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Introduction

Sediment transport affects river environments in many 
ways via erosion and sediment deposition. The development 
and degradation of a riverbed significantly influence flow 
changes and the economic development of the region. 
Besides, a change in the river profile can threaten channel 
stability and affect irrigation facilities on both sides of the 
river. Therefore, the accurate simulation of bed change in a 
river is of great significance to regional planning and other 
long-term projects.	  

Today, with computer engineering and information 
technology development, researchers have built numerical 
models that can simulate changes in riverbeds. With the 
advantage of simulating many scenarios over different 
periods, identifying the cause of an impact and forecasting 
the future is possible. However, accurate calculations and 
long-term forecasts take a significant amount of time to 
calculate.

Sediments are solid mineral particles that are transported 
and deposited in the water flow resulting in their 
accumulation in riverbeds and floodplains. Sediments are 
usually formed as heterogeneous particles of various sizes 
with a larger specific gravity than water [1-3]. Based on the 
laws of motion, sediments are classified into suspended and 
bottom sediments [1-4]. The evolution of the loading or 
deposition of bed sediments changes the topography of the 
river bed and affects changes in river flows [5-7]. 

To simulate the change of the riverbed, scientists have 
used many methods such as observations, physical models, 
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and numerical models. For simple curved channels, both 
physical models on the laboratory scale and large scale surveys 
have been used to study sediment transport [8-10]. However, 
numerical models pose major advantages in simulation and 
prediction [11-15]. 

For irregular topography, both positive and negative bed 
slopes generally exist and lead to cell drying and wetting with 
moving fronts, which cannot be easily solved by a simple 
horizontal boundary condition. Therefore, some techniques 
have been developed for these shallow water equations. Zhao, 
et al. (1994) [16] and Sleigh, et al. (1998) [17] introduced 
two similar schemes to track the wetting and drying fronts, in 
which cells are divided into wet, dry, and partially dry types 
according to two tolerances [16, 17]. Technology for tracking 
the wet-dry front has been developed, in 
combination with the method of Brufau, 
et al. (2004) [18], to achieve zero 
mass error by Liu, et al. (2014) [19].

Based on the above analysis, in 
this paper, we propose improving the 
HYDIST model initially developed by 
Bay, et al. (2012, 2019) [20, 21]. This 
study will focus on developing the 
boundary conditions in the hydraulic 
model and sediment transport model of 
the HYDIST model.

1. First, the moving boundaries 
problem (wetting and drying fronts), 
which is based on the work by Zhao, et 
al. (1994) [16] and Sleigh, et al. (1998) 
[17], is applied. 

2.	 Secondly, the flow sequence, 
Q(t), and the velocity distribution on the liquid boundary, 
u,v(x, y, t), is recalculated according to the formula assuming 
the roughness coefficient n is constant at the boundary inlet 
[22], which are each applied to achieve zero error at the 
positions of the boundaries. 

The developed model will be calculated for a segment of 
the Tien river located in Tan Chau town, and compared with 
observational data to assess the reliability of the model. 

Materials and methods 
Study area 

Tien river is one of the two major tributaries of the Mekong 
delta (along with the Hau river) flowing into Vietnam (Fig. 1). 
After branching in Phnom Penh (Cambodia), the Tien river 
flows into Vietnam beginning in Tan Chau town, An Giang 
province. Then, the main flow goes through the provinces of 
An Giang, Dong Thap, Vinh Long, and Ben Tre [23]. 

A segment flowing through An Giang has the style of a 
braided river; the riverbed is wide with coastal sandbars 

and sand bars in the heart. This part has a complex terrain, 
is stream folded, and has intense erosion. In recent years, 
failure banks have increasingly affected the socio-economic 
development and planning in the local area and construction 
along the river in the An Giang province [24-27].

