Journal of Materials and Engineering Structures

Research Paper

Mechanical and structural reliability based algorithm optimization

Ahmed SAHLI ${ }^{a, *}$, Sara SAHLI ${ }^{b}$
${ }^{a}$ Laboratoire de recherche des technologies industrielles, Université Ibn Khaldou
${ }^{b}$ Université d'Oran 2 Mohamed Ben Ahmed, Oran, Algeria

ARTICLEINFO

Article history :
Received : 14 May 2018
Revised : 31 January 2019
Accepted : 4 February 2019

ABSTRACT
 (Boundary Element it hod) for thalysis of fracture problems and also the realization of a probabilistic aps th to th atigue problem through the coupling between a mechanic el that do propagation of cracks under fatigue, and structural reliability n the $B E I V I / I V E F$ coupling model, the crack propagation model was introduced or ine regime. This model leads to interesting results and allows to res wnere this effect is important. Closing the topic related to the M formulations, a formulation was also developed for the analysis of agation problems. Probabilistic models are applied to the analysis of d to fatigue. It is known that the integrity of the structures in service qlly depends on its ability to maintain a resistance pattern over time. To this proba tic model was coupled an optimization algorithm for the determination of parameters such as the geometry dimensions of the structure as well as intervals for the rformance of the maintenance and inspection procedures, taking into account objective tractions written in terms of structural cost and safety. The investigation shows that direct coupling scheme converged for all problems studied, irrespective of the problem nonlinearity.

In order to alt he analysis of a larger range of materials, the concept of fracture encompassing the cohesive fracture was extended. The cohesive models have their origins in Dugdale and Baremblatt works [1, 2] and later extensively studied numerically and experimentally in the works of [3, 4].

In this model, the existence of a process zone located in front of the region where there is the proper separation of the fissure surfaces is considered. In this process zone, loss of stiffness occurs with the increase of the micro-cracks and the consequent dissipation of energy. Considering this small zone, a possible approximation would be done to consider that the dissipation takes place in a fictitious fissure placed before the real fissure. In this fictitious region, a fictitious boundary

[^0]aperture in which the transfer of tension occurs between the surfaces of the crack is idealized. The constitutive relation that governs the maximum stress in the process zone and the opening of the faces of the crack reflects the softening behavior.

The simplest representation of this model is to use a linear curve given by two parameters of the material, maximum fictitious aperture and maximum tensile strength. However, in the literature there are several other suggested approximations. Some recent important works on the subject, besides those mentioned, are [5-10]. Fracture work using other numerical methods as finite element method and non-knitted methods can be found in [11].

In this way, complex problems can be addressed by making more realistic considerations about the uncertainties present in the structure, based on statistical data, obtaining a more accurate and realistic design, maintenance and inspection design. Models such as those proposed allow the realization of a real risk analysis in relation to the use of the structure or the part in analysis.

With respect to the progress and advances in the formulations of the boundary element met ${ }^{\circ}$ EM), the objective of this work is to develop models that deal with the process of crack growth in flat areas comps of fras quasi-fragile and ductile materials. Considering these different types of materials, the numerical formulation a ted in t analysis should represent the nonlinear structural behavior due to the process of crack propagation consequ struc al degradation. One of the contributions presented in this paper refers to the employment of the tan in so tho anear problems. This operator allows the nonlinear problem to be solved by using a smaller nu or a ons, yen compared to models that employ constant operator, thus making the formulation more precise iso effic fre computational point of view. It should be emphasized that the consistent tangent operator depends, the nlinear dopted in the problem. Thus for each nonlinear problem, to be solved, one must deduce the terms operat

This work deals with two topics that have been widely discus formulations for use in engineering problems as well as reliability dependent problems. The resulting model of this triple conling can in this work this model is used to approach problems of de. of cracks under fatigue effects, considering a probabilistic
by the scientific cummunity: development of the BEM d optim ion models applied in the analysis of time nplie several particular problems. In particular, nection mainanance of structures subject to the growth uctures.

2 Mechanical fatigue model

The determination of the stress in sty facto sing the displacement correlation technique is performed by correlating the displacements determined num

For 2D structures, the stre atensity fac for modes I (opening) and II (sliding) are given according to the following expressions [12]:

$$
\begin{align*}
& K_{I}=\sqrt{\frac{2 . \pi}{r}} \cdot \frac{\mu}{(\kappa+1)} \cdot C O D \tag{1}\\
& K_{I I}=\sqrt{\frac{2 . \pi}{r}} \cdot \frac{\mu}{(\kappa+1)} \cdot C S D \tag{2}
\end{align*}
$$

, where: COD "Crack Open Displacement" difference between the displacements perpendicular to the plane of the crack and CSD "Crack Sliding Displacement" difference between the displacements parallel to the plane of the crack. K_{I} and $K_{I I}$ are the stress intensity factors for modes I and $I I$, respectively, r is the distance between the crack tip and the computational point (i.e., mesh node) and μ and κ are the material properties. In order to calculate stress intensity factors at the crack tip, these variables are evaluated for four pairs of mesh nodes near the crack tip. Then, the stress intensity factors at the crack tip are obtained from a local extrapolation process. This process leads to accurate results as presented in [13, 14].

