

International Journal of Mathematics And its Applications

K-hub Number of a Graph

Ahmed Mohammad Nour^{1,*} and M. Manjunatha¹ 1 PG Department of Mathematics, P.E.S College of Science, Arts and Commerce, Mandya, Karnataka, India. Abstract: In this paper, we introduce the concept of k-hub set and k-hub number of a graph. We compute the k-hub number for some standard graphs, also we determined the k-hub number for corona of two graphs. Some bounds of k-hub number are established. Finally we characterize the structure of all graphs for which $h_k(G) = 1$. MSC: 05C50, 05C99. Keywords: Hub number, K-hub number, Hub set. © JS Publication.

1. Introduction

Let G = (V, E) be a graph such that G is a finite and undirected graph without loops and multiple edges. A graph G is called (p,q) graph if G is with p vertices and q edges. The degree of a vertex v in a graph G denoted by deg(v) is the number of edges of G incident with v. Where $\delta(G)(\Delta(G))$ denotes the minimum (maximum) degree among the vertices of G, respectively [2]. An end vertex is a vertex of degree one, let E_n be the set of all end vertices of G. The difference between two sets A and B is denoted by $A \setminus B$. For $v \in V(G)$, the open neighbourhood of v is denoted by $N(v) = \{u \in V(G) : uv \in E(G)\}$, for $S \subseteq V(G)$, $N(S) = \bigcup_{v \in S} N(v)$, similarly the closed neighbourhood of v is $N[v] = N(v) \cup \{v\}$, and $N[S] = N(S) \cup S$. See [2] for terminology and notations not defined here.

Walsh [11] introduced the theory of hub number in the year 2006, a hub set in a graph G is a set H of vertices in G such that any two vertices in $V(G) \setminus H$ are connected by a path whose all internal vertices lie in H. The hub number of G, denoted by h(G), is the minimum size of a hub set of G. A hub set H_r of G is called a restrained hub set if for any two vertices $u, v \in V(G) \setminus H_r$, u and v are connected by a path whose all internal vertices not in H_r [6]. The contraction of a vertex x in G (denoted by G/x) as being the graph obtained by deleting x and putting a clique on the (open) neighbourhood of x, (note that this operation does not create multiple edges, if two neighbours of x are already adjacent, then they remain simply adjacent). For more details on the hub studies we refer to [3, 4, 7–10]. The corona $G \circ F$ of two graphs G and F is the graph obtained by taking one copy of G of order p and p copies of F, and then joining the i^{th} vertex of G to every vertex in the i^{th} copy of F. For every $v \in V(G)$, denoted by F_v the copy of F whose vertices are attached one by one to the vertex v [1]. The following results will be useful in the proof of our results.

Theorem 1.1 ([6]). Let G be any graph. Then the set H_r is restrained hub set if and only if G/H_r is complete, and $G[V(G) \setminus H_r]$ is connected.

 $^{^{*}}$ E-mail: ahmadnoor01298@gmail.com

Theorem 1.2 ([6]). Let G be a graph with at least one end vertex, $h_r(G) = p - 2$ if and only if there exists minimum restrained hub set not containing an end vertex.

Theorem 1.3 ([11]). Let T be a tree with n vertices and l leaves. Then $h(G) = h_c(G) = p - l$.

Theorem 1.4 ([3]). For $k \ge 1$, if G is a connected graph with radius r, then $\gamma_k(G) \ge \frac{2r}{2k+1}$.

Theorem 1.5 ([3]). If G is a connected graph, then $\gamma_k^c(G) \leq (2k+1)\gamma_k - 2k$.

2. Main Results

Definition 2.1. Suppose that we have a graph G. Let $k \ge 1$ be an integer number, $S \subseteq V(G)$, and $x, y \in V(G)$. An S - k-path between x and y is a path whose all vertices are from S, except for k vertices from each end of the path which may not from the set S.

