# Chemical constituents and antimicrobial activity of *Lisotrigona cacciae* propolis collected in Hoa Binh province

Le Nguyen Thanh<sup>1, 2\*</sup>, Nguyen Phuong Thao<sup>3</sup>, Nguyen Tu Minh<sup>3</sup>, Trinh Khanh Huyen<sup>3</sup>, Vu Thi Kim Oanh<sup>1, 2</sup>, Dinh Ngoc Thuc<sup>4</sup>, Tran Thi Ngat<sup>5</sup>, Nguyen Thi Phuong Lien<sup>5</sup>

<sup>1</sup>Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST) <sup>2</sup>Graduate Unversity of Science and Technology, VAST <sup>3</sup>GATE Center, Vinschool <sup>4</sup>Department of Scientific Management, Hong Duc University <sup>5</sup>Institute of Ecological and Biological Resouces, VAST

Received 21 February 2020; accepted 15 May 2020

#### Abstract:

A chemical study on the propolis of the stingless bee *Lisotrigona cacciae* collected from Hoa Binh province led to the isolation of four compounds including cycloartenol (1), cochinchinone A (2),  $\alpha$ -mangostin (3), and isomangiferolic acid (4). *Mangifera indica* (Xoài) and *Cratoxylum cochinchinense* (Thành Ngạnh Nam) were suggested to be the resin sources of the propolis. The propolis EtOH extract showed good antimicrobial activity against the Gram (+) strains *B. cereus* with an MIC value of 8 µg/ml. Among the isolated compounds,  $\alpha$ -mangostin (3) was the most active and displayed strong activity against the five strains *B. cereus*, *E. feacalis*, *S. aureus*, *P. aeruginosa*, and the fungus *C. albicans* with MIC values of 1-2 µg/ml.

Keywords: antimicrobial activity, Lisotrigona cacciae, propolis, stingless bee, a-mangostin.

Classification number: 3.4

#### Introduction

Propolis is a bee product that originates from plant resin and exhibits various biological activities and phytochemical compositions. Propolis products have been used as medicinal agents for centuries. Propolis has numerous health benefits stemming from its many pharmacological activities due to its antioxidant, antimicrobial, antiviral, anti-inflammatory, and anticancer properties. Previous chemical studies of propolis has led to the isolation of flavonoids, terpenoids, phenolic acids and their esters, lignans and coumarins [1]. However, information regarding the chemical composition of Vietnamese bee propolis remains limited. Cycloartanetype triterpenes and alkyl phenols were isolated from the propolis of the stingless bees Trigona minor and Lisotrigona cacciae [2-4] while xanthones and homoisoflavonoids were found from the Lisotrigona sp. propolis [4, 5]. Herein, four compounds were isolated from the propolis of the stingless bee Lisotrigona cacciae in the Hoa Binh province and were identified as cycloartenol (1), cochinchinone A (2),  $\alpha$ -mangostin (3), and isomangiferolic acid (4). The activity of these compounds and EtOH extract against several microbial strains are also described.

# **Experimental**

# **Propolis sample**

Stingless bee propolis was collected from beehives in the Tan Lac district, Hoa Binh province, in November of 2018. The stingless bee species was determined to be *Lisotrigona cacciae* by Ms. Tran Thi Ngat and Dr. Nguyen Thi Phuong Lien of the Institute of Ecology and Biological Resources (VAST).

## **General procedures**

The NMR spectra were taken using a Bruker AM500 FT-NMR spectrometer with TMS as an internal standard. The electrospray ionization mass spectra (ESI-MS) were obtained using Agilent 1260 series single quadrupole LC/MS system. Column chromatography (CC) was performed on silica gel (Kieselgel 60, 40-63  $\mu$ m, Merck). Analytical and preparative thin layer chromatography were performed using precoated silica gel plates (Merck 60F<sub>254</sub>).

# Extraction and isolation

The propolis of *Lisotrigona cacciae* (158 g) was extracted with EtOH (1 1 x 4 times, 1 day/time) at room temperature.

