International Journal of Mathematics And its Applications

K-hub Number of a Graph

Ahmed Mohammad Nour ${ }^{1, *}$ and M. Manjunatha ${ }^{1}$
1 PG Department of Mathematics, P.E.S College of Science, Arts and Commerce, Mandya, Karnataka, India.

Abstract

In this paper, we introduce the concept of $k-h u b$ set and k-hub number of a graph. We compute the k-hub number for some standard graphs, also we determined the k-hub number for corona of two graphs. Some bounds of $k-$ hub number are established. Finally we characterize the structure of all graphs for which $h_{k}(G)=1$.

MSC: 05C50, 05C99.

Keywords: Hub number, K-hub number, Hub set.
(C) JS Publication.

1. Introduction

Let $G=(V, E)$ be a graph such that G is a finite and undirected graph without loops and multiple edges. A graph G is called (p, q) graph if G is with p vertices and q edges. The degree of a vertex v in a graph G denoted by $\operatorname{deg}(v)$ is the number of edges of G incident with v. Where $\delta(G)(\Delta(G))$ denotes the minimum (maximum) degree among the vertices of G, respectively [2]. An end vertex is a vertex of degree one, let E_{n} be the set of all end vertices of G. The difference between two sets A and B is denoted by $A \backslash B$. For $v \in V(G)$, the open neighbourhood of v is denoted by $N(v)=\{u \in V(G): u v \in E(G)\}$, for $S \subseteq V(G), N(S)=\bigcup_{v \in S} N(v)$, similarly the closed neighbourhood of v is $N[v]=N(v) \cup\{v\}$, and $N[S]=N(S) \cup S$. See [2] for terminology and notations not defined here.

Walsh [11] introduced the theory of hub number in the year 2006, a hub set in a graph G is a set H of vertices in G such that any two vertices in $V(G) \backslash H$ are connected by a path whose all internal vertices lie in H. The hub number of G, denoted by $h(G)$, is the minimum size of a hub set of G. A hub set H_{r} of G is called a restrained hub set if for any two vertices $u, v \in V(G) \backslash H_{r}, u$ and v are connected by a path whose all internal vertices not in H_{r} [6]. The contraction of a vertex x in G (denoted by $G / x)$ as being the graph obtained by deleting x and putting a clique on the (open) neighbourhood of x, (note that this operation does not create multiple edges, if two neighbours of x are already adjacent, then they remain simply adjacent). For more details on the hub studies we refer to [3, 4, 7-10]. The corona $G \circ F$ of two graphs G and F is the graph obtained by taking one copy of G of order p and p copies of F, and then joining the $i^{\text {th }}$ vertex of G to every vertex in the $i^{t h}$ copy of F. For every $v \in V(G)$, denoted by F_{v} the copy of F whose vertices are attached one by one to the vertex $v[1]$. The following results will be useful in the proof of our results.

Theorem 1.1 ([6]). Let G be any graph. Then the set H_{r} is restrained hub set if and only if G / H_{r} is complete, and $G\left[V(G) \backslash H_{r}\right]$ is connected.

[^0]Theorem 1.2 ([6]). Let G be a graph with at least one end vertex, $h_{r}(G)=p-2$ if and only if there exists minimum restrained hub set not containing an end vertex.

Theorem 1.3 ([11]). Let T be a tree with n vertices and l leaves. Then $h(G)=h_{c}(G)=p-l$.

Theorem 1.4 ([3]). For $k \geq 1$, if G is a connected graph with radius r, then $\gamma_{k}(G) \geq \frac{2 r}{2 k+1}$.
Theorem 1.5 ([3]). If G is a connected graph, then $\gamma_{k}^{c}(G) \leq(2 k+1) \gamma_{k}-2 k$.

2. Main Results

Definition 2.1. Suppose that we have a graph G. Let $k \geq 1$ be an integer number, $S \subseteq V(G)$, and $x, y \in V(G)$. An $S-k-p a t h$ between x and y is a path whose all vertices are from S, except for k vertices from each end of the path which may not from the set S.

Definition 2.2. A set H is a k-hub set of G if for each $x, y \in(V(G) \backslash H)$, there is an $H-k-$ path in G between x and y. The k-hub number of G is the minimum cardinality of $a k-h u b$ set of G, and denoted by $h_{k}(G)$. For $k=1$, the $1-h u b$ number of G is precisely the hub number of G, and $h_{1}(G)=h(G)$

Definition 2.3. Let H_{k}^{c} be a k-hub set of a graph G. Then H_{k}^{c} is called a connected k-hub set if and only if $G\left[H_{k}^{c}\right]$ is connected. The connected $k-h u b$ number of G is the minimum cardinality of a connected $k-h u b$ set of G, and denoted by $h_{k}^{c}(G)$. For $k=1$, the connected $1-h u b$ number of G is precisely the connected hub number of G, and $h_{1}^{c}(G)=h_{c}(G)$.

