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Introduction 

Suspended sediment, which includes organic and 
inorganic materials within the water flow, is a natural part of 
a river system. The primary sources of suspended sediment 
come from the erosion of soil, mass movements such as 
landslides, and riverbank erosion or human interventions on 
the landscape [1-3]. High amounts of suspended sediment 
in water can reduce the transmission of light, which not 
only affects the phytoplankton species in short term but 
also the entire ecosystem in the long term. Suspended 
sediment plays an important role in shaping the landscape, 
transporting nutrients to various species, and creating 
ecological habitats [4, 5]. Similarly, pollutants can adhere to 
suspended sediment while in transport and thus suspended 
sediment can influence pollutant movement. Suspended 
sediment is also an indicator of issues occurring in the 
river delta and coastal areas, which include water quality, 
ecological degradation, and soil and/or riverbank erosion. 
To develop a suitable river basin management strategy, 
frequent monitoring of suspended sediment is critical.  

Despite the importance of suspended sediment, it is 
poorly gauged due to the lack of in-situ networks in many 
areas and especially in developing countries. We choose 
the RRD for this research because this region has several 
meteorological stations. However, they have not been 
operated for some time due to lack of budget and thus this 
region is considered to be ungauged basin. Moreover, the 
RRD is one of two largest and most important deltas in 
Vietnam; however, it has not received as much attention as 
the Mekong river delta. Thus, research in this area is central 
to the critical understanding of this important region.

Data quality is also a concern since monitoring suspended 
sediment depends on the number of stations, their locations, 
and the frequency of measurements [6]. There are some 
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methods to obtain suspended sediment information such 
as using empirical models, physically-based mathematical 
models, and field sampling. Recently, the use of satellite 
images to detect suspended sediment has captured the 
attention of researchers [7-9]. There are studies that use 
Moderate Resolution Imaging Spectroradiometer (MODIS) 
images or Landsat Thematic Mapper (TM) and Enhanced 
Thematic Mapper Plus (ETM+) imagery to characterize 
the spatial and temporal pattern of surface sediments [10-
13] based on the very close relationship between R and 
suspended sediment concentration. Recent results show that 
satellite remote sensing technology is applicable and useful 
to obtain not only suspended sediment information but also 
other hydrological parameters of these ungauged areas [14].  

This study aims to investigate the potential use of 
satellite observations (MODIS reflectance) to detect the 
seasonal change of suspended sediment flux in the RRD 
region. We first extract the satellite reflectance value at the 
location of the station and then apply simple regression 
analysis to the reflectance, discharge, suspended sediment, 
and total sediment load on the same day. The simple 
regression analysis used in this paper refers to the use of 
single variable (R) for one dependent variable (suspended 
sediment or discharge). We choose the simple regression 
analysis because of limitations in the available data and the 
objective of our research. Regression analysis performance 
is examined by the coefficient of determination. Only one 
band of reflection data was used to access the relationship 
with other hydrological factors. In future research, multi-
band reflection data will be used to provide better results by 
using multi-regression analysis. 

Materials and methods

Study area

The RRD is one of the largest deltas in Vietnam, the 
fourth largest delta in Southeast Asia in terms of delta plain 
size, and is also one of the chief deltas in Asia. The RRD 
lies in the northern part of Vietnam with a total delta area 
of 15000 km2. The delta includes two large river systems: 
the Red river and Thai Binh river systems. The discharge 
in Red river is 120 km3 of water annually and 130×106 ton/
year of mean annual suspended sediment load. During the 
wet season from June to January, about 90% of the annual 
sediment supply is transported from a large number of 
distributaries. About 11.7% of the total amount of sediment 
goes through the Van Uc and Thai Binh river mouths, 37.8% 
passes through the Ba Lat mouth [15], 23.7% through the 
Day river mouth, and the remaining amount of sediment 
passes through the Tra Ly river mouth.

The climate in RRD is sub-tropical and formed by a 
summer monsoon from the South and a winter monsoon from 
the North-East. The two wet seasons account for 85-95% 
of the total rainfall per year [16]. The mean annual rainfall 
was 1590 mm and mean annual potential evapotranspiration 
ranged from 880 to 1150 mm per year [17]. 