<sup>\*</sup>Corresponding author: Email: lethanh7676@gmail.com

The EtOH solvent was evaporated in vacuo. The residue (126 g) was suspended in H<sub>2</sub>O and was then extracted with ethyl acetate (3 times x 500 ml/time). The organic solvents were removed in vacuo to obtain ethyl acetate residue (108 g). The ethyl acetate residue was subjected to a silica gel column chromatography (CC) and was eluted with a gradient solvent of *n*-hexane-EtOAc (100:0-0:100) to afford 12 fractions (F1-F12). Fraction F2 (600 mg) was fractionated by silica gel CC and eluted with n-hexane/ EtOAc (9/1, v/v) to yield compound 1 (15 mg). Fraction F7 (1 g) was purified by silica gel CC and was eluted with *n*-hexane/acetone (98/2, v/v) to afford compound 2 (63 mg). Fraction F10 (1.28 g) was chromatographed on silica gel CC and eluted with *n*-hexane/EtOAc (8/2, v/v) to yield 5 fractions (F10.1-F10.5). The F10.4 (50 mg) was purified by preparative TLC using *n*-hexane/EtOAc (9/1, v/v) as the eluant to afford compound 3 (4 mg) and compound 4 (21 mg).

Cycloartenol (1): white solid, ESI-MS *m/z* 427 [M+H]<sup>+</sup>. <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ : 5.10 (1 H, t, *J*=7.0 Hz, H-24), 3.28 (1 H, m, H-3), 1.68 (3 H, s, H-27), 1.60 (3 H, s, H-26), 0.97 (3 H, s, H-28), 0.87 (3 H, s, H-18), 0.88 (3 H, d, *J*=7.0 Hz, H-21), 0.81 (3 H, s, H-30), 0.56 (1 H, d, *J*=4.5 Hz, H-19), 0.57 (1 H, d, *J*=4.5 Hz, H-19). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ : 130.9 (C-25), 125.3 (C-24), 78.9 (C-3), 52.3 (C-17), 48.8 (C-14), 48.0 (C-8), 47.1 (C-5), 45.3 (C-13), 40.5 (C-4), 36.3 (C-22), 35.9 (C-20), 35.6 (C-15), 32.9 (C-12), 32.0 (C-1), 30.4 (C-2), 29.9 (C-19), 28.1 (C-16), 26.5 (C-11), 26.1 (C-10), 26.0 (C-7), 25.7 (C-27), 25.4 (C-28), 24.9 (C-23), 21.1 (C-6), 20.0 (C-9), 19.3 (C-30), 18.2 (C-21), 18.0 (C-19), 17.6 (C-26), 14.0 (C-29).

Cochinchinone A (2): yellow solid, ESI-MS m/z 449  $[M+H]^+$ . <sup>1</sup>H-NMR (500 MHz, CDCl<sub>2</sub>)  $\delta$ : 13.06 (s,1-OH), 7.61 (1 H, d, J=3 Hz, H-8), 7.33 (1 H, d, J=9 Hz, H-5), 7.24 (1 H, dd, J=3 Hz, 9 Hz, H-6), 6.46 (1 H, s, OH), 6.19 (1 H, s, OH), 5.27 (2 H, m, H-2', H-2"), 5.05 (1 H, t, J=7 Hz, H-6"), 3.55 (2 H, d, J=7.5 Hz, H-1"), 3.45 (2 H, d, J=7 Hz, H-1'), 2.09 (2 H, m, H-5"), 2.05 (2 H, m, H-4"), 1.87 (3 H, s, H-9"), 1.84 (3 H, s, H-4'), 1.76 (3 H, s, H-5'), 1.63 (3 H, s, H-10"), 1.57 (3 H, s, H-8"). <sup>13</sup>C NMR (125 MHz, CDCl<sub>2</sub>) δ: 180.9 (C-9), 161.1 (C-3), 158.3 (C-1), 153.0 (C-4a), 152.4 (C-7), 150.5 (C-4b), 137.8 (C-3"), 135.0 (C-3"), 131.8 (C-7"), 123.9 (C-6"), 123.9 (C-6), 121.6 (C-2'), 121.6 (C-2"), 120.7 (C-8a), 119.0 (C-5), 109.1 (C-8), 109.1 (C-2), 105.1 (C-4), 103.2 (C-9a), 39.7 (C-4"), 26.4 (C-5"), 25.8 (C-5'), 25.6 (C-10"), 21.8 (C-1"), 21.6 (C-1'), 17.9 (C-4'), 17.7 (C-8"), 16.3 (C-9").

 $\alpha$ -Mangostin (3): yellow solid, ESI-MS m/z 411 [M+H]<sup>+</sup>.

