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Introduction

Blood coagulation can be a beneficial response of 
human body that decreases the amount of bleeding by 
forming blood clots. These clots play an important role in 
the sealing of blood vessels to prevent injury from excessive 
bleeding. However, blood clots can become harmful when 
they gather together into a compact mass. The presence of 
large blood clots can cause congestion of blood flow to the 
body’s organs. As a consequence, the supply of oxygen to 
the organs, especially the brain or heart, is restricted. This 
leads to a stroke or heart attack. There are two mechanisms 

leading to coagulation: the contact activation (intrinsic) 
and tissue factor (extrinsic) pathways [1]. In general, 
these two pathways occur over several consecutive steps 
leading to an activation of factor X to factor Xa (“a” 
activated). Therefore, factor Xa is located at the junction 
between these two coagulation pathways. In the extrinsic 
mechanism, factor Xa and factor Va form a complex in the 
presence of calcium ions and phospholipids. This complex 
then converts prothrombin to thrombin, which leads to the 
formation of a very strong fibrin clot [2, 3].  An abnormal 
clot that forms in a vein may result in pain and swelling, 
and in many cases, this clot can cause disability and death. 
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Abstract:

A coagulation cascade forms through proteolytic reactions and involves different factors. There are two coagulation 
pathways, including intrinsic and extrinsic mechanisms, which converge by the formation of factor Xa. Factor Xa 
plays a crucial role in the formation of the complex with factor Va in the presence of calcium ions and phospholipids. 
This complex converts prothrombin to thrombin, which leads to the formation of a very strong fibrin clot. Much 
effort has been devoted to the efficient interference of this enzyme cascade by the inhibition of factor Xa due to 
its important effect. (R)-3-amidinophenylalanine inhibitors are known inhibitors of factor Xa reported so far. In 
the present work, a two-dimensional quantitative structure activity relationship (2D-QSAR) was performed on 50 
(R)-3-amidinophenylalanine inhibitors (the training set) with respect to their pKi values toward factor Xa, where 
pKi=-logKi, and Ki is the inhibition constant, to develop a mathematical model that depends on the physicochemical 
properties of the inhibitors. Partial least squares regression (PLSR) was used to yield a QSAR model containing 
molecular descriptors that significantly contribute to pKi values. The statistically significant parameters of the model, 
such as squared correlation coefficient, R2=0.834, root mean square error, RMSE=0.210, cross-validated Q2

cv=0.789, 
and cross-validated RMSEcv=0.237, were obtained for the training set. The developed 2D-QSAR model was applied 
to predict the pKi values of the 62 inhibitors. Furthermore, the reliability of the model was also confirmed via 
statistically significant parameters obtained from validation on an external set.
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Due to the pivotal role of factor Xa to fibrin formation, 
several great efforts have been made to suppress the 
coagulation cascade by inhibition of this enzyme. A number 
of series of novel inhibitors toward factor Xa have been 
discovered such as mono-benzamidine, non-benzamidine, 
and diamidino derivatives. These inhibitors have displayed 
high affinities in in vitro and in vivo experiments [4]. (R)-
3-amidinophenylalanine inhibitors were found to represent 
promising new selective inhibitors of factor Xa due to their 
hydrophobic interactions with factor Xa [5, 6].

Many  drug molecules  are enzyme inhibitors and their 
inhibitory activity is characterised by the inhibition constant, 
Ki. When an enzyme (E) binds to an inhibitor (I) to form an 
enzyme-inhibitor complex (EI), E + I ↔ EI, where Ki is 
defined as an equilibrium constant such that Ki=[EI]/[E][I], 
where [E], [I], and [EI] are the equilibrium concentrations 
of the enzyme,  inhibitor, and enzyme-inhibitor complex 
[7].  A high Ki value ensures that a drug will have high 
inhibitory activity.