From the previous definitions, if H_{k} is a (connected) k-hub set of G, then it is also a (connected) $(k+1)-$ hub set of G.
Remark 2.4. Let G be any graph, then $h_{j}(G) \leq h_{i}(G)$, for all $i \leq j$.
Lemma 2.5. Let G be a connected graph. Then $h_{k}(G)=h_{k}^{c}(G)=0$, if and only if $k \geq\left\lceil\frac{d(G)+1}{2}\right\rceil$.
Proof. Let G be a connected graph, by contradiction, let $h_{k}(G)=0$, and $k \leq\left\lceil\frac{d(G)+1}{2}\right\rceil-1$, take $x, y \in V(G)$ such that $d(x, y)=d(G)$. Now, there is $x y-$ path whose all vertices lie in H_{k}, except for k vertices in the tails of the path, where H_{k} is a minimum $k^{t h}$ hub set of G, since $H_{k}=\phi$, all the vertices of the path are outside H_{k}. Therefore:

$$
\begin{aligned}
d(x, y) & \leq 2 k-1 \\
& \leq 2\left(\left\lceil\frac{d(G)+1}{2}\right\rceil-1\right)-1 \\
& \leq d(G)-1,
\end{aligned}
$$

and that is a contradiction. Conversely, let $k \geq\left\lceil\frac{d(G)+1}{2}\right\rceil$, so $d(G) \leq 2 k-1$. Now, let $H_{k}=\phi$, and $x, y \in V(G) \backslash H_{k}$. Then $d(x, y) \leq d(G) \leq 2 k-1$, so the minimum path between x and y is $H_{k}-k$-path between them, thus H_{k} is a k-hub set of G, hence $h_{k}(G)=0$.

Theorem 2.6. Let G be a graph. Then $h_{k}(G)=1$ if and only if G has the following conditions:
(1). $d(G) \geq 2 k$.
(2). $V(G)=A \dot{\cup} B \dot{\cup}\{v\}$, where $\{v\}$ is the $k-h u b$ set of G.
(3). For every $x \in B, d(x, v) \leq k$.
(4). For every pair $(x, y) \in A \times(A \cup B), d(x, y) \leq 2 k-1$.

Proof. Let G be a graph, and $h_{k}(G)=1$ with a k-hub set $\{v\}$, if $d(G)<2 k$, then by Lemma $2.5, h_{k}(G)=0$, and that a contradiction, this proves the first condition. To show conditions 2 and 3 , take $B=N_{k}(v)$, and $A=V(G) \backslash(A \cup\{v\})$, now for the $4^{t h}$ condition, let $(x, y) \in A \times(A \cup B)$, if $d(x, y)>2 k-1$, then by definition of $A, d(x, v) \geq k$, so v is not in any $\{v\}-k-$ path between x and any other vertex. Therefore, there is a path between x and y consists from at most $2 k$ vertices. Thus $d(x, y) \leq 2 k-1$. The converse is trivial.

Theorem 2.7. Let G be a tree. Then $h_{2}(G)=h(F)$, where $F \cong G\left[V(G) \backslash E_{n}(G)\right]$.
Proof. Let G be a tree, and $F \cong G\left[V(G) \backslash E_{n}(G)\right]$, its clear that the set A of all non leaf vertices of F forms a 2-hub set for the graph G, and no proper sub set of A is a 2 -hub set of G, since every vertex in A is a cut vertex. To complete the proof, we need to show that we can't find a minimum $2-$ hub set of G contained in A. So, let S be a minimum $2-$ hub set of G which contains a vertex out side $A($ say $x)$. Since the vertices of A forms a $2-$ hub set of G, S must exclude one vertex w from A. Choose a vertex y such that y is the nearest vertex to x in the $x w$-path, where $y \in A \backslash S$. Then $S^{\prime}=(S \backslash\{x\}) \cup\{y\}$ is also a $2-$ hub set, since any $S-2$-path between y and any other vertex z can be extended to be a $S^{\prime}-2$-path through x and z. Hence we remove a vertex from $V(G) \backslash A$, without adding another, we can repeat this process to find a minimum 2 - hub set containing no vertices of $V(G) \backslash A$. However the only such set is A, so A must be minimum. Thus