<sup>1</sup>H-NMR (500 MHz, CD<sub>3</sub>OD)  $\delta$ : 6.70 (1 H, s, H-5), 6.25 (1 H, s, *J*=9Hz, H-4), 5.25 (2 H, m, H-2', H-2"), 4.09 (2 H, d, *J*=6.5 Hz, H-1"), 3.77 (3 H, s, 7-OMe), 3.30 (2 H, d, *J*=7.5 Hz, H-1'), 1.84 (3 H, s, H-5"), 1.79 (3 H, s, H-4"), 1.69 (3 H, s, H-4'), 1.67 (3 H, s, H-5'). <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD)  $\delta$ : 183.1 (C-9), 163.6 (C-3), 161.6 (C-1), 157.9 (C-4b), 156.7 (C-4a), 156.2 (C-6), 144.8 (C-7), 138.5 (C-8), 131.8 (C-3"), 131.7 (C-3"), 125.1 (C-2"), 123.8 (C-2"), 112.2 (C-8a), 111.4 (C-2), 103.8 (C-9a), 102.8 (C-5), 93.1 (C-4), 61.3 (7-OMe), 27.1 (C-1"), 26.0 (C-4"), 25.9 (C-4"), 22.2 (C-1"), 18.3 (C-5"), 17.9 (C-5").

Isomangiferolic acid (4): white solid, ESI-MS *m/z* 457 [M+H]<sup>+</sup>. <sup>1</sup>H-NMR (500 MHz, CD<sub>3</sub>OD)  $\delta$ : 6.79 (1 H, t, *J*=7 Hz, H-24), 3.33 (1 H, br s, H-3), 2.28 (1 H, m, H-23a), 2.18 (1 H, m, H-23), 1.83 (3 H, s, H-27), 1.04 (3 H, s, H-18), 0.98 (3 H, s, H-28), 0.96 (3 H, d, *J*=6.5 Hz, H-21), 0.95 (3 H, s, H-30), 0.89 (3 H, s, H-29), 0.55 (1 H, d, *J*=4 Hz, H-19), 0.38 (1 H, d, *J*=4 Hz, H-19). <sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD)  $\delta$ : 173.6 (C-26), 145.9 (C-24), 126.8 (C-25), 77.7 (C-3), 53.5 (C-17), 50.1 (C-14), 48.5 (C-8), 46.4 (C-13), 42.2 (C-5), 40.6 (C-4), 37.2 (C-20), 36.6 (C-15), 36.1 (C-22), 34.1 (C-12), 30.7 (C-19), 29.5 (C-2), 29.1 (C-16), 28.6 (C-1), 27.8 (C-10), 27.3 (C-11), 26.9 (C-23), 26.5 (C-7), 26.5 (C-28), 22.2 (C-29), 21.8 (C-6), 21.9 (C-6), 19.8 (C-30), 18.6 (C-21), 18.5 (C-18), 12.4 (C-27).

# Antimicrobial activity

The antimicrobial activity was determined by multiconcentration dilution method [6] and expressed as MIC (minimal inhibitory concentration) values. The isolated compounds were diluted in dimethylsulfoxide (DMSO) at the following concentrations: 256 µg/ml, 128 µg/ml, 64 µg/ml, 32 µg/ml, 16 µg/ml, 8 µg/ml, 4 µg/ml, 2 µg/ml, and 1 µg/ml, which were used for the antimicrobial test. The positive controls were streptomycin for bacterial strains and cyclohexamide for fungus. Three strains of Gram-positive (*Enterococcus faecalis ATCC299212, Staphylococcus aureus ATCC25923, Bacillus cereus ATCC13245*); three strains of Gram-negative bacteria (*Escherichia coli ATCC25922, Pseudomonas aeruginosa ATCC27853, Salmonella enterica ATCC13076*), and the fungus *Candida albicans ATCC10231* were used for the test.

# **Results and discussion**

Compound 1 was isolated as a white solid. The ESI-MS spectrum showed a protonated molecular ion peak m/z of 427 [M+H]<sup>+</sup>, which corresponds to a molecular formula of  $C_{30}H_{50}O$  (M=426). The <sup>1</sup>H-NMR spectrum displayed the characteristic signals of a cycloartane-type triterpene with

two H-19 proton signals at  $\delta_{\rm H}$  of 0.79 (1 H, d, *J*=4.0 Hz) and 0.57 (1 H, d, *J*=4.0 Hz) and seven methyl signals at  $\delta_{\rm H}$  values of 1.68 (s, H-27), 1.60 (s, H-26), 0.97 (s, H-28), 0.87 (s, H-18), 0.88 (d, *J*=7.0 Hz, H-21) and 0.81 (s, H-30) (Fig. 1). An oxymethine group signal was observed at  $\delta_{\rm H}$ 3.28 (1 H, m, H-3). The <sup>13</sup>C-NMR and DEPT spectra of **1** revealed 30 carbon signals including 7 methyl groups at  $\delta_{\rm c}$  of 25.4 (C-28), 19.3 (C-29), 18.1 (C-21), 18.0 (C-18), 13.9 (C-30), and 9.2 (C-27), with 2 olefinic carbons at  $\delta_{\rm c}$  of 130.9 (C-25) and 125.3 (C-24) and an oxymethine group at  $\delta_{\rm c}$  of 78.9 (C-3). Therefore, compound **1** was determined as cycloartenol. The NMR data of **1** were in accordance with published values [7].