Definition 2.2. A set H is a k-hub set of G if for each $x, y \in (V(G) \setminus H)$, there is an H - k-path in G between x and y. The k-hub number of G is the minimum cardinality of a k-hub set of G, and denoted by $h_k(G)$. For k = 1, the 1-hub number of G is precisely the hub number of G, and $h_1(G) = h(G)$.

Definition 2.3. Let H_k^c be a k-hub set of a graph G. Then H_k^c is called a connected k-hub set if and only if $G[H_k^c]$ is connected. The connected k-hub number of G is the minimum cardinality of a connected k-hub set of G, and denoted by $h_k^c(G)$. For k = 1, the connected 1-hub number of G is precisely the connected hub number of G, and $h_1^c(G) = h_c(G)$.

From the previous definitions, if H_k is a (connected) k-hub set of G, then it is also a (connected)(k+1)-hub set of G.

Remark 2.4. Let G be any graph, then $h_j(G) \leq h_i(G)$, for all $i \leq j$.

Lemma 2.5. Let G be a connected graph. Then $h_k(G) = h_k^c(G) = 0$, if and only if $k \ge \lfloor \frac{d(G)+1}{2} \rfloor$.

Proof. Let G be a connected graph, by contradiction, let $h_k(G) = 0$, and $k \leq \lfloor \frac{d(G)+1}{2} \rfloor - 1$, take $x, y \in V(G)$ such that d(x, y) = d(G). Now, there is xy- path whose all vertices lie in H_k , except for k vertices in the tails of the path, where H_k is a minimum k^{th} hub set of G, since $H_k = \phi$, all the vertices of the path are outside H_k . Therefore:

$$d(x,y) \le 2k - 1$$
$$\le 2\left(\left\lceil \frac{d(G) + 1}{2} \right\rceil - 1\right) - 1$$
$$\le d(G) - 1,$$

and that is a contradiction. Conversely, let $k \ge \lceil \frac{d(G)+1}{2} \rceil$, so $d(G) \le 2k-1$. Now, let $H_k = \phi$, and $x, y \in V(G) \setminus H_k$. Then $d(x,y) \le d(G) \le 2k-1$, so the minimum path between x and y is $H_k - k$ -path between them, thus H_k is a k-hub set of G, hence $h_k(G) = 0$.

Theorem 2.6. Let G be a graph. Then $h_k(G) = 1$ if and only if G has the following conditions:

- (1). $d(G) \ge 2k$.
- (2). $V(G) = A \dot{\cup} B \dot{\cup} \{v\}$, where $\{v\}$ is the k-hub set of G.
- (3). For every $x \in B$, $d(x, v) \leq k$.
- (4). For every pair $(x, y) \in A \times (A \cup B), d(x, y) \leq 2k 1$.

Proof. Let G be a graph, and $h_k(G) = 1$ with a k-hub set $\{v\}$, if d(G) < 2k, then by Lemma 2.5, $h_k(G) = 0$, and that a contradiction, this proves the first condition. To show conditions 2 and 3, take $B = N_k(v)$, and $A = V(G) \setminus (A \cup \{v\})$, now for the 4th condition, let $(x, y) \in A \times (A \cup B)$, if d(x, y) > 2k - 1, then by definition of A, $d(x, v) \ge k$, so v is not in any $\{v\} - k$ - path between x and any other vertex. Therefore, there is a path between x and y consists from at most 2k vertices. Thus $d(x, y) \le 2k - 1$. The converse is trivial.

Theorem 2.7. Let G be a tree. Then $h_2(G) = h(F)$, where $F \cong G[V(G) \setminus E_n(G)]$.