For the determination of the propagation angle the circumferential tension, $\sigma_{\theta \theta}$, must be maximum and consequently a principal stress. According to the concepts of the solid mechanics for this situation to occur, the shear stress must be zero. Thus, to determine the direction of the crack propagation, θ_{p}, one must take $\tau_{r}=0$. Through this condition it is possible to obtain:

$$
\begin{equation*}
K_{I} \cdot \sin \left(\theta_{p}\right)+K_{I I} \cdot\left(3 \cdot \cos \left(\theta_{p}\right)-1\right)=0 \tag{3}
\end{equation*}
$$

Using trigonometric relationships, it is possible to rewrite the above relationship as:

$$
\begin{equation*}
\operatorname{tg}\left(\frac{\theta_{p}}{2}\right)=\frac{1}{4}\left[\frac{K_{I}}{K_{I I}} \pm \sqrt{\left(\frac{K_{I}}{K_{I I}}\right)^{2}+8}\right] \tag{4}
\end{equation*}
$$

For this purpose, the maximum circumferential stress criterion is used [12]. According to this criterion, the cracks are assumed to grow indirection θ_{p}, which is perpendicular to the maximum circumferential stress at the crack tip

$$
\begin{equation*}
K=K_{I} \cos ^{3}\left(\frac{\theta_{p}}{2}\right)-3 \cdot K_{I I} \cdot \cos ^{2}\left(\frac{\theta_{p}}{2}\right) \cdot \sin \left(\frac{\theta_{p}}{2}\right) \tag{5}
\end{equation*}
$$

where K : is the effective stress intensity factor.
A widely used criterion is that presented in [15, 16]. This criterion consistently descr only tho pagation of fissures in region II and is usually referred to in the literature as the "Paris Law". The relation ip b een the ck growth rate and the variation of the stress intensity factors is given by:

$$
\begin{equation*}
\frac{d a}{d N}=C . \Delta K^{n} \tag{6}
\end{equation*}
$$

where: C and n are the material constants, a represents the crack length, \rightarrow the numb loading cycles, and $\Delta \mathrm{K}$ is the stress intensity factor range.

3 Formulations of the BEM for Cohesive Fractu

In this section, the nonlinear formulations propos is work presented for the analysis of problems involving nonlinear (cohesive) fracture and also contact between

First, the model developed for the anal anline acture problems will be discussed. However, it is proposed in this work a formulation that solves the n results; however this formulation r increment of load, making it more
near blem g a consistent tangent operator. This model also leads to good maller number of iterations to obtain the equilibrium in each

A model was also devel for for the alysis one cracks propagation in materials that are governed by the concepts of linear elastic fracture me acs. In this in the stress intensity factors are calculated using the displacement correlation technique. In addition, se the of modos interaction were also implemented to obtain the crack propagation angle and also the equivalent stress y fact From the formulation point of the BEM, this problem is also treated by considering a consistent tan ator, icb also be shown in this paper.
 the contact in twa serent prems. The first one refers to the contact between faces of cracks, that is, in the simulation of the closing of a crach or the second, this model is applied to the analysis of composite materials which allows the simulation of contact and slip betwen the various materials that make up the structure. In both applications the Coulomb law is adopted to govern the adhesion behavior of the contact region, that is, the displacements and surface forces in this region.

Several BEM formulations have been proposed in the literature to properly handle crack problems [17-27]. For crack simulation, a finite gap between two crack surfaces has to be considered as well as an accurate integral scheme to evaluate the integrals along the quasi-singular elements.

Initially one can write the general equation of the BEM, in the following way:

$$
\begin{equation*}
H U=G P \tag{7}
\end{equation*}
$$

The matrices and vectors described in Eq. (7) can be divided according to their location in the model. The source points may be on the contour, c , or on the faces of fissures, f. Like this:

$$
\begin{align*}
& H_{C}^{C} U_{C}+H_{f}^{C} U_{f}=G_{C}^{C} P_{C}+G_{f}^{C} P_{f} \tag{8}\\
& H_{C}^{f} U_{C}+H_{f}^{f} U_{f}=G_{C}^{f} P_{C}+G_{f}^{f} P_{f}
\end{align*}
$$

, where U_{c} and U_{f} are the displacements assigned to the boundary and crack surface nodes, respectively, P_{c} and P_{f} are the boundary and the crack surface tractions, respectively, and $H_{c c}, H_{f c}, G_{c c}$ and $G_{f c}$ are the corresponding matrices that account for the displacement and the traction effects. The subscript c indicates that the collocation point is on the boundary and the super scripts specify the boundary (c) or crack surface (f) values.

The crack presents two faces, one of them located to the right and the other to the left of its average geometric line. In Eq. (8) the fountain points located on the fissure can be separated into fountain points belonging to the left face and the right face. Like this:

$$
\begin{align*}
& H_{C}^{C} U_{C}+H_{f}^{C R} U_{f}^{R}+H_{f}^{C L} U_{f}^{L}=G_{C}^{C} P_{C}+G_{f}^{C R} P_{f}^{R}+G_{f}^{C L} P_{f}^{L} \\
& H_{C}^{f} U_{C}+H_{f}^{f R} U_{f}^{R}+H_{f}^{f L} U_{f}^{L}=G_{C}^{f} P_{C}+G_{f}^{f R} P_{f}^{R}+G_{f}^{f L} P_{f}^{L} \tag{9}
\end{align*}
$$

, where indices R and L , distinguish the source points located on the right and left faces of thesissure respectively. The system of equations presented in Eq. (9) can be solved for the known in the contour.