$$
\begin{aligned}
h_{2}(G) & =|V(G)|-\left(\left|E_{n}(G) \cup E_{n}(F)\right|\right) \\
& =|V(G)|-\left(\left|E_{n}(G)\right|+\left|E_{n}(F)\right|\right)\left(\operatorname{since} E_{n}(G) \cap E_{n}(F)=\phi\right) \\
& =\left(|V(G)|-\left|E_{n}(G)\right|\right)-\left|E_{n}(F)\right| \\
& =|V(F)|-\left|E_{n}(F)\right| \\
& =h(F) \quad \text { (by Theorem 1.3). }
\end{aligned}
$$

Note that, if T is tree, then by using the same idea in the previous proof, and since any graph constructed by deleting the end vertices of tree, is a tree, we get the following corollary.

Corollary 2.8. Let $T(p, q)$ be a tree. Then $h_{k}(T)=h_{k-1}\left(T_{1}\right)$, where $T_{1} \cong T\left[V(T) \backslash E_{n}(T)\right]$.
Corollary 2.9. Let T be a tree, then $h_{k}(T)=p-\sum_{i=0}^{k-1}\left|E_{n}\left(T_{k}\right)\right|$, where $T_{i} \cong T\left[V\left(T_{i-1}\right) \backslash E_{n}\left(T_{i-1}\right)\right]$, and $T_{0} \cong T$.
Proof. Let T be a tree, and $T_{i} \cong T\left[V\left(T_{i-1}\right) \backslash E_{n}\left(T_{i-1}\right)\right]$, where $T_{0} \cong T$, and since $E_{n}\left(T_{i}\right) \subseteq V\left(T_{i}\right)$, so $\left|V\left(T_{i}\right) \backslash E_{n}\left(T_{i}\right)\right|=$ $\left|V\left(T_{i}\right)\right|-\left|E_{n}\left(T_{i}\right)\right|$, and we get that:

$$
\begin{align*}
\left|V\left(T_{k}\right)\right| & =\left|V\left(T_{k-1}\right)\right|-\left|E_{n}\left(T_{k-1}\right)\right| \\
& =\left|V\left(T_{k-2}\right)\right|-\left|E_{n}\left(T_{k-2}\right)\right|-\left|E_{n}\left(T_{k-1}\right)\right| \\
& =\ldots \\
& =|V(T)|-\sum_{k=0}^{k-1}\left|E_{n}\left(T_{k}\right)\right| . \tag{}
\end{align*}
$$

Now by Corollary 2.8, we get that:

$$
\begin{aligned}
h_{k}(T) & =h_{k-1}\left(T_{1}\right) \\
& =h_{k-2}\left(T_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\ldots \\
& =h_{1}\left(T_{k-1}\right) \\
& =\left|V\left(T_{k-1}\right)\right|-\left|E_{n}\left(T_{k-1}\right)\right| \\
& =|V(T)|-\sum_{k=0}^{k-2}\left|E_{n}\left(T_{k}\right)\right|-\left|E_{n}\left(T_{k-1}\right)\right| \quad b y(*) \\
& =p-\sum_{k=0}^{k-1}\left|E_{n}\left(T_{k}\right)\right| .
\end{aligned}
$$

Theorem 2.10. Let C_{n} be a cycle. Then

$$
h_{k}\left(C_{n}\right)= \begin{cases}0 & , \text { if } k \geq\left\lceil\frac{\left\lfloor\frac{n}{2}\right\rfloor+1}{2}\right\rceil ; \\ n-3 k & , \text { otherwise. }\end{cases}
$$

Proof. Let C_{n} be any cycle of order n, now we have to discuss the following cases:
Case 1: $k \geq\left\lceil\frac{\left\lfloor\frac{n}{2}\right\rfloor+1}{2}\right\rceil$. Then by Lemma 2.5, $h_{k}\left(C_{n}\right)=0$ since $d\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.
Case 2: $k<\left\lceil\frac{\left\lfloor\frac{n}{2}\right\rfloor+1}{2}\right\rceil$. Then by Lemma 2.5, $h_{k}\left(C_{n}\right) \neq 0$. Now let $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be a path in the cycle C_{n}, H_{k} be a $k-$ hub set of C_{n}, and let A be any component of $C_{n}\left[V(G) \backslash H_{k}\right]$, and m be the number of components. Now we need to prove that $h_{k}\left(C_{n}\right) \geq n-3 k$, by showing that $\left|V\left(C_{n}\right) \backslash H_{k}\right| \leq 3 k$. So we have to discuss the following subcases:

Subcase 2.1: $|A| \leq k-1$. If $\left|V\left(C_{n}\right) \backslash\left(H_{k} \cup A\right)\right| \leq 2 k+1$, then the result holds. While if not, then without loss of generality let $A=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{t}\right\}, t \leq k-1$, and enumerate the vertices in $V\left(C_{n}\right) \backslash\left(H_{k} \cup A\right)$ by $w_{1}, w_{2}, w_{3}, \ldots, w_{q}$, where $q \geq 2 k+2$ such that for any two vertices $w_{i}=v_{s}$ and $w_{j}=v_{r}$, then $i<j$ if $s<r$ for all $i, j=1,2,3, \ldots, q$. So, there is no $H_{k}-k$-path between w_{1} and $w_{2 k+1}$, a contradiction.

Subcase 2.2: $|A| \geq k$ and $m \geq 4$. Let $A_{i}, i=1,2, \ldots, t$ are the components of $C_{n}\left[V\left(C_{n}\right) \backslash H_{k}\right], t \geq 4$, then there is two vertices $x \in V\left(A_{i}\right), y \in V\left(A_{j}\right)$ for some choices of i and j, such that there is no $H_{k}-k$-path between them, a contradiction.

Subcase 2.3: $|A| \geq k$ and $m=3$, and any component of them say $\left|A_{1}\right| \geq k+1$. Then let $A_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{t}\right\}, t \geq k+1$, thus there is no $H_{k}-k$-path between v_{1} (or v_{t}), and some vertices in A_{2}, and that is a contradiction. Therefore, $\left|A_{1}\right|=k$, so $\left|V(G) \backslash H_{k}\right|=A_{1}+A_{2}+A_{3}=3 k$.

Subcase 2.4: $|A| \geq k$ and $m=2$. If $\left|A_{1}\right| \geq k+1$ and $\left|A_{2}\right| \geq k+1$. Then let $A_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{s}\right\}, s \geq k+1$, and let $A_{2}=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{t}\right\}, t \geq k+1$, as the way of enumeration on subcase 2.1, so there is no $H_{k}-k-$ path between the vertices v_{1} and w_{1}, thus one of them say A_{2} has just k vertices. Now, if $\left|A_{1}\right| \geq 2 k+1$, then let $A_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{2 k+1}\right\}$, thus there is no $H_{k}-k$ path between v_{1} and $v_{2 k+1}$, so $\left|V(G) \backslash H_{k}\right| \leq A_{1}+A_{2} \leq 2 k+k=3 k$.

Subcase 2.5: $|A| \geq k$ and $m=1$. Assume $|A| \geq 3 k+1$, let $A_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{3 k+1}\right\}$, thus there is no $H_{k}-k$-path between the vertices v_{1} and $v_{2 k+1}$ a contradiction. Therefore, $\left|V(G) \backslash H_{k}\right| \leq\left|A_{1}\right| \leq 3 k$.

From the previous cases we get that for any k-hub set H_{k} of $C_{n},\left|V\left(C_{n}\right) \backslash H_{k}\right| \leq 3 k$, so $h_{k}\left(C_{n}\right) \geq n-3 k$, now take $H_{k}=\left\{v_{3 k+1}, v_{3 k+2}, v_{3 k+3}, \ldots, v_{n}\right\}$, this set is a $k-$ hub set of C_{n} and its minimum since $\left|H_{k}\right|=n-3 k$. Hence the assertion follows.

Note that by previous proof, if H_{k} is a minimum k-hub set of a cycle C_{n}, then it has one of the following shapes, included in Figure 1, where black(white) vertex means that the vertex belongs(dose not belong) to H_{k}, since $G\left[H_{k}\right]$ is connected with same order, $h_{k}\left(C_{n}\right)=h_{k}^{c}\left(C_{n}\right)$.

Lemma 2.11. If H_{k} is a k-hub set of a graph G, then $d\left(G / H_{k}\right) \leq 2 k-1$, moreover the converse is true if and only if $k=1$.

Proof. Let H_{k} be a k-hub set of a graph G, if $d\left(G / H_{k}\right) \geq 2 k$, then take $x, y \notin H_{k}$ such that $d(x, y) \geq 2 k$, thus every $x y$-path has at least one vertex not in H_{k} other than k vertices in every tail of the path, hence H_{k} is not a k-hub set of G, and that is a contradiction, so $d\left(G / H_{k}\right) \leq 2 k-1$.