Proof. Let G be a tree, and $F \cong G[V(G) \setminus E_n(G)]$, its clear that the set A of all non-leaf vertices of F forms a 2-hub set for the graph G, and no proper sub-set of A is a 2-hub set of G, since every vertex in A is a cut vertex. To complete the proof, we need to show that we can't find a minimum 2-hub set of G contained in A. So, let S be a minimum 2-hub set of G which contains a vertex out side $A(\operatorname{say} x)$. Since the vertices of A forms a 2-hub set of G, S must exclude one vertex w from A. Choose a vertex y such that y is the nearest vertex to x in the xw-path, where $y \in A \setminus S$. Then $S' = (S \setminus \{x\}) \cup \{y\}$ is also a 2- hub set, since any S - 2-path between y and any other vertex z can be extended to be a S' - 2-path through x and z. Hence we remove a vertex from $V(G) \setminus A$, without adding another, we can repeat this process to find a minimum 2- hub set containing no vertices of $V(G) \setminus A$. However the only such set is A, so A must be minimum. Thus

$$h_{2}(G) = |V(G)| - (|E_{n}(G) \cup E_{n}(F)|)$$

= $|V(G)| - (|E_{n}(G)| + |E_{n}(F)|) (sinceE_{n}(G) \cap E_{n}(F) = \phi)$
= $(|V(G)| - |E_{n}(G)|) - |E_{n}(F)|$
= $|V(F)| - |E_{n}(F)|$
= $h(F)$ (by Theorem 1.3).

Note that, if T is tree, then by using the same idea in the previous proof, and since any graph constructed by deleting the end vertices of tree, is a tree, we get the following corollary.

Corollary 2.8. Let T(p,q) be a tree. Then $h_k(T) = h_{k-1}(T_1)$, where $T_1 \cong T[V(T) \setminus E_n(T)]$.

Corollary 2.9. Let T be a tree, then $h_k(T) = p - \sum_{i=0}^{k-1} |E_n(T_k)|$, where $T_i \cong T[V(T_{i-1}) \setminus E_n(T_{i-1})]$, and $T_0 \cong T$. *Proof.* Let T be a tree, and $T_i \cong T[V(T_{i-1}) \setminus E_n(T_{i-1})]$, where $T_0 \cong T$, and since $E_n(T_i) \subseteq V(T_i)$, so $|V(T_i) \setminus E_n(T_i)| = |V(T_i)| - |E_n(T_i)|$, and we get that:

$$|V(T_k)| = |V(T_{k-1})| - |E_n(T_{k-1})|$$

= $|V(T_{k-2})| - |E_n(T_{k-2})| - |E_n(T_{k-1})|$
= ...
= $|V(T)| - \sum_{k=0}^{k-1} |E_n(T_k)|.$ (*)

Now by Corollary 2.8, we get that:

$$h_k(T) = h_{k-1}(T_1)$$
$$= h_{k-2}(T_2)$$

ł

 $\mathbf{2}$

$$= \dots$$

= $h_1(T_{k-1})$
= $|V(T_{k-1})| - |E_n(T_{k-1})|$
= $|V(T)| - \sum_{k=0}^{k-2} |E_n(T_k)| - |E_n(T_{k-1})|$ by (*)
= $p - \sum_{k=0}^{k-1} |E_n(T_k)|.$

Theorem 2.10. Let C_n be a cycle. Then

$$h_k(C_n) = \begin{cases} 0 &, \text{ if } k \ge \lceil \frac{\lfloor \frac{n}{2} \rfloor + 1}{2} \rceil,\\ n - 3k &, \text{ otherwise.} \end{cases}$$

Proof. Let C_n be any cycle of order n, now we have to discuss the following cases:

Case 1: $k \ge \lfloor \frac{\lfloor \frac{n}{2} \rfloor + 1}{2} \rfloor$. Then by Lemma 2.5, $h_k(C_n) = 0$ since $d(C_n) = \lfloor \frac{n}{2} \rfloor$.