To explore the relationship between Q-SSC, R-Q, 
R-SSC, and L-Q, three locations in this delta were taken into 
account, namely, ST, TC, and HN. ST is located upstream of 
the Red river and TC and HN are located at the Duong river 
and Red river, respectively, as shown in Fig. 1.

Fig. 1. Study area and location of the three stations.

Data     
Table 1. Location, date, and sources of data in 3 stations in RRD.

Station Longitude Latitude Data product Date 
(month-day-year) Source

ST 21.15 105.50

Daily discharge 1/1/2012-12/31/2013 VAWR

Daily suspended 
sediment 1/1/2012-12/31/2013 VAWR

Daily MODIS 
band 1

1/1/2012-12/31/2013
(182 scenes)

LP 
DAAC

TC 21.06 105.86

Daily discharge 1/1/2012-12/31/2013 VAWR

Daily suspended 
sediment 1/1/2012-12/31/2013 VAWR

Daily MODIS 
band 1

1/1/2012-12/31/2013
(171 scenes)

LP 
DAAC

HN 21.01 105.85

Daily discharge 1/1/2012-12/31/2013 VAWR

Daily suspended 
sediment 1/1/2012-12/31/2013 VAWR

Daily MODIS 
band 1

1/1/2012-12/31/2013
(171 scenes)

LP 
DAAC
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Table 1 shows the location, date, and sources of all data 
from the three stations used in this study. The daily discharge 
and daily suspended sediment concentration data from the 
three stations were obtained from the Vietnam Academy 
for Water Resources (VAWR) over the course of two years: 
2012 and 2013. Basically, they are measured in the middle 
of the river at 0.5 m, 1 m, and 3 m from the water’s surface 
then the average values are taken. Moreover, one specific 
objective is to explore the relationship between R and other 
hydrological factors that do not depend on time, thus the 
period of 2012-2013 is suitable for this study. On the other 
hand, the reflectance data was extracted from MODIS 
Surface Reflectance (code: MOD09). In general, MOD09 is 
a seven-band product computed from MODIS level 1B land 
bands 1 (620-670 nm), 2 (841-876 nm), 3 (459-479 nm), 4 
(545-565 nm), 5 (1230-1250 nm), 6 (1628-1652 nm), and 
7 (2105-2155 nm).  Most satellite data processing systems 
recognise five distinct levels of processing. Level 0 data is 
raw satellite feeds. Level 1 data has been radiometrically 
calibrated but not otherwise altered. Level 2 data is level 
1 data that has been atmospherically corrected to yield a 
surface reflectance product. Level 3 data is level 2 data that 
has been gridded into a map projection and usually has also 
been temporally composited or averaged. Finally, level 4 
data are products that have been put through additional 
processing. Due to the available data and the objective of our 
research, the images from MODIS Terra band 1 (620-670 
nm, 250-m resolution and Surface Reflectance daily level 
2 global (MOD09GQ)) is downloaded from USGS freely, 
then this data was input and extracted by ArcGIS software 
for retrieval of R from the pixel of the station’s location. 
In this study, only the reflectance on a cloud-free day with 
less than 0.2 cloud fraction are acquired at the observation 
point of the gauged station and used for regression analysis. 
In total, 167 Terra MODIS images were acquired over two 
years for assessing the reflectance in TC and 171 images 
and 182 images were downloaded to use for HN and ST, 
respectively, from the beginning of 2012 to the end of 2013. 

Methods

To estimate the possible relationship between Q-SSC, 
R-SSC, R-Q, and L-Q, we apply the single regression 
analysis to the reflectance values, observed Q, and observed 
SSC on the same day the MODIS images were taken. The 
total sediment load is calculated by the multiplication of Q 
and SSC as shown in Eq. (1): 

L=Q*SSC	                                                                                                                (1)

The performance of the regression model was checked 
by the coefficient of determination.                      