4 Structural Reliability model

The design, sizing and prediction of good structural functioning, lead to ch to requirements resulting from physical and mechanical knowledge and builders. These requirements translate, in more or less complex forms, values for structural variables such as stresses arising from requests, displaco nts, deformations, among others. In a structural reliability analysis, each criterion can be understood as a \quad al event a ${ }^{\text {ts }}$ s consequences as failure scenarios. The verification of each criterion, therefore, results in verification each potential failure mode. To do so, one must describe and formulate the problem considering its variables with due uncd inties. T objective is then to evaluate a probability, that of finding a fault situation, considering the statistic ${ }^{\text {nnowleds }} \mathrm{fe}_{\mathrm{e}}$ pariable and its influence on the structural behaviour [28].

In structural engineering, reliability problem be for a by ieans of their capacity or resistance, R, and demand or effect of the actions, S. The analysis is usu oase on the culation of the complement of reliability, ie, the propensity
 time stationary, the probability of faily $\quad f$, cal saluan the solution of the following equation [29]:

$$
\begin{equation*}
\operatorname{Prob}[(\lambda>S) \leq 0]=\int_{0}^{\infty} F_{R}(x) \cdot f_{S}(x) d x \tag{10}
\end{equation*}
$$

In Eq. (10) $F_{R}(x)$ is the probability function of the resistance and $f_{S}(x)$ is the probability density function of the request. Eq. (10) is know, onvoly n integral with respect to " x ", corresponding to the sum of all the request cases for which the resis nallo an request.

This equation al witten terms of the cumulative probability function of the request, $F_{S}(x)$, and the probability density function of the sistancork (x). Like this:

$$
\begin{equation*}
P_{f}=\operatorname{Prob}[(R-S) \leq 0]=\int_{0}^{\infty}\left[1-F_{s}(x)\right] \cdot f_{R}(x) d x \tag{11}
\end{equation*}
$$

The first order reliability or FORM method provides an estimate of the probability of failure of the structure by linearization of the limit state function at the design point in the standard normal space. Linearization is done through a hyper plane tangent to the fault surface at the design point. The FORM approximation is sufficiently accurate for cases where the curvature of the fault surface is small and the probability of failure has a small value. In addition, the error in this type of approach depends on the concavity of the fault surface, ie for concave surfaces, the approach is in favour of safety, whereas for convex surfaces, the FORM is against safety.

The second order reliability method SORM is an attempt to improve the approximation of the failure probability based on more information about the failure surface of the structure. The principle is exactly the same as the FORM approach, but requires a better understanding of the geometry of the boundary state function in the neighbourhood of the design point. In this type of approach, the boundary state function is treated as a hyper-surface of the second degree instead of the hyper plane tangent. Additional information about the limit state function is its main curvatures, in addition to the reliability index. The
method requires that at the point of design, the quadratic approach surface is continuous and that it is twice differentiable, besides having the same tangent plane and the same main curvature as the real limit state function. There are several quadratic approximations available in the technical literature for the shape of the hyper surface used in SORM. The choice depends on the required accuracy as well as the available processing time. Among the various options for SORM are: Approximation by a centred hyper-sphere, eccentric hyper-sphere and asymptotic approximations [30, 31].

Finally, as seen in this topic we tried to present some important concepts of reliability theory. Other definitions on probability, structural life and reliability can be found in the literature, but the definitions presented are perfectly compatible with the use of reliability theory in this work.

5 5. Optimization model

Three models developed in this work will be presented in this section for the analysis ontenance and design of structures submitted to fatigue. The first model deals with the determination of the optip insped moment for a given reliability index. In this case the model determines the number of cycles in which mairtena is to be formed to maintain the desired level of safety. In this model are considered perfect and imperfect m cnance. he fy case, the structural part is replaced, once the number of critical loading cycles is reached, by anothe aral ar goo dith imperfect maintenance, it is accepted that the faces of the cracks are closed with some ee ang matrial before the replacement of the structural element. It should be emphasized that in this model the insp in nent is determined without, however worrying about the cost of the inspection. The cost variable con ared in mer models of optimization and reliability built in this work.

The second model refers to a Reliability Based Design Op ization (RBDO) nodel where the geometry dimensions of the structural element are obtained from the reliability and optir ation ana res. The objective of this model is to obtain the geometric dimensions of the structural element in ord ${ }^{+}$minim, he of the structure, considering a given level of structural safety desired, in order to obtain the minimu fthe strmere production. Thus, the equation to be minimized must relate the dimensions of the structure to its volum wh onstraint equation of the optimization problem relates the structural dimensions to the reliability in ing cd acted by means of response surfaces of the structure geometry variables.

The third developed model aim ob dimensions of the structure as well as the maintenance and inspection intervals that lead t maintenance and failure. Thys, we fun in to be dimized is a cost function that covers design, inspection, maintenance, and failure costs. The res function the analysis is constructed based on the evolution of the reliability index over time, being defined by ans of ponse sun」ces of the variables.

5.1 Sequential ric ram os (SQP)

Accordins 37 ap is one of the most efficient methods for solving nonlinear programming problems. The main idea of this class ethods ivio transform a constrained optimization problem into an unrestricted optimization problem by generating quadratic problems, which are more easily solved at each step.