The two-dimensional quantitative structure-activity 
relationship (2D-QSAR) has seen wide application in the 
field of medicinal chemistry for many years. This method 
presents a quantitative relationship between the chemical 
response (inhibitory activity/toxicity/binding affinity) 
of a molecule and its physicochemical properties via a 
mathematical equation [8]. The QSAR method helps to 
screen new drug candidates, thus avoiding costly trial and 
error experiments in synthesis and biological screening. In 
the present attempt, we developed a mathematical model that 
provided a quantitative relationship of the binding affinity 
(e.g., pKi) of (R)-3-amidinophenylalanine inhibitors toward 
factor Xa, a crucial enzyme in the clotting cascade. The 
quantitative relationship was presented by a mathematically 
linear equation that depends on molecular physicochemical 
properties (descriptors) of (R)-3-amidinophenylalanine 
inhibitors. The developed 2D-QSAR model was applied to 
predict the Ki values of 62 inhibitors. 

Methodology

Structures of (R)-3-amidinophenylalanine inhibitors and 
their experimental pKi=-logKi values were obtained from 
the literature [9] (Table 1). Chemical structures were drawn 

and optimized energy in Molecular Operating Environment 
(MOE) 2008.10. In order to develop a 2D-QSAR model, 
a training set including 50 (R)-3-amidinophenylalanine 
inhibitors was randomly chosen in MOE 2008.10. The 
remaining inhibitors (12 molecules) were used as a testing 
(external) set. One hundred and eighty-four (184) two-
dimensional (2D) descriptors were numerically calculated 
by MOE software. By using Rapidminer 5.0, the descriptors 
showing zero value, low correlation with binding affinity 
(<0.07), and high intercorrelation themselves (>0.9) were 
removed to select the most significant descriptors for 
the 2D-QSAR model. In addition, Weka 3.6 software, 
QuaSAR-Contigency, and Principle Components in MOE 
2008.10 were also employed to select the best descriptors 
to establish the QSAR model. Then, partial least squares 
regression was used to develop a mathematical equation.

Results

2D-QSAR model 

Descriptors are the physicochemical properties of 
each molecule that characterize its chemical structure and 
they take on numerical values [8]. After the irrelevant 
descriptors were omitted, PLSR was employed to 
develop a mathematical QSAR model that describes a 
quantitative relationship between the descriptors of (R)-3-
amidinophenylalanine inhibitors with their pKi values. The 
estimated QSAR model is shown below:

pKi = 3.73958 - 1.14732×b_ar + 0.56128×PEOE_VSA_POS 
+ 1.16326×SlogP_VSA6 + 2.08858×SMR_VSA5

where b_ar is the number of aromatic bonds, PEOE_
VSA_POS is the total positive van der Waals surface area, 
SlogP_VSA is the logarithm of the n-octanol/water partition 
coefficient, and SMR_VSA is the molecular refractivity. 
The training set was randomly selected from 62 inhibitors to 
develop the 2D-QSAR model. The model with statistically 
significant parameters was chosen as the best model. Several 
training sets were used to develop the 2D-QSAR models. 
Unfortunately, they gave statistically insignificant R2, 
RMSE, Q2

cv, and RMSEcv values. Therefore, those models 
were not selected for further analysis.
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amidinophenylalanine inhibitors was randomly chosen in MOE 2008.10. The 
remaining inhibitors (12 molecules) were used as a testing (external) set. One 
hundred and eighty-four (184) two-dimensional (2D) descriptors were numerically 
calculated by MOE software. By using Rapidminer 5.0, the descriptors showing 
zero value, low correlation with binding affinity (<0.07), and high intercorrelation 
themselves (>0.9) were removed to select the most significant descriptors for the 
2D-QSAR model. In addition, Weka 3.6 software, QuaSAR-Contigency, and 
Principle Components in MOE 2008.10 were also employed to select the best 
descriptors to establish the QSAR model. Then, partial least squares regression was 
used to develop a mathematical equation. 
Results 

2D-QSAR model  
Descriptors are the physicochemical properties of each molecule that 

characterize its chemical structure and they take on numerical values [8]. After the 
irrelevant descriptors were omitted, PLSR was employed to develop a mathematical 
QSAR model that describes a quantitative relationship between the descriptors of 
(R)-3-Amidinophenylalanine inhibitors with their pKi values. The estimated QSAR 
model is shown below: 

pKi = 3.73958 - 1.14732�b_ar + 0.56128�PEOE_VSA_POS + 
1.16326�SlogP_VSA6 + 2.08858�SMR_VSA5 