Results and discussion

Time series analysis of Q, SSC, L and R

The temporal change in Q, SSC, and L are described in 
Figs. 2, 3, and 4. In general, the trends of Q and SSC during 
the time are similar to all stations, that is, increasing during 
the first half of the year and decreasing during the remaining 
time. From Fig. 2, because ST is positioned upstream, Q 
in ST is equal to the sum of Q in TC and HN due to water 
balance of the river system. In addition, Q at all 3 stations 
had a similar pattern; increasing from the beginning of the 
year and reaching a peak of about 9000 m3/s in September, 
then a decrease to just over 1000 m3/s until the end of the 
year. 

From Fig. 3, each station had a different temporal pattern 
of SSC change. The SSC in TC was highest compared to 
other stations although it is located in the distributary and 
ST is in the upstream of the river network system. 
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Fig. 2. Temporal change in discharge, Q, at the three stations 
TC, HN, and ST.
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Fig. 3. Temporal change in suspended sediment, SSC, at the 
three stations TC, HN, and ST.
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Fig. 4. Temporal change in total load, L, at the three stations 
TC, HN, and ST.

As shown in Eq. (1), the total load, L, (Fig. 4) is the 
product of discharge, Q, (Fig. 2) and suspended sediment, 
SSC (Fig. 3). The discharge at TC, on average, makes up 
approximately 45% of Q at ST. However, the total load, L, 
at TC is about 78% of L at ST during 2012 due to a dramatic 
increase in SSC at TC (Fig. 3). It is noted that SSC does 
not follow the balance term because of bank erosion or 
landslides along the river. However, the total sediment load 
seems to satisfy the general principle of mass balance: L at 
ST is equal to the sum of L at TC and L at HN. Moreover, 
the load of suspended sediment was higher in the rainy 
season than in the dry season.

Regression analysis

Due to the effects of clouds on the reflectance value, we 
eliminated several points at each station for a total of 24 
data points over 2 years for monthly regression analysis. 
Fig. 5 through Fig. 8 show scatter plots of the relationships 
between L-Q, Q-SSC, R-Q, and R-SSC. The results of the 
relationship equations and performances of the regression 
analyses are represented in Table 2. The best fit results for 
all the relationships in our study followed a power function.

From Table 2, a significant overall relationship between 
total load, L, and discharge, Q, was observed with a high 
value of R2 that was greater than 0.8 at all stations. The 
fit parameters of the three fit equations, in this case, were 
also similar. For example, the scaling factor and exponent 
parameters ranged from 0.23 to 1.26 and 1.49 to 1.86, 
respectively. Thus, in future studies, the relationship 
between L and Q can be defined by a single equation for the 
three stations. 

The fit results also showed a very close connection 
between Q and SSC at the TC station while HN and ST had 
a lower performance regression compared to TC. However, 
the scaling factors found from the three relationship 
equations were very different from each other with the 
smallest value of 19.87 and largest value of 116.53 due to a 
wide range of both q and SSC at each location (see Figs. 2 
and 3). In contrast, there was only a slight difference in the 
value of the exponent in the relationship equation of Q-SSC. 
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A close relationship between R-Q and R-SSC were 
recorded at the HN station. The R2 value was 0.40 and 0.33 
for R-Q and R-SSC, respectively, for this station. However, 
TC and ST had smaller correlation results than HN. An 
interesting point in these results is that using the reflectance 
value to predict SSC is better than predicting Q by R. Both 
the scaling factors and exponents in the R-SSC equations 
were not much different for the three stations, but they did 
vary significantly in case of the R-Q relationship equations. 
The R-SSC relationship (see Fig. 8) displayed a similar 
trend for all stations, but there were more outlier points in 
TC than in HN and ST.

One possible reason to explain the outlier points is the 
effect of clouds. The cloud cover is different at each station 
and it influences the reflectance value of the pixel where the 
observation data was taken. 

Inter-relationship between regression parameters

As shown in Figs. 5, 6, and 7, the relationship of L-Q, 
R-SSC, and R-Q can be expressed as

L=aQb (2)

SSC=αRβ (3)

Q=γRδ (4)

Substituting Eq. (2) and Eq. (3) into Eq. (1) reveals

aQb = Q*αRβ           	            (5)

Then,
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near-real-time SSC monitoring using satellite observed water-surface reflectance, R, and 
identified parameters α and β. 
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one possible reason to explain the outlier points is the effect of clouds. The cloud cover 
is different at each station and it influences the reflectance value of the pixel where the 
observation data was taken.  