This set of methods was popularized mainly from the mid-70s with the emergence of the Quasi-Newton versions and their generalizations. The works of [34-36] stand out at the beginning of the development of the method. SQP research deals with the efficient use of second derivatives of objective function, particularly in difficult-to-solve problems. Thus the SQP methods are generalizations of the Newton method for the general optimization problem where a problem with objective function and non-linear constraints is currently addressed. The main idea of the method is to linearize the optimality conditions of the problem, expressing the equations resulting from this process in a solvable system. Linearization allows the adoption of algorithms with fast local convergence making the method efficient. In this way the SQP works by replacing, at each iteration, the objective function by a quadratic approximation of the Lagrangian function of the original problem at a point x_{k} and the constraints by linear approximations also at the point x_{k}. This process even justifies the name of the method. This approximation can be done by expanding the Taylor series Lagrangian function and taking the first three terms for the objective function, the first two terms, for the constraints. In this way the sub problem to be solved at each iteration k is a quadratic problem with linear constraints, which, compared to the original problem, can be considered to be easier to solve.

These methods can be considered primitive-dual methods, in the sense that they work simultaneously in the space of the primary variables and in the space of the multipliers of Karush-Kuhn-Tucker (KKT), dual variables.

In general, nonlinear programming algorithms solve problems of obtaining extremes by calculating, at each iteration, two main parameters: direction of descent (or rise if the problem is maximization) and distance to travel in the calculated direction (unidirectional end). Through the SQP, the descent (or climb) directions are obtained for each variable considered in the problem. The problem of obtaining the unidirectional end is solved using another type of optimization algorithm, in this case applied to unidirectional problems. There are several algorithms to treat this last problem, being possible to emphasize the methods of polynomial approximations and also dichotomy. However in this work we chose to use the Golden Section method to solve the one-way problem.

For a more in-depth discussion of this method and also of other non-linear programming methods it is suggested to refer to the following references [32, 37-39].

5.2 Equations of the SQP Method

In this item will be presented the equations used by the SQP and also the p observed that problems that only contain equality restrictions are not very comm n en cering ace, but the initial discussion to be presented here will be restricted to this case. Thus the followin oblo a be ad essed which one wishes to solve:
experience plan (EP)

Minimize

> Subject to
> $x \in R^{n}$
, where: $f: R^{n} \rightarrow R^{n} \quad$ and $\quad h: R^{n} \rightarrow R^{n}$ are func are are differentiable functions and h a vector of m functions h_{i}. The Lagrangian function for this problem is

The main idea of the SQP for the ${ }^{\square}$ fromen x_{k}, iake an approximation that generates a quadratic sub problem and, after solving this sub problem the new x_{k+l}. One way to find the optimal solution to this sub problem is to find the KKT point. This searcb done by ving the system with $n+m$ variables x and λ and $n+m$ equations.

$$
F(x, \lambda)=\left[\begin{array}{c}
\nabla f(x)+\sum_{i=1}^{m} \lambda_{i} \nabla h_{i}(x) \tag{14}\\
h_{i}(x)
\end{array}\right]=0
$$

We will use do Jacooian matrix of constraints h at point x_{k}, that is:

$$
\begin{equation*}
A^{k^{t}}=\left[\nabla h_{1}\left(x^{k}\right), \nabla h_{2}\left(x^{k}\right), \ldots \ldots . . \nabla h_{m}\left(x^{k}\right)\right] \tag{15}
\end{equation*}
$$

and the hessian matrix in x of the Lagrangian function associated with the problem $E P$ at the point $\left(x_{k}, \lambda_{k}\right)$ will be denoted by:

$$
\begin{equation*}
W^{k}=\nabla_{x x}^{2} L\left(x^{k}, \lambda^{k}\right)=\nabla^{2} f\left(x^{k}\right)+\sum_{i=1}^{m} \lambda_{i}^{k} \nabla^{2} h_{i}\left(x^{k}\right) \tag{16}
\end{equation*}
$$

Since A, at the optimal point, has a complete rank, the optimal solution $\left(x_{k}^{*}, \lambda_{k}^{*}\right)$, of the EP problem satisfies Eq. (14). The Newton pitch of the iteration k is given by:

$$
\left[\begin{array}{l}
x^{k+1} \tag{17}\\
\lambda^{k+1}
\end{array}\right]=\left[\begin{array}{l}
p^{k} \\
v^{k}
\end{array}\right]+\left[\begin{array}{l}
x^{k} \\
\lambda^{k}
\end{array}\right]
$$

Where p_{k} and v_{k} is the solution of the following KKT system:

$$
\left[\begin{array}{cc}
W^{k} & A^{k^{t}} \tag{18}\\
A^{k} & 0
\end{array}\right]\left[\begin{array}{c}
p^{k} \\
v^{k}
\end{array}\right]=\left[\begin{array}{c}
-\nabla_{x} L\left(x^{k}, \lambda^{k}\right) \\
-h\left(x^{k}\right)
\end{array}\right]
$$

It should be noted that the Jacobian matrix of Eq. (14) at the point $\left(x_{k}, \lambda_{k}\right)$ is

$$
J^{k}=J\left(x^{k}, \lambda^{k}\right)=\left[\begin{array}{cc}
W^{k} & A^{k^{\star}} \tag{19}\\
A^{k} & 0
\end{array}\right]
$$

Newton's pitch is well defined when the matrix J^{k} is non-singular. As this condition is met, Newton's algorithm for nonlinear systems converges quadratically to the solution. However, Newton's method has some drawbacks:

1) The system shown in Eq. (18) can determine not only the possible local min ers, bo the maximizers as well as saddle points.
2) The sequence $\left(x_{k}, \lambda_{k}\right)$ may not converge if the choice of the starting at is not su ier close to the optimal solution.