The topography was collected at the Department of 
Investment and Construction Project of the Tan Chau area on 
October 6, 1999. The features (water level ς (t), discharge Q(t), 
and total suspended sediment C(t)) at the Tan Chau station 
were collected from 1999 to 2006 from the Project: “Research 
to identify causes, mechanisms and propose feasible technical 
and economical solutions to reduce erosion, sedimentation 
for the Mekong river system (2017-2020)”, code No. KHCN-
TNB.DT/14-19/C10 in 2019.

HYDIST model

The adopted model is a 2D surface model where Ox and 
Oy represent the length and width of the study area as seen 
in Fig. 2. The model is based on a system of four governing 
equations: the Reynolds equation in Ox and Oy directions, 
the continuity equation, the suspended sediment transport 
equation, and the bedload continuity equation as follows 
[21, 28]. 

Reynolds equation in Ox and Oy directions:
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Fig. 2. The illustration of the initial static level. 
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Fig. 2. The illustration of the initial static level.
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Numerical approac 
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vary from time to time, the moving boundaries problem 
(flooding and drying fronts), which is based on the work 
by Zhao, et al. (1994) [16] and Sleigh, et al. (1998) [17], 
is applied in this model. The study area is classified into 
grid cells. The depth of each element/cell is monitored and 
the elements are classified as dry, partially dry, or wet. In 
more detail, an element is defined as flooded if the water 
depth of at least three corners of a grid cell is greater 
than 0.1. An element is dry if the water depth of at least 3 
corners of a grid cell is less than 0.1, then, the element is 
removed from the calculation. An element is partially dry 
if the water depth at two corners of a grid cell is less than 
0.1. These two parameters will regulate when a given cell 
should be exposed for a flooding or drying check during the 
simulation.

Figure 4 presents the general framework of the 
calculation for our coupled model based on the coupling 
of all the governing equations previously described. 
Hydrodynamic and sediment transport models were tested 
with an analytic solution [20].
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Fig. 4. General computational procedure used in the coupled.

Setup of the model for the study area

Bathymetry: the entire study area is represented by a 
rectangular mesh of size 981x845 pixels, including the land 
and riverbed, where ∆x=∆y=10 m and the time step ∆t=2 s. 
At the curve, the size is 492x424 pixels including the land 
and riverbed. The boundary condition includes the flow, 

Q(t), alluvial, C(t), and water level, ς(t), of the flood seasons 
from 1999 to 2006 at the Tan Chau station.

Initial conditions: from t0=0 in the model, the hydraulic 
module is tied to a static state and the sediment transport 
module is set to an initial constant basal concentration. If the 
problem is calculated from a time t=t1, the initial condition 
is the velocity fields u,v(x, y) and concentration C(x, y) at 
time t1 across the computational domain.

Boundary conditions: 

(1) Open boundaries: the Q(t), C(t), and ς(t) of the flood 
seasons from 1999 to 2006 at Tan Chau station (as Fig. 
5). The study area has two boundaries whose features are 
identified based on the correlation functions f(ς), f(Q), and 
f(C) from the Tan Chau station. Measurement data at the 
boundaries of the project come from “Research to identify 
causes, mechanisms and propose feasible technical and 
economical solutions to reduce erosion, sedimentation for 
the Mekong river system (2017-2020)”, code No. KHCN-
TNB.DT/14-19/C10 from 10 am 06/06/2018 to 10 am 
13/06/2018. Typical boundary data for 1999 and 2001 are 
shown in Fig. 5.

(2) Solid wall boundary: hydrodynamics conditions 
un=0 and sediment transport conditions 0=

∂
∂

pn
C .

Model calibration and validation criteria

In order to calibrate and validate the model with a 
comparison, the Nash-Sutcliffe efficiency coefficient (NSE) 
and the coefficient of determination (R2) are used to measure 
model performance [30-32].