Case 2: $k < \lceil \frac{\lfloor \frac{n}{2} \rfloor + 1}{2} \rceil$. Then by Lemma 2.5, $h_k(C_n) \neq 0$. Now let $v_1, v_2, v_3, ..., v_n$ be a path in the cycle C_n , H_k be a k-hub set of C_n , and let A be any component of $C_n[V(G) \setminus H_k]$, and m be the number of components. Now we need to prove that $h_k(C_n) \geq n - 3k$, by showing that $|V(C_n) \setminus H_k| \leq 3k$. So we have to discuss the following subcases:

Subcase 2.1: $|A| \leq k-1$. If $|V(C_n) \setminus (H_k \cup A)| \leq 2k+1$, then the result holds. While if not, then without loss of generality let $A = \{v_1, v_2, v_3, ..., v_t\}, t \leq k-1$, and enumerate the vertices in $V(C_n) \setminus (H_k \cup A)$ by $w_1, w_2, w_3, ..., w_q$, where $q \geq 2k+2$ such that for any two vertices $w_i = v_s$ and $w_j = v_r$, then i < j if s < r for all i, j = 1, 2, 3, ..., q. So, there is no $H_k - k$ -path between w_1 and w_{2k+1} , a contradiction.

Subcase 2.2: $|A| \ge k$ and $m \ge 4$. Let $A_i, i = 1, 2, ..., t$ are the components of $C_n[V(C_n) \setminus H_k], t \ge 4$, then there is two vertices $x \in V(A_i), y \in V(A_j)$ for some choices of i and j, such that there is no $H_k - k$ -path between them, a contradiction. Subcase 2.3: $|A| \ge k$ and m = 3, and any component of them say $|A_1| \ge k + 1$. Then let $A_1 = \{v_1, v_2, v_3, ..., v_t\}, t \ge k + 1$, thus there is no $H_k - k$ -path between v_1 (or v_t), and some vertices in A_2 , and that is a contradiction. Therefore, $|A_1| = k$, so $|V(G) \setminus H_k| = A_1 + A_2 + A_3 = 3k$.

Subcase 2.4: $|A| \ge k$ and m = 2. If $|A_1| \ge k + 1$ and $|A_2| \ge k + 1$. Then let $A_1 = \{v_1, v_2, v_3, ..., v_s\}, s \ge k + 1$, and let $A_2 = \{w_1, w_2, w_3, ..., w_t\}, t \ge k + 1$, as the way of enumeration on subcase 2.1, so there is no $H_k - k$ -path between the vertices v_1 and w_1 , thus one of them say A_2 has just k vertices. Now, if $|A_1| \ge 2k + 1$, then let $A_1 = \{v_1, v_2, v_3, ..., v_{2k+1}\}$, thus there is no $H_k - k$ path between v_1 and v_{2k+1} , so $|V(G) \setminus H_k| \le A_1 + A_2 \le 2k + k = 3k$.

Subcase 2.5: $|A| \ge k$ and m = 1. Assume $|A| \ge 3k + 1$, let $A_1 = \{v_1, v_2, v_3, ..., v_{3k+1}\}$, thus there is no $H_k - k$ -path between the vertices v_1 and v_{2k+1} a contradiction. Therefore, $|V(G) \setminus H_k| \le |A_1| \le 3k$.

From the previous cases we get that for any k-hub set H_k of C_n , $|V(C_n) \setminus H_k| \leq 3k$, so $h_k(C_n) \geq n - 3k$, now take $H_k = \{v_{3k+1}, v_{3k+2}, v_{3k+3}, ..., v_n\}$, this set is a k-hub set of C_n and its minimum since $|H_k| = n - 3k$. Hence the assertion follows.

Note that by previous proof, if H_k is a minimum k-hub set of a cycle C_n , then it has one of the following shapes, included in Figure 1, where black(white) vertex means that the vertex belongs(dose not belong) to H_k , since $G[H_k]$ is connected with same order, $h_k(C_n) = h_k^c(C_n)$.

Lemma 2.11. If H_k is a k-hub set of a graph G, then $d(G/H_k) \leq 2k - 1$, moreover the converse is true if and only if k = 1.