The choice of a starting point close to the optimal solution of the pr the general and real algorithm based on Newton's method. In order quadratic convergence of the Newton pitch, when the starting point is close
m is thu in dr oack for the construction of these acks and still make use of the e optimal solution, the Newton method associated with other methods is used.

5.3 Structure of the Method

There is another way of looking at Eq. (18) systen that inene iteration k the quadratic sub problem defined is:

Where W^{k} is given by Eq of the quadratic approxima

$$
\begin{align*}
& \frac{-}{2} p^{t} W^{k} p+\nabla^{t} f^{k} p \\
& A^{k} p+h\left(x^{k}\right)=0 \tag{20}
\end{align*}
$$

of the quadratic approxima
uld be no that the objective function of the QS problem differs only by a constant of the La gian function associated to the QS problem, defined as follows:

$$
\begin{equation*}
L(p, \lambda)=\frac{1}{2} p^{t} W^{k} p+\nabla^{t} f^{k} p+\lambda^{t}\left(A^{k} p+h\left(x^{k}\right)\right) \tag{21}
\end{equation*}
$$

In fact,

$$
\begin{equation*}
M_{L}(p)=L\left(x^{k}, \lambda^{k}\right)+\nabla^{t} L\left(x^{k}, \lambda^{k}\right) p+\frac{1}{2} p^{t} W^{k} p \tag{22}
\end{equation*}
$$

But we have that:

$$
\begin{gather*}
L\left(x^{k}, \lambda^{k}\right)=f\left(x^{k}\right)+\lambda^{k^{t}} h\left(x^{k}\right) \tag{23}\\
\nabla^{t} L\left(x^{k}, \lambda^{k}\right) p=\nabla^{t} f\left(x^{k}\right)+\lambda^{k^{t}} A^{k} p \tag{24}
\end{gather*}
$$

Thus Eq (22) can be rewritten as:

$$
\begin{equation*}
M_{L}(p)=\frac{1}{2} p^{t} W^{k} p+\nabla^{t} f\left(x^{k}\right) p+v \tag{25}
\end{equation*}
$$

Since the constant v can be defined as:

$$
\begin{equation*}
v=L\left(x^{k}, \lambda^{k}\right)+\lambda^{k^{t}} A^{k} p=f\left(x^{k}\right)+\lambda^{k^{t}}\left(A^{k} p+h\left(x^{k}\right)\right) \tag{26}
\end{equation*}
$$

Considering the restriction of the sub problem QS, we have $v=f\left(x^{k}\right)$. Thus, each iteration of the SQP consists of minimizing the quadratic model of the Lagrangian function, subject to the linearization of the constraints.

If the conditions used to show the uniqueness of J^{k} occur, the sub problem QS has a unique solution $\left(p_{k}, \mu_{k}\right)$ satisfying:

$$
\left[\begin{array}{c}
W^{k} p+\nabla f^{k}+A^{k^{t}} \mu^{k} \tag{27}\\
A^{k} p+h^{k}
\end{array}\right]=0
$$

It should be noted that p_{k} and v_{k} can be identified as the solution of the Newton Eq. (18). Subtracting $A^{k^{t}} \lambda^{k}$ on both sides of Eq. (18) yields:

$$
\left[\begin{array}{cc}
W^{k} & A^{k^{t}} \\
A^{k} & 0
\end{array}\right]\left[\begin{array}{c}
p \\
\lambda^{k+1}
\end{array}\right]=\left[\begin{array}{c}
-\nabla f\left(x^{k}\right) \\
-h\left(x^{k}\right)
\end{array}\right]
$$

By the non-singularity of the coefficients of the matrix we have that $p=p^{k}$ and $\mathrm{k} \lambda^{k}$
In conclusion, the KKT system shown in Eq. (18) for the EP problem is equiy to the onditions for the QS problem.

The interpretation in terms of Newton's method facilitates the conver se analys, whil structure of Quadratic Sequential Programming allows developing practical algorithms to solve obl

The structure of the SQP for nonlinear problems with equality ant is easi, xtended to problems with inequality constraints of the type:

At each step the quadratic problem must be solved:

(QS
The problem can be solved simi
o the ma
r described for the equality problem. The existing modification relates \circ of the iplier λ^{k+I} are defined by the solution and the Lagrange multipliers to the fact that in step p^{k} and the ne, esti corresponding to the problem

5.4 SQP Method Algorithn

Consider that a wa sol ollowing optimization problem:
Minimize
Subject to

$$
\begin{gather*}
f(x) \\
g_{j}(x) \leq 0 \quad, j=1, \ldots n_{g} \tag{31}
\end{gather*}
$$

Assuming that in the $i^{\text {th }}$ teration the iterative process lies on a given point x_{i}, the direction of descent (rise) of the objective function must first be determined for the determination of the desired end. This direction, s, is obtained from the resolution of the following quadratic programming problem:

$$
\begin{array}{ll}
\text { Minimize } & \varphi(s)=f\left(x_{i}\right)+s^{T} \cdot g\left(x_{i}\right)+\frac{1}{2} \cdot s^{T} \cdot A\left(x_{i}, \lambda_{i}\right) \cdot s \\
\text { Subject to } & g_{j}\left(x_{i}\right)+s^{T} \cdot \nabla g\left(x_{i}\right) \leq 0
\end{array}, j=1, \ldots n_{g}
$$