Compound 2 was obtained as a yellow solid. The ESI-MS showed a *quasi*-molecular ion peak m/z of 449 [M+H]<sup>+</sup>, which corresponds to a molecular formula of  $C_{28}H_{22}O_5$ (M=448). The <sup>1</sup>H-NMR spectrum revealed a hydrogenbonded OH proton at  $\delta_{\rm H}$  of 13.06 (s) and three aromatic protons in an ABX system at  $\delta_{\rm H}$  7.61 (1 H, d, J=3 Hz, H-8), 7.33 (1 H, d, J=9 Hz, H-5) and 7.24 (1 H, dd, J=3 Hz; 9 Hz, H-6). The characteristic signals of protons in an isoprenyl group were displayed at  $\delta_{\rm H}$  5.27 (m), 3.45 (2 H, d, H-1'), 1.84 (3 H, s, H-4'), and 1.76 (3 H, s, H-5'). In addition, the presence of a geranyl group was indicated from the signals at  $\delta_{\rm H}$  5.27 (m), 5.05 (1 H, t, H-6"), 2.09 (2 H, m, H-5"), 2.05 (2 H, m, H-4"), 1.87 (3 H, s, H-9"), 1.63 (3 H, s, H-10") and 1.57 (3 H, s, H-8"). In the <sup>13</sup>C-NMR spectrum of 2, 28 carbon signals were observed including a signal of a carbonyl group at  $\delta_{\rm C}$  180.9 (C-9), signals of prenyl group at  $\delta_{c}$  135.0 (C-3'), 121.6 (C-2'), 25.8 (C-5'), 21.6 (C-1'), and 17.9 (C-4'), and signals of a geranyl group at  $\delta_c$  137.8 (C-3"), 131.8 (C-7"), 123.9 (C-6"), 121.6 (C-2"), 39.7 (C-4"), 26.4 (C-5"), 25.6 (C-10"), 21.8 (C-1"), 17.7 (C-8"), and 16.3 (C-9"). Compound 2 was determined to be cochinchinone A. The NMR data of 2 agreed with reported literature [8].

Compound **3** was obtained as a yellow solid. The ESI-MS revealed a *quasi*-molecular ion peak m/z of 411 [M+H]<sup>+</sup> suggesting that the molecular formula of **3** is  $C_{24}H_{26}O_6$ (M=410). The <sup>1</sup>H-NMR spectrum showed the presence of two aromatic singlet protons at  $\delta_{\rm H}$  values of 6.70 and 6.25. In addition, there was one methoxy group found at  $\delta_{\rm H}$  3.77 (s). The presence of two olefinic protons were found at  $\delta_{\rm H}$ 5.25 (2 H, m), then 2 methylene groups at  $\delta_{\rm H}$  4.09 (d) and 3.30 (d), and four methyl singlets at  $\delta_{\rm H}$  1.84 (s, H-5"), 1.79 (s, H-4"), 1.69 (s, H-4') and 1.67 (s, H-5') confirmed the presence of two isoprenyl groups.



Fig. 1. Chemical structures of compounds 1-4.

The <sup>13</sup>C-NMR spectrum showed the presence of a carbonyl group at a  $\delta_c$  of 183.1 (C-9), a methoxy group at a  $\delta_c$  of 61.3 (7-OMe), and four methyl groups at  $\delta_c$  values of 26.0 (C-4'), 25.9 (C-4''), 18.3 (C-5') and 17.9 (C-5''). Based on the spectral analysis, compound **3** was identified as  $\alpha$ -mangostin. The analytical NMR data of **3** are identical with those previously published [9].