Now if $k=1$ the converse is true, if $k \geq 2$ then we have the following counter example: $G \cong P_{2 k+1}=v_{1}, v_{2}, \ldots, v_{2 k+1}$, and $H_{k}=\left\{v_{2}\right\}$.

Corollary 2.12. Let G be a graph, then $h_{k}(G) \geq d(G)-2 k+1$.

Proof. Let G be a graph and H_{k} be a k-hub set of G, by Lemma 2.11, $d\left(G / H_{k}\right) \leq 2 k-1$, and by walsh every single vertex contraction decrease the diameter by at most one, so we need at least $d(G)-(2 k-1)$ contractions, to reach the diameter of G / H_{k}. Therefore $h_{k}(G) \geq d(G)-2 k+1$.

Theorem 2.13. Let G be a graph, and $H_{k}^{c} \subseteq V(G)$ such that $G\left[H_{k}^{c}\right]$ is connected. Then H_{k}^{c} is a connected k-hub of G set if and only if $d\left(G / H_{k}^{c}\right) \leq 2 k-1$ and for every vertex $x \notin N_{k}\left[H_{k}^{c}\right], d_{G-G\left[H_{k}^{c}\right]}(x, u) \leq 2 k-1$, where $u \notin H_{k}^{c}$.

Proof. Let G be a graph, and H_{k}^{c} be a connected k-hub set of G, and there is a vertex $x \notin N_{k}\left[H_{k}^{c}\right]$, with $d_{G-G\left[H_{k}^{c}\right]}(x, u) \geq$ $2 k$, for some vertex $u \notin H_{k}^{c}$. Let P be a $H_{k}^{c}-k$-path between x and u, if the path contains any vertex from H_{k}^{c}, then the x-tail from the path has more than k vertices are not from the set H_{k}^{c}, a contradiction, while if the path does not contain any vertex from H_{k}^{c}, then the path has at most $2 k$ vertices, thus $d_{G-G\left[H_{k}^{c}\right]}(x, u) \leq 2 k-1$, which contradicts our hypothesis. Therefor, $d_{G-G\left[H_{k}^{c}\right]}(x, u) \leq 2 k-1$, and by Lemma 2.11, $d\left(G / H_{k}^{c}\right) \leq 2 k-1$.
Conversely, suppose that there is $H_{k}^{c} \subseteq V(G)$ such that $G\left[H_{k}^{c}\right]$ is connected, $d\left(G / H_{k}^{c}\right) \leq 2 k-1$ and for every vertex $x \notin N_{k}\left[H_{k}^{c}\right], d_{G-G\left[H_{k}^{c}\right]}(x, u) \leq 2 k-1$, where $u \notin H_{k}^{c}$. Now, take $w, z \in V(G) \backslash H_{k}^{c}$, we have to discuss the following cases: Case 1: $w, z \in N_{k}\left[H_{k}^{c}\right]$. So there is a path $w, w_{1}, w_{2}, \ldots, w_{n}$, where $w_{n} \in H_{k}^{c}$, and $n \leq k$, also a path $z, z_{1}, z_{2}, \ldots, z_{m}$, where $z_{m} \in H_{k}^{c}$, and $m \leq k$, and a path $w_{n}, c_{1}, c_{2}, \ldots, c_{t}, z_{m}$, whose all vertices lies in H_{k}^{c} since $G\left[H_{k}^{c}\right]$ is connected. Therefore, the path $w, w_{1}, w_{2}, \ldots, w_{n}, c_{1}, c_{2}, \ldots, c_{t}, z_{m}, z_{m-1}, \ldots, z$, is a $H_{k}^{c}-k$-path between w and z.

Case 2: $w \notin N_{k}\left[H_{k}^{c}\right]$, or $z \notin N_{k}\left[H_{k}^{c}\right]$. By assumption $d_{G}(w, z) \leq d_{G-G\left[H_{k}^{c}\right]}(w, z) \leq 2 k-1$, so the minimum path between z and w in G is a $H_{k}^{c}-k$-path.

Therefore, in both cases we found a $H_{k}^{c}-k$-path between any two vertices $w, z \in V(G) \backslash H_{k}^{c}$, hence H_{k}^{c} is a connected k-hub set of G.