Where g is the gradient of the objective function f, A is a definite positive approximation for the Hessian of the Lagrangian function. After solving this quadratic programming problem, the values for the Lagrange multipliers will be obtained, as well as the slope directions, variables $\left(s_{i}, \lambda_{i}\right)$. Thus the next point of the iterative process is obtained by means of the following expression:

$$
\begin{equation*}
x_{i+1}=x_{i}+\alpha \cdot s \tag{33}
\end{equation*}
$$

Being that it is found by minimizing the following one-dimensional function:

$$
\begin{equation*}
\Psi(\alpha)=f(x)+\sum_{j=1}^{n_{g}} \mu_{j}\left|\min \left[0, g_{i}(x)\right]\right| \tag{34}
\end{equation*}
$$

In this equation μ_{j} is equal to the absolute value of the Lagrange multipliers for the first iteration, as shown in Eq. (35):

$$
\begin{equation*}
\mu_{j}=\max \left[\left|\lambda_{j}^{(i)}, \frac{1}{2}\left(\mu_{j}^{(i-1)}+\left|\lambda_{j}^{(i-1)}\right|\right)\right|\right] \tag{35}
\end{equation*}
$$

, where the index i denotes the number of the iteration. In this work, the unidirectional problem is solved using the Golden Section method. The matrix A is a definite positive matrix that approximates the Hessian of the objective function. In the first iteration this matrix is defined as an identity matrix being updated as the iterative process progresses. This update is done using the equation proposed by BROYDON- FLETCHER-SHANNO-GOLDFARB, equat S. and recommended in [39]. Like this:

$$
\begin{equation*}
A_{n e w}=A-\frac{A \cdot \Delta x \cdot \Delta x^{T} \cdot A}{\Delta x^{T} \cdot A \cdot \Delta x}+\frac{\Delta l \cdot \Delta l^{T}}{\Delta x^{T} \cdot \Delta} \tag{36}
\end{equation*}
$$

Given that in this equation Δx and Δl are defined as:
, where L is the Lagrangean function and ∇_{x} represents the agrangi function
where:

$$
\begin{equation*}
\theta=\frac{0,8 \cdot \Delta x^{T} \cdot A \cdot \Delta x}{\Delta x^{T} \cdot A \cdot \Delta x-\Delta x^{T} \cdot \Delta l} \tag{41}
\end{equation*}
$$

Given the equoins a \quad SQP rorithm, it will be shown the applications resulting from the coupling between this optimization m oacher the mechanistic model.

6 Optimiza nou determining the inspection instance and maintenance

In this item we dits a model developed in this work for the determination of the ideal moment for performing the structural inspection and maintenance for a given desired level of security. This model, resulting from the triple coupling between mechanical fatigue, reliability and optimization, considers two types of maintenance: perfect maintenance and imperfect one. In the first type of maintenance, it is considered that the structure is replaced by a similar one in perfect condition after reaching the number of critical loading cycles, which is determined according to the desired structural safety. In this model we aim to determine the number of load cycles limit for which the structure should be replaced.

In the imperfect maintenance model, the number of inspections and maintenance planned before the replacement of the structural element by another should be initially defined. Maintenance is said to be imperfect because the structure is not replaced when it reaches the limit state, but is repaired. In the studied case, growth of cracks under fatigue, maintenance is carried out by inserting a type of bonding material between the faces of the cracks. The limit state considered for determining the time of inspection for imperfect maintenance is the length of the cracks. Thus, the number of cycles of critical loading is determined considering a certain level of safety and the maximum length of cracks.

The level of security to be considered in each case depends on the importance of the structural element considered in the structural system to which it belongs. Onoufriou [40] presents a table, which is reproduced below, containing the values for the target reliability index according to the importance of the structural element studied. These values will be adopted in the analyzes developed in this work.

Table1 Target Reliability Indices according to [40]

Consequence of Failure	Target Reliability Index	Probability of Failure
Very serious	4.2	$1,4.10^{-5}$
serious	3.7	1,1. 10^{-4}
Not serious	3.1	9,7. 10^{-4}
Local Effects	2.3	
Does not affect	1.0	

In this model, the objective is to determine the ideal time for th nspection maintenance, for a given level of desired safety, in order to replace the structural element consided by ano in go condition. In this model, the optimization problem to be solved is that presented in Eq. (42):

Determine the number of loading cycles in ordar to:

Minimize

$f(y, z)=\left|\lambda \lambda_{\text {uctural }}(x, y, z)-\beta_{T \text { arget }}\right|$

Abstract

rom val es of the reliability problem, y the variables to be optimized and z the parameters of the mechanical fais ae rel. $\beta_{\text {Tars }}$ indicates the target reliability index chosen for the moment of maintenance, and $\beta_{\text {Structural }} \quad$ reliability $\quad \mathrm{x}$ calculated with the parameters of the reliability model and the number of

 load cycles determined by optir ation modo.In this model the tres ar stress intensity factor greater than the threshold stress intensity factor, a crack propagation rate cer the pagation rate, and finally a connection of the crack with some side of the structure.

6.2 Perfect Maintem CNromalied to a Beam under Three-Point Bending

In this item, the perfe naintenance model will be applied to the study of the structure shown in Fig (1). It is a beam of S_{v} of length and W_{v} of height with a central notch of depth equal to a_{0}, which was requested to flexion in three points under concentrated load F. In this analysis, the propagation of the crack under fatigue will be carried out considering the oscillatory loading regime composed of a complete loading and unloading cycle.