where b_ar is the number of aromatic bonds, PEOE_VSA_POS is the total positive 
van der Waals surface area, SlogP_VSA is the logarithm of the n-octanol/water 
partition coefficient, and SMR_VSA is the molecular refractivity. The training set 
was randomly selected from 62 inhibitors to develop the 2D-QSAR model. The 
model with statistically significant parameters was chosen as the best model. 
Several training sets were used to develop the 2D-QSAR models. Unfortunately, 
they gave statistically insignificant R2, RMSE, Q2

cv, and RMSEcv values. Therefore, 
those models were not selected for further analysis. 
Table 1. Chemical structures of 62 (R)-3-amidinophenylalanine inhibitors with 
respect to their experimental (Exp) pKi values. The predicted (Pre) pKi values of 
62 inhibitors calculated from the 2D-QSAR equation were also added. 

 

N0 R1 R2 Exp 
pKi 

Pred 
pKi 

N0 R1 R2 Exp 
pKi 

Pred 
pKi 

1 
 

NHMe  3.194 3.638 32   4.886 4.689 

a

N0 R1 R2 Exp pKi Pred pKi N0 R1 R2 Exp pKi Pred pKi

1

Me

Me

Me

SO2 NHMe 3.194 3.638 32
SO2

N 4.886 4.689

2 SO2

i-Pr

i-Pr

i-Pr
N

O2C
5.824 5.494 33 SO2

Me

MeMe

MeO NHMe 3.721 3.670

3
SO2

N

N

O CH2OH

4.456 4.280 34 SO2

i-Pr

i-Pr

i-Pr

N

CONHCH2Ph
5.602 5.909

4
SO2

N

MeO2C
4.337 4.554 35

SO2 N
4.658 4.724

5 N
SO2

N Me 3.745 4.243 36 Me SO2 N 4.119 4.176

6 SO2

i-Pr

i-Pr

i-Pr

NHMe 4.959 4.979 37
SO2 N CO2Me

Me
4.444 4.461

7
SO2 N

CO2CH2Ph
5.066 4.898 38

SO2 N CO2Me

Me

4.237 4.461

8
SO2

N

O2C
3.886 4.270 39

SO2

N

N

OMe

4.319 4.272

9
SO2

N

O2C
4.42 4.422 40

SO2

N

CO2
5.119 5.126

10
SO2 N

CO2Me

4.367 4.467 41
SO2 NO2C

4.382 4.454

11
SO2

N 4.77 4.386 42 SO2

i-Pr

i-Pr

i-Pr

N

CO2

4.886 5.345

12
SO2 N

N
HMe

4.523 4.272 43
SO2

N

CO2

4.387 4.196

13
SO2 N

CO2i-Pr
4.796 4.606 44 SO2

Me

MeMe

MeO
N

N

SO2Me

3.921 3.969

14
SO2 N

CONHMe

4.119 4.484 45
SO2 NPhH2CO2C

5.114 5.048

Table 1. Chemical structures of 62 (R)-3-amidinophenylalanine inhibitors with respect to their experimental (Exp) pKi values. The 
predicted (Pre) pKi values of 62 inhibitors calculated from the 2D-QSAR equation were also added.
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15 SO2