Proof. Let H_k be a k-hub set of a graph G, if $d(G/H_k) \ge 2k$, then take $x, y \notin H_k$ such that $d(x, y) \ge 2k$, thus every xy-path has at least one vertex not in H_k other than k vertices in every tail of the path, hence H_k is not a k-hub set of G, and that is a contradiction, so $d(G/H_k) \le 2k - 1$.

Now if k = 1 the converse is true, if $k \ge 2$ then we have the following counter example: $G \cong P_{2k+1} = v_1, v_2, ..., v_{2k+1}$, and $H_k = \{v_2\}$.

Corollary 2.12. Let G be a graph, then $h_k(G) \ge d(G) - 2k + 1$.

Proof. Let G be a graph and H_k be a k-hub set of G, by Lemma 2.11, $d(G/H_k) \leq 2k - 1$, and by walsh every single vertex contraction decrease the diameter by at most one, so we need at least d(G) - (2k - 1) contractions, to reach the diameter of G/H_k . Therefore $h_k(G) \geq d(G) - 2k + 1$.

Theorem 2.13. Let G be a graph, and $H_k^c \subseteq V(G)$ such that $G[H_k^c]$ is connected. Then H_k^c is a connected k-hub of G set if and only if $d(G/H_k^c) \leq 2k-1$ and for every vertex $x \notin N_k[H_k^c]$, $d_{G-G[H_k^c]}(x, u) \leq 2k-1$, where $u \notin H_k^c$.

Proof. Let G be a graph, and H_k^c be a connected k-hub set of G, and there is a vertex $x \notin N_k[H_k^c]$, with $d_{G-G[H_k^c]}(x, u) \ge 2k$, for some vertex $u \notin H_k^c$. Let P be a $H_k^c - k$ -path between x and u, if the path contains any vertex from H_k^c , then the x-tail from the path has more than k vertices are not from the set H_k^c , a contradiction, while if the path does not contain any vertex from H_k^c , then the path has at most 2k vertices, thus $d_{G-G[H_k^c]}(x, u) \le 2k - 1$, which contradicts our hypothesis. Therefor, $d_{G-G[H_k^c]}(x, u) \le 2k - 1$, and by Lemma 2.11, $d(G/H_k^c) \le 2k - 1$.

Conversely, suppose that there is $H_k^c \subseteq V(G)$ such that $G[H_k^c]$ is connected, $d(G/H_k^c) \leq 2k - 1$ and for every vertex $x \notin N_k[H_k^c]$, $d_{G-G[H_k^c]}(x, u) \leq 2k - 1$, where $u \notin H_k^c$. Now, take $w, z \in V(G) \setminus H_k^c$, we have to discuss the following cases:

Case 1: $w, z \in N_k[H_k^c]$. So there is a path $w, w_1, w_2, ..., w_n$, where $w_n \in H_k^c$, and $n \leq k$, also a path $z, z_1, z_2, ..., z_m$, where $z_m \in H_k^c$, and $m \leq k$, and a path $w_n, c_1, c_2, ..., c_t, z_m$, whose all vertices lies in H_k^c since $G[H_k^c]$ is connected. Therefore, the path $w, w_1, w_2, ..., w_n, c_1, c_2, ..., c_t, z_m, z_m = 1, ..., z$, is a $H_k^c - k$ -path between w and z.

Case 2: $w \notin N_k[H_k^c]$, or $z \notin N_k[H_k^c]$. By assumption $d_G(w, z) \leq d_{G-G[H_k^c]}(w, z) \leq 2k - 1$, so the minimum path between z and w in G is a $H_k^c - k$ -path.

Therefore, in both cases we found a $H_k^c - k$ -path between any two vertices $w, z \in V(G) \setminus H_k^c$, hence H_k^c is a connected k-hub set of G.

Theorem 2.14. Let G be a graph, and $H_c \subseteq V(G)$ such that $G[H_c]$ is connected. Then the following are equivalent:

- (1). H_c is a connected hub set of G.
- (2). for every vertex $x \notin N[H_c]$, x is adjacent to u, where $u \notin H_c$.
- (3). G/H_c is complete graph.