Figure 1 Structure considered.

The following properties were adopted for the constituent material of the structure: longitudinal modulus of elasticity $E=2.1 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$, Poisson coefficient $v=0.20$, tensile strength factor $K_{c}=1.04 \times 10^{5} \mathrm{kN} / \mathrm{m}^{3 / 2}$, tensile strength factor of the Paris law $\Delta K_{t h}=1.0 \mathrm{kN} / \mathrm{m}^{3 / 2}$ and exponent n parameter of the Paris law $n=2.70$. The Paris law was integrated considering the increase in crack length equal to $\Delta \mathrm{a}=0.05 \mathrm{~m}$.

The reliability model was constructed considering 3 random variables: the active load, F, the parameter C of the Paris law and the initial length of the crack, a_{0}. The following statistical properties were adopted for these random variables: $F \sim$ $N(5.0 ; 0.80) \mathrm{kN}$, parameter C of the Paris law $C \sim L N\left(3,0.10^{-10} ; 1,8.10^{-10}\right) \mathrm{m} /$ cycles $\left(\mathrm{kN} / \mathrm{m}^{3 / 2}\right)^{n}$ and initial crack length $a_{0} \sim N($ $0,01 ; 0,003) \mathrm{m}$. The other variables of the analysis are considered as deterministic. The span of the beam was considered equal to $s_{v}=5.0 \mathrm{~m}$ and the height of the beam was allowed equal to $W_{v}=1.25 \mathrm{~m}$. The tolerance adopted for the convergence of the analysis was considered equal to 1×10^{-4}. To complete the analysis data, the target reliability index for the optimization model was considered equal to $\beta_{\text {Target }}=3,10$. This value is recommended in [40], being showm- in Table 1, for ruptures that do not seriously affect the behavior of the structural system to which it belongs.

In Fig. (2) Coi considering optimization mo or show a good perfor
rgena in for the Golden Section optimization model is presented. The analysis was developed entions the considered beam. As shown in this figure, the convergence of the reliability eat. hese curves was obtained using 26 calls from the reliability model. In addition, these curves e of the optimization algorithm which converges smoothly to the solution.

In Fig. (3), the maintenance curves obtained by the used model are shown. It is verified that the maintenances should be carried out when the number of load cycles acting on the structure is equal to $3,942 \times 10^{5}$ or multiples of that value. At that moment the structure will meet the reliability index equal to the desired one in the analysis.

6.3 Imperfect Maintenance Model Applied to a Beam under Three-Point Bending

It will be discussed in this item the application of the imperfect maintenance model to the study of the structure shown in Fig. 1. In this analysis the propagation of the fatigue crack will be carried out under oscillatory loading composed of a complete loading and unloading cycle.

The reliability model was constructed considering 2 random variables: the active load, F and the parameter C of the Paris

law. The following statistical properties were adopted for the andom ables: $F \sim N(5.0 ; 0.80) k N$, parameter C of the Paris law $C \sim \operatorname{LN}\left(3,0.10^{-10} ; 1,8.10^{-10}\right) \mathrm{m} /$ cycles $\left(\mathrm{kN} / \mathrm{m}^{3 / 2}\right)^{n}$. other riables of the analysis are considered as deterministic. The span of the beam was considered equar 50 m , th of the beam was allowed equal to $W_{v}=1.25 \mathrm{~m}$ and the initial crack length from $a_{0}=0.01 \mathrm{~m}$. The tolerance lopty the convergence of the analysis was considered equal to 1×10^{-4}. To complete the analysis data, the ta eliabi ex the optimization model was considered equal to $\beta_{\text {Target }}=2.30$, according to the criteria of $\mathrm{T}, 1 . \mathrm{Th}$ tructu was analysed considering that the maintenance process will consist of an imperfect maintenance and

The number of loading cycles, calculated considering as a limit sta the number of load cycles in desired target. The imperfe crack has a rigidity equal to

In Fig. (4) the or the Golden Section optimization model is presented. In a comparative way, the analysis of this cture as carrio out considering also the perfect maintenance model. As this figure shows for the construction of each ce, trm or the convergence of the model, 21 calls of the reliability model are necessary.

In Fig. (5) the main nce curves for the analysis of the considered structure are presented. The green curve shows the evolution of the reliability mdex in relation to the number of loading cycles applied until the first inspection, when the crack reaches a length of 10 cm . It is noted that for imperfect maintenance the first inspection should be done when the number of loading cycles is equal to 6.873×10^{5}. At that time the adhesive material is applied to the faces of the crack and the structure is exposed again to the loading of fatigue. From this point on we must verify the curve in red which represents the evolution of the reliability index in relation to the number of cycles of load acting after performing the maintenance in the structural element. It is observed that after the maintenance the structure recovers part of its capacity resistant to fatigue and consequently part of its structural safety. According to the optimization analysis performed, the structural element studied should be replaced when the number of cycles of loading acting equals 1.01×10^{6}. Only by comparison the structure was also analysed considering perfect maintenance. The evolution of the reliability index in relation to the number of load cycles acting on the perfect maintenance model is shown by the blue curve. It is observed that by means of this model the structure must be replaced when exposed to $7,845 \times 10^{5}$ charge cycles. Thus, by performing only imperfect maintenance on the structural element, it is possible to increase the useful life of the structure by approximately 23%, which is a significant gain. This is further increased by conducting more inspections over time.