i-Pr

i-Pr

i-Pr

N

CO2CH2Ph
6.046 5.908 46

SO2
N

4.745 4.453

16
SO2 N

CONHMe

4.481 4.484 47
SO2 N

CONHCH2Ph
4.77 4.899

17
SO2 N

Me

4.377 4.293 48
OMe

Me

Me
SO2

Me
Me

N

Me

4.097 4.161

18
SO2 N

CO2

4.363 4.335 49 SO2

O
N

Me

4.854 4.560

19
SO2 N

CO2

4.357 4.335 50 H
N

Me

3.638 3.869

20
SO2

N

N

4.569 4.486 51*
SO2

N

PhH2CO2C
4.699 4.833

21
SO2

N

CONHMe

4.244 4.571 52*
SO2

N

NH
4.658 4.992

22
SO2

N

N

O NMe2

4.62 4.428 53* Me SO2 NHMe 4.398 3.877

23
SO2 N

MeO2C

4.569 4.616 54* SO2

i-Pr

i-Pr

i-Pr

N

Me

5.699 5.338

24
SO2 N 4.42 4.421 55* SO2

i-Pr

i-Pr

i-Pr

N

CO2Me

5.585 5.476

25
SO2 N

CO2Me
4.745 4.467 56* SO2

Me

MeMe

MeO
N

Me

4.000 4.029

26
SO2

N

MeO2C
3.959 4.402 57*

SO2 N

O H

4.721 4.363

27
SO2

N 4.585 4.572 58*

O

O
t-Bu

N

Me

4.194 4.070

28
SO2 N

O2C

4.268 4.315 59* SO2

i-Pr

i-Pr

i-Pr
N

N

SO2Me

5.131 5.278

29
OMe

Me

Me
SO2

Me
Me

N

N

SO2Me

4.125 4.101 60*
SO2 N

Me

4.387 4.328

30
SO2

N

N

CO2Me

4.114 4.272 61*
SO2 N

CO2CH2Ph

5.092 4.898

31
Me

Me

Me SO2

N

CO2Me

4.076 4.135 62* Me SO2

O

N
4.284 4.036

*Testing set.
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Statistical parameters

The statistical parameters, such as R2 and RMSE, 
are important parameters for the selection of the best 
2D-QSAR model. A model was chosen with the greatest R2 
(>0.5), while RMSE value must be below 0.5 [8, 10]. The 
significant values of R2, RMSE, Q2

cv, and RMSEcv reflect 
the reliability of the QSAR model. The obtained values are 
shown in Table 2.
Table 2. The statistical parameters of the established 2D-QSAR 
model.

Training set Cross-validation Testing set Total set

N0 50 50 12 62

R2 0.834 0.934 0.814

Q2
cv 0.789

RMSE 0.210 0.237 0.132 0.227

Experimental pKi vs. predicted pKi

The pKi values of the 62 inhibitors were predicted by 
using the established 2D-QSAR model. The relationship 
between the experimental pKi and predicted pKi is presented 
in Fig. 1. The fitting equation is given in the top of the Fig. 1.

Fig. 1. The plot shows the relationship between the experimental 
pKi and predicted pKi.

Discussion
Subdata set selection to establish a 2D-QSAR model

A data set of 88 inhibitors with respect to their experimental 
pKi values was firstly used to perform a QSAR study. As 
presented in the methodology section, the training set (80%) 
was selected through their assigned random values (sorted in 
descending order). After removing the irrelevant descriptors 
from 184 2D-descriptors, the QSAR model was built. If the 
first model possessed statistically significant parameters of 
R2 and RMSE, the model was used for cross-validations, 

and if the parameters of Q2
cv, RMSEcv were acceptable, the 

model was applied to the total set and testing set. Note that 
the values of R2, RMSE, and Q2

cv, are dependent on which 
of the compounds were used in the training set. Therefore, 
if these values were not statistically satisfied, the first model 
would not be used further. Consequently, random values of 
each molecule in 88 inhibitors would be re-calculated and 
sorted again to select a new training set (the calculation was 
randomly done by MOE). Then, a second attempt at 2D-QSAR 
modelling was established based on the new descriptors. 
This procedure was repeated 8-10 times for the first dataset 
containing 88 inhibitors and if the validation parameters of 
R2, RMSE, and Q2

cv were not statistically significant, the other 
solutions were taken into account. The reasons behind the 
statistically insignificant values are the irrelevant selection 
of descriptors and/or the interfering compounds. Thus, the 
interfering molecules should be considered. The Z-score 
values were obtained after cross-validation and the compound 
outliers to the fit were omitted. As a result, the number of 
inhibitors will be less. As mentioned earlier, the selection of 
training and testing sets was random and tthe same procedure 
was performed to get the statistical parameters. If the results 
were unacceptable, more interfering molecules were screened 
via the Z-score until the statistically desired values were 
obtained from a certain subset of the data. Fortunately, data 
consisting of 62 inhibitors gave  statistically significant 
parameters for validation.