Compound 4 was isolated as a white solid. The ESI-MS showed a protonated molecular ion peak m/z of 457 [M+H]<sup>+</sup>, which suggested the molecular formula of 4 is  $C_{30}H_{48}O_3$ (M=456). The <sup>1</sup>H-NMR spectrum of **4** is similar to that of compound 1 and showed the signals of a cycloartane-type triterpene with 2 protons at  $\delta_{\rm H}$  of 0.55 (1 H, d, H-19) and 0.38 (1 H, d, H-19). However, in the NMR spectrum, only six methyl groups were displayed at  $\delta_{\rm H}$  1.04 (3 H, s, H-18), 0.98 (3 H, s, H-28), 0.96 (3 H, d, J=6.5 Hz, H-21), 0.95 (3 H, s, H-30) and 0.89 (3 H, s, H-29). The <sup>13</sup>C-NMR and DEPT spectra of 4 showed 30 carbon signals including the signal of a carboxylic acid group at  $\delta_{c}$  173.0 (C-26), signals of 2 olefinic carbons at  $\delta_c$  145.7 (C-24) and 126.6 (C-25), a signal of an oxymethine group at  $\delta_{\rm C}$  78.8 (C-3) and signals of 6 methyl groups at  $\delta_c$  values of 25.4 (C-28), 19.3 (C-30), 18.1 (C-21), 18.0 (C-18), 14.0 (C-29), and 11.9 (C-27). Therefore, compound 4 was determined as isomangiferolic acid. The NMR data of 4 agreed with the values in the reported literature [10].

The cycloartan triterpenes and xanthones from the propolis of *Lisotrigona cacciae* collected in Hoa Binh were also found from the propolis in Binh Dinh province [4]. Cycloartenol and isomangiferolic acid were found in the *Mangifera indica* tree (Xoài), which is a common plant source of bee propolis [2, 4, 10, 11]. Cochinchinone A is only isolated from the plant *Cratoxylum cochinchinense* (Thành Ngạnh Nam) while  $\alpha$ -mangostin is usually found

in *Cratoxylum cochinchinense* and the *Garcinia* species [8, 9, 12, 13]. Therefore, *Mangifera indica* and *Cratoxylum cochinchinense* trees are possibly the plant sources of this *Lisotrigona cacciae* propolis.

Table 1. Antimicrobial activity of EtOH extract and isolatedcompounds.

| Samples       | MIC (µg/ml) |           |          |        |               |             |            |
|---------------|-------------|-----------|----------|--------|---------------|-------------|------------|
|               | E. faecalis | S. aureus | B.cereus | E.coli | P. aeruginosa | S. enterica | C.albicans |
| EtOH extract  | 32          | 32        | 8        | na     | 64            | na          | 128        |
| Compound 1    | 64          | 128       | 256      | na     | 128           | na          | 256        |
| Compound 2    | 16          | 32        | 16       | na     | 64            | na          | 128        |
| Compound 3    | 1           | 1         | 1        | 16     | 2             | 32          | 1          |
| Compound 4    | 1           | 64        | 128      | na     | 2             | na          | 16         |
| Streptomycin  | 256         | 256       | 128      | 32     | 256           | 128         | -          |
| Cyclohexamide | -           | -         | -        | -      | -             | -           | 32         |

na: not active; -: not tested.

The propolis EtOH extract and isolated compounds were tested for antimicrobial activity. As shown in Table 1, the EtOH extract displayed selective antimicrobial activity against Gram (+) strains over Gram (-) strains and the *C. albicans* fungus. The EtOH extract exhibited good activity on *B. cereus* with an MIC value of 8 µg/ml. Among the isolated compounds,  $\alpha$ -mangostin (3) displayed the strongest activity against three Gram (+) strains, *P. aeruginosa*, and *C. albicans* with MIC values ranging between 1-2 µg/ml.  $\alpha$ -Mangostin also had moderate activity on *E. coli* and *S. enterica*. Isomangiferolic acid (4) showed strong activity against *E. faecalis* and *P. aeruginosa* with MIC values of 1 and 2 µg/ml, respectively.

#### Conclusions

The phytochemical investigation on the propolis of the stingless bee *Lisotrigona cacciae* from the Hoa Binh province led to the isolation of four compounds including cycloartenol (1), cochinchinone A (2),  $\alpha$ -mangostin (3), and isomangiferolic acid (4). The plants *Mangifera indica* and *Cratoxylum cochinchinense* were possible resin sources of the *L. cacciae* propolis. The EtOH extract showed good antimicrobial activity on Gram (+) strains *B. cereus* with an MIC value of 8 µg/ml.  $\alpha$ -Mangostin (3) was the most active compound displaying strong activity against the five strains *B. cereus*, *E. feacalis*, *S. aureus*, *P. aeruginosa*, and the fungus *C. albicans* with MIC values ranging between 1-2 µg/ml. Isomangiferolic acid (4) also exhibited strong antimicrobial activity against *E. faecalis* and *P. aeruginosa*.