  

Fig. 5. Input data in 1999 and 2001.
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The Nash-Sutcliffe efficiency coefficient (NSE): the NSE 
ranges between −∞ and 1. A value of NSE=1 indicates a 
perfect match between observed and predicted results. The 
general performance ratings for model evaluation are shown 
in Table 1. NSE is computed as shown in Eq. (8):
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where
oj: the ith observation for the constituent being evaluated;
Pi: the ith simulated value for the constituent being 
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where 
  

 : the ith observation for the constituent being evaluated; 

  
 : the ith simulated value for the constituent being evaluated; 

: the mean of observed data for the constituent being 
evaluated;

N: is the total number of observations.

Table 1. General performance ratings for model evaluation.

Range Optimal 
value

Performance Rating

Very good Good                     Satisfactory               Unsatisfactory

NSE

Flow

Annual

−∞ to 1.0 1.0

>0.75 0.60≤NSE≤0.75 0.50≤NSE≤0.60 ≤0.50

Monthly >0.85 0.70≤NSE≤0.85 0.55≤NSE≤0.70 ≤0.55

Daily >0.80 0.70≤NSE≤0.80 0.50≤NSE≤0.70 ≤0.50

Sediment >0.80 0.70≤NSE≤0.80 0.45≤NSE≤0.70 ≤0.45

General >0.80 0.60≤NSE≤0.80 0.50≤NSE≤0.60 ≤0.50

R2

Flow

Annual

0.0 to 1.0 1.0

>0.75 0.70≤ R2≤0.75 0.60≤ R2≤0.70 ≤0.60

Monthly >0.85 0.80≤ R2≤0.85 0.70≤ R2≤0.80 ≤0.70

Daily >0.85 0.70≤ R2≤0.85 0.50≤ R2≤0.70 ≤0.50

Sediment >0.80 0.65≤ R2≤0.80 0.40≤ R2≤0.65 ≤0.40

General >0.80 0.70≤ R2≤0.80 0.50≤ R2≤0.70 ≤0.50

The coefficient of determination (R2)

The coefficient of determination, R2, ranges between 0 
and 1. It describes the portion of the variance in the measured 
data where higher values indicate less error variance. The 
general performance ratings for model evaluation using 
the coefficient of determination is shown in Table 1. R2 is 
computed as shown in Eq. (9):
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Results and discussion 
The results for the hydraulic model

The verification parameter in the model is the roughness 
coefficient, which changes inversely with water depth. 
The results of the calibration show that there was little 
difference between the simulation results and measurements 
of the discharge and water level at Tan Chau station for two 
periods from 5/7/1999 to 30/12/1999 (Fig. 6). The graphical 
results during calibration indicated an adequate calibration 
and validation over the range of discharges and water levels. 
However, the calibration results of water level showed a 
better match than that of discharge. The NSE values for 
the discharge and water level calibration reached 0.71 
and 0.81, respectively, while the R2 values were 0.82 and 
0.88, respectively. According to Moriasi, et al.’s research 
(2015) [32], these values indicate that the hydraulic model 
performance peaked very well. It is believed that if a 
hydrodynamic model is well calibrated, then the predicted 
results are close to the actual water movements. 

The roughness coefficient was recorded after calibration 
with a range of 0.055 from 0.005 to 0.06 corresponding to 
water depths from 41 to 0.1 m. During the experimental 
process, the n2 (0.003) corresponding to h2 (25 m) was found 
to make the roughness coefficient in the study area more 
suitable for simulation. If hmin<hi, j<h2, Eq. (10) is used to 
calculate the roughness value at a position i,j, while Eq. (11) 

  

Fig. 6. Calibration results at Tan Chau station from 5/7/1999 to 30/12/1999 for water level (Z) and discharge (Q).
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is used when h2<hi,j<hmax. These equations are computed as 
follows:
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Below is a rough map for the first 500 h starting on 
5/15/1999 in Fig. 7. Consequently, the roughness coefficient 
in the domain is computed according to Eqs. (10) and (11). 

Fig. 7. Roughness coefficient for the study area.

After calibration, the model was validated from 
29/06/2001 to 30/12/2001 (flood season). Although the 
calibration result of the water level showed a better match 
than discharge (Fig. 8), the evaluation criteria values were 
satisfactory in terms of both features. The NSE values were 
0.71 and 0.81 for discharge and water level, respectively, 
and the R2 values were 0.81 and 0.82, respectively. The bias 
of both the calibration and validation were smaller than 
10%.