Proof. (1) \Rightarrow (2). Let H_c be a connected hub set of G, and let $x \notin N[H_c]$. Then by Theorem 2.13, $d_{G-G[H_c]}(x, u) \leq 1$, where $u \notin H_c$, thus x is adjacent to u, where $u \notin H_c$.

(2) \Rightarrow (3). Assume that, for every vertex $x \notin N[H_c]$, x is adjacent to u, where $u \notin H_c$. Then take $u, v \in V(G/H_c)$, if $u, v \in N[H_c]$, then by definition of G/H_c , $uv \in E(G/H_c)$, while if $u \notin N[H_c]$ or $v \notin N[H_c]$, then by assumption u is adjacent to v, hence G/H_c is complete graph.

 $(3) \Rightarrow (1)$. Let G/H_c is complete graph. Then by Theorem 1.1, H_c is a connected hub set of G.

Theorem 2.15. Let G and F be two connected graphs, then

$$h_{(k+1)}^{c}(G \circ F) = \begin{cases} \gamma_{k}^{c}(G), & \text{if } \gamma_{k}^{c}(G) \leq h_{k}^{c}(G)(1+|V(F)|); \\ h_{k}^{c}(G)(1+|V(F)|), & \text{if } \gamma_{k}^{c}(G) > h_{k}^{c}(G)(1+|V(F)|). \end{cases}$$

Proof. Let G and F be two graphs, and let H_{k+1} be a connected (k+1)-hub set of $G \circ F$, by definition of corona and Theorem 2.13, $H_k = H_{k+1} \setminus V(F)$, is a connected k-hub set of G. Therefore, to construct any connected (k+1)-hub set of $G \circ F$, the construction must start with k-hub set of G. Now, let H_k be any hub set of G, then we have to discuss the following cases:

Case 1: $V(G) \setminus N_k(H_k) \neq \phi$. In this case, one of the following two ways must be followed to construct a connected (k+1)-hub set of $G \circ F$.

First way: Since there exist $x \in (V(G) \setminus N_k(H_k))$, so there is no $H_{k+1} - (k+1)$ -path between x and any vertex y in $V(F_v)$, where $v \in H_k$. Therefore, $\bigcup_{v \in H_k} V(F_v) \subset H_{k+1}$, thus $H_k \bigcup_{v \in H_k} V(F_v) \subseteq H_{k+1}$, hence $h_{k+1}^c(G \circ F) \ge h_k^c(G) + h_k^c(G)|V(F)| = h_k^c(G)(1 + |V(F)|)$.

Second way: Add vertices from V(G) to H_k , in order to get a connected set H'_k , such that $V(G) \setminus N_k(H'_k) = \phi$, this constructs a connected k- domination set of G, in the same time it is a connected (k + 1)-hub set of $G \circ F$. Therefore, $h^c_{k+1}(G \circ F) \ge |H'_k| \ge \gamma^c_k(G)$.

Case 2: $V(G) \setminus N_k(H_k) = \phi$. Then H_k is a connected k- domination set of G, hence it follows the second way on case 1. The both lower bounds are hold by taking $H_{k+1} = H_k \bigcup_{v \in H_k} V(F_v)$, where H_K is a minimum k-hub set of G for the first way, and by taking $H_{k+1} = D_k$, where D_k is a connected k-dominating set of G for second way. Therefore, $h_{k+1}^c = min\{\gamma_k^c(G), h_k^c(G)(1+|V(F)|)\}$. Thus

$$h_{(k+1)}^{c}(G \circ F) = \begin{cases} \gamma_{k}^{c}(G), & \text{if } \gamma_{k}^{c}(G) \leq h_{k}^{c}(G)(1+|V(F)|); \\ h_{k}^{c}(G)(1+|V(F)|), & \text{if } \gamma_{k}^{c}(G) > h_{k}^{c}(G)(1+|V(F)|). \end{cases}$$

3. Bounds of k-hub Number

Proposition 3.1. Let G be a graph, then $h_k(G) \leq p - |M_k(G)|$, where $M_k(G) = max\{|N_k(v)|, v \in V(G)\}$.