Inter-relationship between regression parameters: 
As shown in Figs. 5, 6, and 7, the relationship of L-Q, R-SSC, and R-Q can be 

expressed as 
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Substituting Eq. (2) and Eq. (3) into Eq. (1) reveals 
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example, if we observed Q at a specific point of river section, we can correlate Q with 
satellite-observed R and then γ and δ parameter in Eq. (4) could be obtained. in addition, the 
parameters a and b could be possibly estimated from hydro-geological characteristics and 
land cover in the upstream area using a regionalization scheme [18]. once the parameters γ, 
δ, a, and b are identified through the above procedure, α and β in Eq. (3) can be obtained 
from Eqs. (7) and (8) without using observed SSC data.  Then, Eq. (3) could be applied for 
near-real-time SSC monitoring using satellite observed water-surface reflectance, R, and 
identified parameters α and β. 
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estimate the parameters for one of the three equations (Eq. 
(2) Eq. (3), or Eq. (4)) from the parameters of the other 
equations. For example, if we observed Q at a specific point 
of river section, we can correlate Q with satellite-observed 
R and then γ and δ parameter in Eq. (4) could be obtained. In 
addition, the parameters a and b could be possibly estimated 
from hydro-geological characteristics and land cover in the 
upstream area using a regionalization scheme [18]. Once 
the parameters γ, δ, a, and b are identified through the above 
procedure, α and β in Eq. (3) can be obtained from Eqs. 
(7) and (8) without using observed SSC data.  Then, Eq. 
(3) could be applied for near-real-time SSC monitoring 
using satellite observed water-surface reflectance, R, and 
identified parameters α and β.
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Table 2. Relationship equation and performance of regression of 
L-Q, Q-SSC, R-Q, R-SSC at the three stations.

Correlation Station Relationship
equation R2

L-Q

TC L=0.23Q1.86 0.94

HN L=1.03Q1.55 0.82

ST L=1.26Q1.49 0.87

Q-SSC

TC Q=19.87SSC0.87 0.76

HN Q=116.53SSC0.66 0.37

ST Q=75.42SSC0.86 0.43

R-Q

TC Q=1575R1.19 0.11

HN Q=64678R2.90 0.40

ST Q=22716R2.23 0.13

R-SSC

TC SSC=3427.1R1.60 0.21

HN Q=7926.8R2.38 0.33

ST Q=2927R1.92 0.18

Conclusions

This study explored the possibility of detecting a seasonal 
change of suspended sediment flux by using remotely 
sensed reflectance of MODIS imagery. At first, we extracted 
R from MODIS (band 1, 250-m resolution, Surface Daily 
L2G Global) and then analysed the relationship between 
R-SSC and R-Q. We also estimated the relationship between 
L-Q and Q-SSC. 

The results indicate a significant relationship in L-Q 
and Q-SSC and a possible connection in R-SSC and R-Q. 
Although there were some error sources that affected 
the accuracy of the suspended sediment and discharge 
estimation, the results showed a potential of using MODIS 
satellite reflectance to detect SSC in the delta region.  A set 
of equations that calculate the sediment depending on Q 
and R was built in this study. This set has a potential for 
application in other study areas where the change in Q and 
R corresponds to the characteristics of each area.

The approach introduced here illustrates the possible 
use of satellite images and the information of Q in SSC 
monitoring in a data-poor basin. One limitation in this 
study is using only R extracted from satellites, which 
cannot exactly detect the value of suspended sediment 
without Q data. However, a combination of other satellite 
observations such as the EOMAP (Earth Observation and 
Environmental Services) water quality monitoring services 
and R from MODIS images can solve the problem of 
monitoring suspended sediment in ungauged river basins 
in future research. Moreover, using hydrological results 

obtained from remote sensing can be used in combination 
with a numerical model for a deeper understanding about 
the basin. 
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