Theorem 2.14. Let G be a graph, and $H_{c} \subseteq V(G)$ such that $G\left[H_{c}\right]$ is connected. Then the following are equivalent:
(1). H_{c} is a connected hub set of G.
(2). for every vertex $x \notin N\left[H_{c}\right], x$ is adjacent to u, where $u \notin H_{c}$.
(3). G / H_{c} is complete graph.

Proof. (1) $\Rightarrow(2)$. Let H_{c} be a connected hub set of G, and let $x \notin N\left[H_{c}\right]$. Then by Theorem 2.13, $d_{G-G\left[H_{c}\right]}(x, u) \leq 1$, where $u \notin H_{c}$, thus x is adjacent to u, where $u \notin H_{c}$.
(2) \Rightarrow (3). Assume that, for every vertex $x \notin N\left[H_{c}\right], x$ is adjacent to u, where $u \notin H_{c}$. Then take $u, v \in V\left(G / H_{c}\right)$, if $u, v \in N\left[H_{c}\right]$, then by definition of $G / H_{c}, u v \in E\left(G / H_{c}\right)$, while if $u \notin N\left[H_{c}\right]$ or $v \notin N\left[H_{c}\right]$, then by assumption u is adjacent to v, hence G / H_{c} is complete graph.
$(3) \Rightarrow(1)$. Let G / H_{c} is complete graph. Then by Theorem 1.1, H_{c} is a connected hub set of G.

Theorem 2.15. Let G and F be two connected graphs, then

$$
h_{(k+1)}^{c}(G \circ F)= \begin{cases}\gamma_{k}^{c}(G), & \text { if } \gamma_{k}^{c}(G) \leq h_{k}^{c}(G)(1+|V(F)|) ; \\ h_{k}^{c}(G)(1+|V(F)|), & \text { if } \gamma_{k}^{c}(G)>h_{k}^{c}(G)(1+|V(F)|) .\end{cases}
$$

Proof. Let G and F be two graphs, and let H_{k+1} be a connected $(k+1)$-hub set of $G \circ F$, by definition of corona and Theorem 2.13, $H_{k}=H_{k+1} \backslash V(F)$, is a connected k-hub set of G. Therefore, to construct any connected $(k+1)$-hub set of $G \circ F$, the construction must start with k-hub set of G. Now, let H_{k} be any hub set of G, then we have to discuss the following cases:

Case 1: $V(G) \backslash N_{k}\left(H_{k}\right) \neq \phi$. In this case, one of the following two ways must be followed to construct a connected $(k+1)-$ hub set of $G \circ F$.

First way: Since there exist $x \in\left(V(G) \backslash N_{k}\left(H_{k}\right)\right)$, so there is no $H_{k+1}-(k+1)$-path between x and any vertex y in $V\left(F_{v}\right)$, where $v \in H_{k}$. Therefore, $\bigcup_{v \in H_{k}} V\left(F_{v}\right) \subset H_{k+1}$, thus $H_{k} \bigcup_{v \in H_{k}} V\left(F_{v}\right) \subseteq H_{k+1}$, hence $h_{k+1}^{c}(G \circ F) \geq h_{k}^{c}(G)+h_{k}^{c}(G)|V(F)|=$ $h_{k}^{c}(G)(1+|V(F)|)$.

Second way: Add vertices from $V(G)$ to H_{k}, in order to get a connected set H_{k}^{\prime}, such that $V(G) \backslash N_{k}\left(H_{k}^{\prime}\right)=\phi$, this constructs a connected k - domination set of G, in the same time it is a connected $(k+1)-$ hub set of $G \circ F$. Therefore, $h_{k+1}^{c}(G \circ F) \geq\left|H_{k}^{\prime}\right| \geq \gamma_{k}^{c}(G)$.

Case 2: $V(G) \backslash N_{k}\left(H_{k}\right)=\phi$. Then H_{k} is a connected k - domination set of G, hence it follows the second way on case 1 .
The both lower bounds are hold by taking $H_{k+1}=H_{k} \bigcup_{v \in H_{k}} V\left(F_{v}\right)$, where H_{K} is a minimum k-hub set of G for the first way, and by taking $H_{k+1}=D_{k}$, where D_{k} is a connected k-dominating set of G for second way. Therefore, $h_{k+1}^{c}=$ $\min \left\{\gamma_{k}^{c}(G), h_{k}^{c}(G)(1+|V(F)|)\right\}$. Thus

$$
h_{(k+1)}^{c}(G \circ F)= \begin{cases}\gamma_{k}^{c}(G), & \text { if } \gamma_{k}^{c}(G) \leq h_{k}^{c}(G)(1+|V(F)|) \\ h_{k}^{c}(G)(1+|V(F)|), & \text { if } \gamma_{k}^{c}(G)>h_{k}^{c}(G)(1+|V(F)|) .\end{cases}
$$