Proof. Let G be a graph, with $M_k(G) = |N_k(v)|$, for some vertex $v \in V(G)$. Then the set $H_k = (V(G) \setminus N_k(v))$, is a k-hub set of G, thus $h_k(G) \le |H_k(G)| = p - M_k(G)$.

Proposition 3.2. If F is a spanning sub graph of G, then $h_k(F) \ge h_k(G)$.

Proposition 3.3. Let G be a connected graph, then $\gamma_k^c(G) - k \leq h_k^c(G) \leq \gamma_k^c(G)$.

Proof. Let G be a connected graph, the upper bound is trivial, since any connected distance k-domination set is a k-hub set. To show lower bound, let H_k^c be a minimum connected k-hub set of G, if $N_k[H_k^c] = V(G)$, then H_k^c is a connected distance k-domination set, and thus $h_k^c(G) \ge \gamma_k^c(G) \ge \gamma_k^c(G) - k$, while if not, then take $v \in [N_t(H_k^c) \setminus N_{t-1}(H_k^c)]$, where $N_{t+1}(H_k^c) = N_t(H_k^c)$, and take $v_1 \in N(H_k^c)$, let the minimum path between v_1 and v be $v_1, v_2, ..., v_k, v_{k+1}, ..., v_t$, take the set $D = \{v_1, v_2, ..., v_k\}$. Therefore, by Lemma 2.11, and definition of D, we get that, for every vertex $y \in (V(G) \setminus N_k[H_k^c])$, there is $x \in D$, such that $d(x, y) \le k$, and since $G[D \cup H_k^c]$ is connected, the set $D \cup H_k^c$ is connected distance k-domination set of G, thus:

$$\gamma_k^c(G) \le |D \cup H_k^c|$$

 $= |D| + |H_k^c| \text{ since } D \cap H_k^c = \phi$ $= k + h_k^c(G).$

Therefore $\gamma_k^c(G) - k \leq h_k^c(G)$.

Corollary 3.4. Let G and F be two connected graphs. Then we have the following properties:

- (1). If $k \ge \lfloor \frac{d(G)+1}{2} \rfloor$. Then $h_{(k+1)}^c(G \circ F) = 0$.
- (2). If $h_k^c(G) = \gamma_k^c(G)$, then $h_{(k+1)}^c(G \circ F) = \gamma_k^c(G)$.
- (3). If $k \ge |V(F)| h_k^c(G)$, then $h_{(k+1)}^c(G \circ F) = \gamma_k^c(G)$.
- *Proof.* Let G and F be two connected graphs.
- (1). Let $k \ge \lfloor \frac{d(G)+1}{2} \rfloor$, then by Theorem 2.5, $h_{(k+1)}^c(G \circ F) = h_k^c(G) = 0 < \gamma_k^c(G)$.
- (2). Let $h_k^c(G) = \gamma_k^c(G)$. Then $h_{(k+1)}^c(G \circ F) = \gamma_k^c(G) < \gamma_k^c(G)(1 + |V(F)|) = h_k^c(G)(1 + |V(F)|)$.
- (3). Let $k \ge |V(F)|h_k^c(G)$. Then by proposition 3.3, $\gamma_k^c(G) \le h_k^c(G) + k \le h_k^c(G) + |V(F)|h_k^c(G) = h_k^c(G)(1 + |V(F)|)$. Thus $h_{(k+1)}^c(G \circ F) = \gamma_k^c(G)$.