Calibration and validation results for sediment 
transport model

Like the hydraulic model, the sediment transport 
simulation was calibrated and validated for two periods 
from 5/7/1999 to 30/12/1999 and 29/06/2001 to 30/12/2001. 
According to the evaluation criteria values, the sediment 
transport model worked very well in terms of sediment 
concentration. For calibration and validation, the NSE 
values were 0.82 and 0.80, respectively, and the R2 value 
was 0.91 for both processes. The bias of both calibration 
and verification was smaller than 10%. Graphical results 
during calibration and validation at Tan Chau station are 
shown in Fig. 9.

After calibration and validation, numerous studies 
have applied bed parameters such as dispersion, critical 
shear stress for deposition, and acute shear stress for the 
erosion of bed layers to simulate the processes of sediment 
transportation, erosion, and deposition [33]. In this study, 
these parameters were used for calibrating the sediment 

Fig. 8. Observed and simulated data at Tan Chau station from 29/06/2001 to 30/12/2001 for water level (Z) and discharge (Q).

Fig. 9. Observed and simulated TSS data at Tan Chau station for calibration and validation.
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simulation and the most relevant parameters in the model 
are summarized in Table 2.
Table 2. Model parameters.

Parameter Value

Time step (∆t) 2 s

Mean diameter of particle (D) 0.01 mm

Diameter of particle 90% of the mass of particles present (D90) 0.04 mm

Density of particles (ρs) 2600 kg/m3

Kinematic viscosity coefficient (ν) 1.01x10-6 m2/s

Critical shear stress for deposition (τd) 0.35 N/m2

Critical shear stress for erosion (τe) 0.04 N/m2

Simulating bed change of a Tien river segment in 
Mekong delta from 1999 to 2006

Because the dry season results did not significantly 
change, we decided to calculate the change in the current 
study area for the flood seasons from 1999 to 2006. The 
calculation results of bed changes after each year are 
extracted and represented by the images shown in Figs. 
10 and 11. When applying the moving boundary, the 
development of mudflats and the loss and formation of islets 
are calculated. 

For example, the Beo islet was an underground islet, 
with a mesh in the model bathymetry, that eroded from 1999 
to 2005 and disappeared in 2006. The model investigated 
the conditions of the dry/wet cell as described in the 
methodology. For cells with a depth less than 0.1 m, the 
model closed the cells and considered them as a dry cell. 
Then, the simulation results showed the accretion areas over 
the years. According to the results, the tail of Chinh Sach 
Islet was deposited over the years including the accretion 
area. The information is described in more detail in Table 3.

On Dong Thap side, a mudflat area at the downstream 
site developed from the end of 1999 to 2006. Specifically, 
the area of ​​the mudflat in 1999 was about 76 hectares 
and by 2006 the area of ​​the mudflat increased to just over 
226 hectares, which is an increase of about 150 hectares 
compared to 2005, as detailed in Table 3.

Table 3. Increasing mudflat area of simulation.

2000 2001 2002 2003 2004 2005 2006

A mudflat of Chinh 
Sach islet tail (m2) 0.10 0.67 0.16 0.24 0.30 0.14 0.46

A mudflat on Dong 
Thap province side 1.46 1.01 0.80 0.89 0.76 0.26 0.27

Fig. 10. The bed changes from 1999 to 2002.

Fig. 11. The bed changes from 2003 to 2006.

The calculation results from the mud flats and Beo islet 
changes were relatively consistent with the results extracted 
from Google Earth (GE). The mudflat on the Dong Thap 
site has grown gradually downstream and the Beo islet has 
also disappeared in 2006. The tail of the Chinh Sach islet 
showed gradual expansion downstream (Fig. 12).
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In the model’s study area, the water depth at several cross 
sections were extracted to record the values ​​each year from 1999 to 
2006 at 3 locations denoted cross sections 1, 2, and 3 as described 
in Fig. 13. 