3. Bounds of k-hub Number

Proposition 3.1. Let G be a graph, then $h_{k}(G) \leq p-\left|M_{k}(G)\right|$, where $M_{k}(G)=\max \left\{\left|N_{k}(v)\right|, v \in V(G)\right\}$.
Proof. Let G be a graph, with $M_{k}(G)=\left|N_{k}(v)\right|$, for some vertex $v \in V(G)$. Then the set $H_{k}=\left(V(G) \backslash N_{k}(v)\right)$, is a $k-$ hub set of G, thus $h_{k}(G) \leq\left|H_{k}(G)\right|=p-M_{k}(G)$.

Proposition 3.2. If F is a spanning sub graph of G, then $h_{k}(F) \geq h_{k}(G)$.
Proposition 3.3. Let G be a connected graph, then $\gamma_{k}^{c}(G)-k \leq h_{k}^{c}(G) \leq \gamma_{k}^{c}(G)$.
Proof. Let G be a connected graph, the upper bound is trivial, since any connected distance k-domination set is a $k-$ hub set. To show lower bound, let H_{k}^{c} be a minimum connected k-hub set of G, if $N_{k}\left[H_{k}^{c}\right]=V(G)$, then H_{k}^{c} is a connected distance k-domination set, and thus $h_{k}^{c}(G) \geq \gamma_{k}^{c}(G) \geq \gamma_{k}^{c}(G)-k$, while if not, then take $v \in\left[N_{t}\left(H_{k}^{c}\right) \backslash N_{t-1}\left(H_{k}^{c}\right)\right]$, where $N_{t+1}\left(H_{k}^{c}\right)=N_{t}\left(H_{k}^{c}\right)$, and take $v_{1} \in N\left(H_{k}^{c}\right)$, let the minimum path between v_{1} and v be $v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}, \ldots, v_{t}$, take the set $D=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Therefore, by Lemma 2.11, and definition of D, we get that, for every vertex $y \in\left(V(G) \backslash N_{k}\left[H_{k}^{c}\right]\right)$, there is $x \in D$, such that $d(x, y) \leq k$, and since $G\left[D \cup H_{k}^{c}\right]$ is connected, the set $D \cup H_{k}^{c}$ is connected distance k-domination set of G, thus:

$$
\gamma_{k}^{c}(G) \leq\left|D \cup H_{k}^{c}\right|
$$

$$
\begin{aligned}
& =|D|+\left|H_{k}^{c}\right| \text { since } D \cap H_{k}^{c}=\phi \\
& =k+h_{k}^{c}(G) .
\end{aligned}
$$

Therefore $\gamma_{k}^{c}(G)-k \leq h_{k}^{c}(G)$.
Corollary 3.4. Let G and F be two connected graphs. Then we have the following properties:
(1). If $k \geq\left\lceil\frac{d(G)+1}{2}\right\rceil$. Then $h_{(k+1)}^{c}(G \circ F)=0$.
(2). If $h_{k}^{c}(G)=\gamma_{k}^{c}(G)$, then $h_{(k+1)}^{c}(G \circ F)=\gamma_{k}^{c}(G)$.
(3). If $k \geq|V(F)| h_{k}^{c}(G)$, then $h_{(k+1)}^{c}(G \circ F)=\gamma_{k}^{c}(G)$.

Proof. Let G and F be two connected graphs.
(1). Let $k \geq\left\lceil\frac{d(G)+1}{2}\right\rceil$, then by Theorem 2.5, $h_{(k+1)}^{c}(G \circ F)=h_{k}^{c}(G)=0<\gamma_{k}^{c}(G)$.
(2). Let $h_{k}^{c}(G)=\gamma_{k}^{c}(G)$. Then $h_{(k+1)}^{c}(G \circ F)=\gamma_{k}^{c}(G)<\gamma_{k}^{c}(G)(1+|V(F)|)=h_{k}^{c}(G)(1+|V(F)|)$.
(3). Let $k \geq|V(F)| h_{k}^{c}(G)$. Then by proposition 3.3, $\gamma_{k}^{c}(G) \leq h_{k}^{c}(G)+k \leq h_{k}^{c}(G)+|V(F)| h_{k}^{c}(G)=h_{k}^{c}(G)(1+|V(F)|)$. Thus $h_{(k+1)}^{c}(G \circ F)=\gamma_{k}^{c}(G)$.