Corollary 3.5. Let G and F be two connected graphs. Then we have the following properties:

- (1). If $k \ge \lfloor \frac{d(G)+1}{2} \rfloor$. Then $h_{(k+1)}^c(G \circ F) = 0$.
- (2). If $h_k^c(G) = \gamma_k^c(G)$, then $h_{(k+1)}^c(G \circ F) = \gamma_k^c(G)$.
- (3). If $k \ge |V(F)|h_k^c(G)$, then $h_{(k+1)}^c(G \circ F) = \gamma_k^c(G)$.
- *Proof.* Let G and F be two connected graphs.
- (1). Let $k \ge \lfloor \frac{d(G)+1}{2} \rfloor$, then by Theorem 2.5, $h_{(k+1)}^c(G \circ F) = h_k^c(G) = 0 < \gamma_k^c(G)$.
- (2). Let $h_k^c(G) = \gamma_k^c(G)$. Then $h_{(k+1)}^c(G \circ F) = \gamma_k^c(G) < \gamma_k^c(G)(1 + |V(F)|) = h_k^c(G)(1 + |V(F)|)$.
- (3). Let $k \ge |V(F)|h_k^c(G)$. Then by Proposition 3.3, $\gamma_k^c(G) \le h_k^c(G) + k \le h_k^c(G) + |V(F)|h_k^c(G) = h_k^c(G)(1 + |V(F)|)$. Thus $h_{(k+1)}^c(G \circ F) = \gamma_k^c(G)$.

Theorem 3.6. Let G be a connected graph, then $(2k+1)\gamma_k - 2k \ge h_k(G) \ge \frac{2r(G)}{2k+1}$

Proof. Let G be a connected graph, then by theorem 1.4, and by Proposition 3.3, we get that: $h_k(G) \ge \gamma_k(G) \ge \frac{2r(G)}{2k+1}$, and by Theorem 1.5, with Proposition 3.3, we get that $h_k(G) \le h_k^c(G) \le \gamma_k^c(G) \le (2k+1)\gamma_k - 2k$.

References

- [1] R. Fruch and F. Harary, On the corona of two graphs, Aequat Math., 4(1970), 322-325.
- [2] F. Harary, Graph theory, Addison Wesley, Reading Mass, (1969).
- [3] P. Johnson, P. Slater and M. Walsh, The connected hub number and the connected domination number, Wiley Online Library, 58(2011), 232-237.
- [4] Shadi Ibrahim Khalaf, Veena Mathad and Sultan Senan Mahde, Hubtic number in graphs, Opuscula Mathematica, 6(38)(2018), 841-847.

- [5] Shadi Ibrahim Khalaf, Veena Mathad and Sultan Senan Mahde, Edge hubtic number in graphs, International Journal of Mathematical Combinatorics, 3(2018), 141-146.
- [6] Shadi Ibrahim Khalaf and Veena Mathad, Restrained hub number in graphs, Bulletin of International Mathematical Virtual Institute, 9(2019), 103-109.
- [7] Shadi Ibrahim Khalaf and Veena Mathad, On hubtic and restrained hubtic of a graph, TWMS Journal of Applied and Engineering Mathematics, 4(9)(2019), 930-935.
- [8] Shadi Ibrahim Khalaf, Veena Mathad and Sultan Senan Mahde, *Edge hub number in graphs*, Online Journal of Analytic Combinatorics, 14(2019), 1-8.
- [9] Shadi Ibrahim Khalaf, Veena Mathad and Sultan Senan Mahde, Hub and global hub numbers of a graph, Proceedings of the Jangjeon Mathematical Society, 23(2020), 231-239.
- [10] Sultan Senan Mahde, Shadi Ibrahim Khalaf, Yasien Nafe Shawawreh, B. Shanmukha and Ahmed Mohammad Nour, Laplacian minimum hub energy of a graph, International Journal of Mathematics And its Applications, 8(3)(2020), 59-69.
- [11] M. Walsh, The hub number of a graph, Intl. J. Mathematics and Computer Science, 1(2006), 117-124.