4

+ concentration reached 156.68, 29.51, 23.75, 17.12,  
14.64, and 12.02 mg/l, respectively, at contact times of 0, 
5, 10, 15, 20, and 25 min. The ammonia removal efficiency 
reached its maximum at a contact time of 25 min and pH of 
11, and met the allowable limit of N-NH4

+ (QCVN 14:2008/
BTNMT, column B). Thus, a pH of 11 and contact time of 
25 min was chosen for the next experiments.

Effect of liquid flow rate on ammonia stripping

The influent and effluent ammonium concentration and 
removal efficiency of the air stripping system are presented 
in Fig. 4. Fig. 4A illustrates that effluent ammonium 
increased when the liquid flow rate increased. The effluent 
ammonium was 6.38±0.77, 11.12±1.46, 30.51±6.16, and 
40.25±3.84 mg/l corresponding to a liquid flow rate of 
0.25, 0.5, 0.75, and 1.0 l/min, respectively. Fig. 4B shows 
a N-NH4

+ removal efficiency of 95.80, 91.87, 81.81, and 
72.59% when the liquid flow rate increased from 0.25 to 1.0 
l/min, respectively. 

             (A)                                          (B)

Fig. 4. (A) The influent and effluent ammonium and (B) 
ammonium removal efficiency at various of liquid flow rates.

The  removal efficiency decreased from 95.80 to 72.59% 
when the flow rate (QL) increased from 0.25 to 1.0 l/min. 
These results may be due to the decrease in liquid hydraulic 
retention time and stripping factor, resulting in a decrease 

in removal efficiency for air stripping [2]. The results were 
similar to the results obtained by Yuan, et al. (2016) [9] 
when using a rotating packed bed to strip ammonia from 
ammonia-rich wastewater.   

Effect of air-to-liquid ratio on ammonia stripping

Figure 5 shows the effect of the air-to-liquid ratio 
(QG/QL) (from 0 to 2925) on ammonia stripping. As 
illustrated in Fig. 5, QG/QL had a significant effect on 
ammonia removal efficiency. The removal efficiencies 
obtained were 24.38±2.96, 71.51±0.53, 88.00±0.68, 
95.80±0.75, and 97.08±0.34% at QG/QL values of 0, 2086, 
2260, 2633, and 2925, respectively. The removal efficiency 
reached a maximum at QG/QL of 2925. The results showed 
that with increasing QG/QL, the removal efficiency also 
increased.

                               (A)                                             (B)

Fig. 5. (A) The influent and effluent ammonium and (B) 
ammonium removal efficiency at various air-to-liquid ratios.

A higher air-to-liquid ratio enhances the gas flow 
leading to a reduction in mass transfer resistance and, thus, 
a promotion ammonia stripping efficiency [13]. Moreover, 
the ammonia stripping efficiency increase due to increasing 
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Fig. 3. Contact time dependence of ammonium concentration at 
initial pH and pH of 11.
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prevention of eutrophication and promotes environmental 
protection. The gaseous ammonia obtained from the 
stripping effluent can be recovered to produce fertilizer for 
agriculture. Thus, this study has opened up new prospects 
for the protection of the environment and nutrient recovery 
from wastewater.
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