Molecular descriptors

According to the established equation, pKi depends on 
four 2D-descriptors consisting of the number of aromatic 
bonds, the total positive van der Waals surface area, the 
logarithm of the n-octanol/water partition coefficient, and 
the molecular refractivity. In comparison with the results 
discussed in Ref. [9], the model gave more 2D-descriptors 
and thus may potentially be used in experimental studies. 
Five 3D-physicochemical properties including steric, 
electrostatic, hydrophobic, and hydrogen-bond donor 
and acceptor factors play crucial roles in the binding 
affinities of inhibitors toward factor Xa [9]. Here, the SlogP 
descriptor (P=Cn-octanol/Cwater; where Cn-octanol and Cwater are the 
concentrations of a solute in the lipid phase (n-octanol) and 
in the aqueous phase (water), respectively) relating to the 
absorption, transport, and excretion of drugs, i.e., the relative 
affinity for an aqueous (hydrophilic) or lipid (hydrophobic) 
medium, is present and contributes to pKi. This could mean 
that the descriptor reflecting the hydrophobicity of the 
inhibitors is indispensable to the binding affinities toward 
factor Xa in 2D and 3D-QSAR studies. From the present 
results, the 2D-descriptors of b_ar, PEOE_VSA_POS, and 
SMR_VSA were found to contribute to pKi. This result is 
helpful for further studies where these 2D-descriptors are 
not readily applicable. SMR_VSA5 and SlogP_VSA6 are 
descriptors based on the approximate accessible van der 
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Waals surface area (VSA), which is the  surface area  of 
a biomolecule that is accessible to a solvent, in unit of Å2. 
Each atom has an accessible van der Waals surface area, 
νi, along with an atomic property, Li. This property is in a 
specified range (a, b) and contributes to the descriptor. Thus, 
the SlogP_VSA6 is the sum of the νi from all atoms such 
that the Li value of each atom, i, is in the range of (0.20, 
0.25] [11]. The Li contributes to the descriptor logP. The 
SMR_VSA5 refers to the sum of νi of all atoms such that 
the Li value of each atom, i, is in the range of (0.44, 0.485)
[12]. This Li contributes to the descriptor the molecular 
refractivity (MR). The PEOE_VSA_POS denotes the sum 
of the van der Waals surface area of atom i, vi, such that 
the partial charge of atom i, qi, is non-negative. The atomic 
partial charges were calculated by partial equalization 
of orbital electronegativities (PEOE), in which charge is 
transferred between bonded atoms until equilibrium [13]. 
Descriptors using PEOE charges are prefixed with PEOE_. 
The positive coefficient signs of the descriptors represent 
a linear relationship between pKi and the descriptors, i.e., 
the increase of these descriptors induces an increase in pKi 
values (i.e., binding affinity decreases) while the negative 
coefficients imply an increase in binding affinity when the 
value of that descriptor increases.

The reliability of the developed model was evaluated via 
internal (cross), external, and total validations. The model 
gave statistically significant parameters for the external (12 
inhibitors) and total (62 inhibitors) validations. The cross-
validated squared correlation coefficient was Q2

cv=0.789 and 
R2=0.814, both of which are greater than 0.5. The RMSE 
values were lower than 0.5. These values confirmed the 
goodness of fit of the QSAR model. The model was also 
employed to predict the pKi values of 62 inhibitors (Table 1). 

By plotting the experimental pKi vs. predicted pKi, a 
linear correlation between experimental pKi and predicted 
values was found. This linear relationship indicated that 
the model has a good predictive ability. Note that, the 
regression line was described as y=ax+b instead of y=x to 
simply illustrate a linear trend between the experimental pKi 
vs. predicted pKi, i.e., the experimentally large/small pKi 
value (low/high activity) of one compound, the predicted 
value should be also large/small.

Conclusions
A 2D-QSAR model was established from 50 (R)-3-

amidinophenylalanine inhibitors. The number of aromatic 
bonds, the positive van der Waals surface area, the 
logarithm of the n-octanol/water partition coefficients, 
and the molecular refractivity are crucial descriptors that 
contribute to pKi values. The results demonstrated that 
the hydrophobicity, which has been reported in 3D-QSAR 
studies, plays a pivotal role on the affinities of inhibitors 
toward factor Xa. The model in this work gave significantly 

statistical parameters. The pKi values of all inhibitors were 
predicted by employing the established 2D-QSAR model and 
there was a linear relationship between the experimental and 
predicted pKi values. These results indicate the reliability of 
the model and could be helpful to develop drug candidates 
based on (R)-3-amidinophenylalanine derivatives.
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