At cross section 1 (Fig. 13) of the model along the bottom 
left range of the river (on the Dong Thap province side), the bed 
changes are consistent with the actual bed movements from 1999 
to 2006. Specifically, in 1999, the water depth reached an elevation 
of nearly -18.2 m and gradually accrued to -4.8 m in 2006. The 
measurement results of the elevation at this area in 2006 was 
actually -2.1 m. Meanwhile, on the right side of the river (the An 
Giang province side), there was a gradual erosion trend from -10.8 
m in 1999 to -20.9 m in 2006. This trend was also consistent with 
actual measurements. However, the measurement results showed 
that the bottom was more eroded and skewed towards the An Giang 

province. During the data collection, we discovered 
that there was a sand mine from 2002 to 2004, which 
made the bed river more eroded in this area compared 
with the calculation results. It should be noted that the 
mathematical model in this study did not consider bed 
change due to sand mining.

In the downstream area, both the Dong Thap and 
An Giang provinces have built embankments along the 
river and were not affected by sand mining activities. 
The simulation results of this downstream area are quite 
suitable for measurement data. In Fig. 13, there was a 
variation of the bottom in 2002 where a deep pool was 
filled with 14 m [34], so the elevation of the deep pool 
was raised to -28 m (described by dash-dot line in Fig. 
13). The deep pool tended to erode again after a period 

of 4 years from 2003 to 2006. The bed elevation of the deep pool 
in 2006 was near -38 m while the measurement was actually -36 
m at cross section 2 (Fig. 13). At cross-section 3 (Fig. 13), the 
results do not differ much between simulation and observation. 
At this position, close to the downstream boundary, the result is 
satisfactory when applying the characteristic line method. The 
difference between the simulation and observation was 9.2%.

Conclusions
According to the simulation analyses, we deduce that the 

HYDIST model well simulates both hydraulic and bed change in 
the river. For the hydraulic module, the results from the calculated 
flow and water level models showed high reliability during the 
process of calibration and validation. The NSE values were 0.71 

and 0.81 for discharge and water level, respectively, 
while the R2 values were 0.82 and 0.88, respectively. 
For the sediment transport module, the model 
performed very well in terms of sediment concentration 
for calibration and validation, with NSE values of 0.82 
and 0.80, respectively, and an R2 value of 0.91 for both 
processes. For verification of the model’s applicability 
in a segment of the Tien river, the results were not much 
different between the simulation and measurement from 
1999 to 2006, the percent of difference (BIAS)>10%. 
The changes of the islets and mudflats were closely 
modelled to the actual development i.e. the disappearance 
of Beo and the change in the mudflats on the An Giang 
side. Furthermore, when extracting the simulation 
data in some sections, the calculation results were 
entirely consistent with the actual development. At this 
position, close to the downstream boundary, the result 
was still satisfactory when applying the characteristic 
line method and the difference of comparison between 
simulation and observation was 9.2%.

However, the bed change module was run without 
the influence of sand mining in this study. In future 
studies, sand mining sources will be integrated into the 
bed load continuity equation.  Fig. 13. The water depth at three cross sections.

Fig. 12. The riverbank from 1999 to 2006 (Source: Google earth).
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Nomenclatures

u : depth-averaged horizontal velocity components in x direction (m/s)
v : depth-averaged horizontal velocity components in y direction (m/s)
ς : fluctuation of water surface, compare to “zero” level (m)
H : static depth from the still water surface to the bed (m)
K : friction bed coefficient
A : eddy horizontal viscosity coefficient (m2/s)
g : acceleration gravity (m/s2)
C : depth-averaged concentration of suspended load (m3/m3)
Kx : dispersion coefficient in Ox direction (m2/s)
Ky : dispersion coefficient in Oy direction (m2/s)
H : averaged depth used in the model (H=h+ς) (m)

γv : velocity coefficient in the depth; calculated from 
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