#### ACKNOWLEDGEMENTS

This research is funded by GATE Center and Vietnam Academy of Science and Technology under grant number QTBG01.01/20-21.

# **COMPETING INTERESTS**

The authors declare that there is no conflict of interest regarding the publication of this article.

#### REFERENCES

[1] M. Popova, B. Trusheva, V. Bankova (2019), "Propolis of stingless bees: a phytochemist's guide through the jungle of tropical biodiversity", *Phytomedicine*, DOI: 10.1016/j.phymed.2019.153098.

[2] H.X. Nguyen, M.T. Nguyen, N.T. Nguyen, S. Awale (2017), "Chemical constituents of propolis from Vietnamese *Trigona minor* and their antiausterity activity against the PANC-1 human pancreatic cancer cell line", *J. Nat. Prod.*, **80(8)**, pp.2345-2352.

[3] H.X. Nguyen, T.N.V. Do, M.T.T. Nguyen, P.H. Dang, L.H. Tho, S. Awale, N.T. Nguyen (2018), "A new alkenylphenol from the propolis of stingless bee *Trigona minor*", *Natural Product Communications*, **13(1)**, DOI: 10.1177/1934578X1801300121.

[4] K. Georgieva, M. Popova, L. Dimitrova, B. Trusheva, L.N. Thanh, D.T.L. Phuong, N.T.P. Lien, H. Najdenski, V. Bankova (2019), "Phytochemical analysis of Vietnamese propolis produced by the stingless bee *Lisotrigona cacciae*", *PLOS ONE*, **14(4)**, DOI: 10.1371/ journal.pone.0216074.

[5] H.T. Thoa, H.T. Van, V.T.K. Oanh, D.T.L. Phương, N.Q. Chi, L.N. Thanh (2018), "Isolated xanthones from the propolis of stingless bee (*Lisotrigona furva*)", *Pharmaceutical Journal*, **58(10)**, pp.22-24.

[6] F. Hadacek, H. Greger (2000), "Testing of antifungal natural products: methodologies, comparability of results and assay choice", *Phytochemical Analysis*, **11(3)**, pp.137-147.

[7] T. Kato, B. Frei, M. Heinrich, O. Sticher (1996), "Antibacterial hydroperoxysterols from *Xanthosoma robustum*", *Phytochemistry*, **41(4)**, pp.1191-1195.

[8] W. Mahabusarakam, W. Nuangnaowarat, W.C. Taylor (2006), "Xanthone derivatives from Cratoxylum cochinchinense roots", *Phytochemistry*, **67(5)**, pp.470-474.

[9] Liandhajani, M.I. Iwo, Sukrasno, A.A. Soemardji, M. Hanafi (2013), "Sunscreen activity of  $\alpha$ -mangostin from the pericarps of *Garcinia mangostana*", *Journal of Applied Pharmaceutical Science*, **3(6)**, pp.70-73.

[10] C. Escobedo-Martinez, M.C. Lozada, S. Hernandez-Ortega, M.L. Villarreal, D. Gnecco, R.G. Enriquez, W. Reynolds (2012), "<sup>1</sup>H and <sup>13</sup>C NMR characterization of new cycloartane triterpenes from *Mangifera indica*", *Magnetic Resonance in Chemistry*, **50**(1), pp.52-57.

[11] N. Pujirahayu, T. Suzuki, T. Katayama (2019), "Cycloartanetype triterpenes and botanical origin of propolis of stingless Indonesian bee tetragonula sapiens", *Plants*, **8(3)**, DOI: 10.3390/plants8030057.

[12] S. Laphookhieo, J.K. Syers, R. Kiattansakul, K. Chantrapromma (2006), "Cytotoxic and antimalarial prenylated xanthones from *Cratoxylum cochinchinense*", *Chemical and Pharmaceutical Bulletin*, **54(5)**, pp.745-747.

[13] M. Taher, D. Susanti, M.F. Rezali, F.S.A. Zohri, S.J.A. Ichwan, S.I. Alkhamaiseh, F. Ahmad (2012), "Apoptosis, antimicrobial and antioxidant activities of phytochemicals from Garcinia malaccensis Hk.f", *Asian Pacific Journal of Tropical Medicine*, **5**(2), pp.136-141.