Corollary 3.5. Let G and F be two connected graphs. Then we have the following properties:
(1). If $k \geq\left\lceil\frac{d(G)+1}{2}\right\rceil$. Then $h_{(k+1)}^{c}(G \circ F)=0$.
(2). If $h_{k}^{c}(G)=\gamma_{k}^{c}(G)$, then $h_{(k+1)}^{c}(G \circ F)=\gamma_{k}^{c}(G)$.
(3). If $k \geq|V(F)| h_{k}^{c}(G)$, then $h_{(k+1)}^{c}(G \circ F)=\gamma_{k}^{c}(G)$.

Proof. Let G and F be two connected graphs.
(1). Let $k \geq\left\lceil\frac{d(G)+1}{2}\right\rceil$, then by Theorem 2.5, $h_{(k+1)}^{c}(G \circ F)=h_{k}^{c}(G)=0<\gamma_{k}^{c}(G)$.
(2). Let $h_{k}^{c}(G)=\gamma_{k}^{c}(G)$. Then $h_{(k+1)}^{c}(G \circ F)=\gamma_{k}^{c}(G)<\gamma_{k}^{c}(G)(1+|V(F)|)=h_{k}^{c}(G)(1+|V(F)|)$.
(3). Let $k \geq|V(F)| h_{k}^{c}(G)$. Then by Proposition 3.3, $\gamma_{k}^{c}(G) \leq h_{k}^{c}(G)+k \leq h_{k}^{c}(G)+|V(F)| h_{k}^{c}(G)=h_{k}^{c}(G)(1+|V(F)|)$. Thus $h_{(k+1)}^{c}(G \circ F)=\gamma_{k}^{c}(G)$.

Theorem 3.6. Let G be a connected graph, then $(2 k+1) \gamma_{k}-2 k \geq h_{k}(G) \geq \frac{2 r(G)}{2 k+1}$.
Proof. Let G be a connected graph, then by theorem 1.4, and by Proposition 3.3, we get that: $h_{k}(G) \geq \gamma_{k}(G) \geq \frac{2 r(G)}{2 k+1}$, and by Theorem 1.5, with Proposition 3.3, we get that $h_{k}(G) \leq h_{k}^{c}(G) \leq \gamma_{k}^{c}(G) \leq(2 k+1) \gamma_{k}-2 k$.

References

[1] R. Fruch and F. Harary, On the corona of two graphs, Aequat Math., 4(1970), 322-325.
[2] F. Harary, Graph theory, Addison Wesley, Reading Mass, (1969).
[3] P. Johnson, P. Slater and M. Walsh, The connected hub number and the connected domination number, Wiley Online Library, 58(2011), 232-237.
[4] Shadi Ibrahim Khalaf, Veena Mathad and Sultan Senan Mahde, Hubtic number in graphs, Opuscula Mathematica, $6(38)(2018), 841-847$.
[5] Shadi Ibrahim Khalaf, Veena Mathad and Sultan Senan Mahde, Edge hubtic number in graphs, International Journal of Mathematical Combinatorics, 3(2018), 141-146.
[6] Shadi Ibrahim Khalaf and Veena Mathad, Restrained hub number in graphs, Bulletin of International Mathematical Virtual Institute, 9(2019), 103-109.
[7] Shadi Ibrahim Khalaf and Veena Mathad, On hubtic and restrained hubtic of a graph, TWMS Journal of Applied and Engineering Mathematics, 4(9)(2019), 930-935.
[8] Shadi Ibrahim Khalaf, Veena Mathad and Sultan Senan Mahde, Edge hub number in graphs, Online Journal of Analytic Combinatorics, 14(2019), 1-8.
[9] Shadi Ibrahim Khalaf, Veena Mathad and Sultan Senan Mahde, Hub and global hub numbers of a graph, Proceedings of the Jangjeon Mathematical Society, 23(2020), 231-239.
[10] Sultan Senan Mahde, Shadi Ibrahim Khalaf, Yasien Nafe Shawawreh, B. Shanmukha and Ahmed Mohammad Nour, Laplacian minimum hub energy of a graph, International Journal of Mathematics And its Applications, 8(3)(2020), 59-69.
[11] M. Walsh, The hub number of a graph, Intl. J. Mathematics and Computer Science, 1(2006), 117-124.

[^0]: * E-mail: ahmadnoor01298@gmail.com