Figure 5 Evolution of b with the number of load cycles applied. Maintenance Curves.

6.4 The reliability analysis

The reliability analysis of the structure shown in Figure (5) will be performed by considering two different scenarios that differ in the number of random variables considered in the analysis. In the first scenario, 3 random variables will be considered, while in the second scenario, 5 random variables will be considered.

6.4.1 1st Scenario

In the reliability analysis performed were considered as random variables the force applied at the right end of the structure, F_{x}, the coefficient C of the Paris law and the distance between the holes, D_{f}. The following statistical properties were adopted for these random variables: acting load $F_{x} \sim \mathrm{LN}(6.0 ; 1.0) \mathrm{kN} / \mathrm{m}$, distance between holes $D_{f} \sim \mathrm{~N}(0,025 ; 0,001)$
m and parameter C of the Paris law, $\mathrm{C} \sim \mathrm{LN}\left(1,63.10^{-13} ; 4,0.10^{-14}\right) \mathrm{m} /$ cycles $\left(\mathrm{kN} / \mathrm{m}^{3 / 2}\right)^{\mathrm{n}}$. The other variables involved in the problem were considered as deterministic. The initial crack length was allowed to equal $\mathrm{a}=0.50 \mathrm{~mm}$, the diameter of the holes of the plate $D=5.0 \mathrm{~mm}$ and the number of cycles of applied load equal to $\mathrm{N}^{\text {acting }}{ }_{\text {cycles }}=4.010^{13} \mathrm{Cycles}$. The tolerance adopted for the convergence of the analysis was considered equal tol.10-4.

The results were obtained in terms of the coordinates of the design point and the reliability index. In Fig. (6), Fig. (7), Fig. (8) and Fig. (9) we present the results for the convergence of the random variables of the analysis and also for the reliability index, β.

These diagrams show good dire upling p rmance. In this analysis, 19 iterations were performed, resulting in 76 calls from the mechanical model to ont nce. Dun the analysis, some points were observed where the algorithm faced
 that, in addition to being ef ant, thethod iso robust.

Figure 6- Convergence for loading

Figure 7-Convergence parameter C (Law Paris)

Figure 8-Convergence for Df

6.4.2 $\quad 2^{\text {nd }}$ Scenario

In the second scenario of the reliability analysis of this pro carried out assuming that the working load, $F x$, the parameter between the holes, D_{f}, and the initial length of the cr a_{0} are

em are conaidered 5 random variables. The analysis will be the Par law, the diameter of the holes, D, the distance ables. The following statistical properties were adopted for these random variables: acting load $F_{x} \sim \mathrm{~L} \quad 0 . \quad \quad{ }_{\mathrm{kN}} / \mathrm{m}$, distance between holes $D_{f} \sim \mathrm{~N}(0,025 ; 0,001) m$ and parameter C of the Paris law, $\mathrm{C} \sim \mathrm{LN}\left(1,63.10^{-13} \cdot 4,0.1^{4}\right)$ g $\left(\mathrm{kN} / \mathrm{m}^{3 / 2}\right)^{\mathrm{n}}$, holes diameter $D \sim N(0.005 ; 0.0001)$ and initial crack length $a_{0} \sim L N(0,0005 ; 0.000)$ numu of active charging cycles was considered as deterministic being equal to $\mathrm{N}^{\text {acting }}{ }_{\text {cycles }}=4.010^{13}$ Cycles. other riables yolved in the problem were considered as deterministic. The tolerance adopted for the convergen onsidered equal to 1.10^{-4}.

As in the first scenario the rere obta in terms of the coordinates of the design point and the reliability index. In Fig. (10), (11), Fig. (12) Fig. (13, presented the results for the convergence of the random variables of the analysis and also for the reliabilit

Figure 10- Convergence for loading

Figure 11- Convergence parameter C (Law Paris)

Figure 12- Convergence for D_{f}
These diagrams show good direct coupling performance. In this analy 2 iteratio verformed, resulting in 72 calls from the mechanical model to convergence. In this analysis there wo no erpts whe accurrence of instabilities and convergence difficulties, which led to the convergence of the pr with onl, iterations.

Based on the results of this section, it is verified that the mode
sing Direct coupling is a robust and efficient method of reliability.

7 Conclusion

In this paper, problems involving the cou were discussed. The parameters that result and also the intervals for carrying out the

1 this alysis mechano-reliability model and an optimization algorithm the dimensions of the geometry of the structural element ction procedures.

A BEM formulation for conta contact problems are of great in between the components of solution of the nonlinear s model leads to results com formulation was ap the simulation o mpley oblem
is at tho erface between bodies and also cracks was developed. Adhesion and eering, ace in many situations the loads are transmitted through the friction structural ents. This formulation also employs a consistent tangent operator for the mof ations, the ourface forces in the contact region being governed by Coulomb's law. This with hose obtained by the ANSYS program. Despite providing good results, the rob ${ }^{1}$ This formulation may be in the future coupled with other non-linear models for as structural analysis of the superstructure / foundation / soil.
Another interes, ontrium of this work refers to the models that treat stiffened domains. This formulation derives from the BEM/MEF ca ling where the BEM equations discrete the domain under analysis and those of the MEF the stiffeners. However, the indels discussed here consider two degrees of freedom per node in each rigger, thus enabling approach to problems where riggers form a lattice configuration within the body. The nonlinear effects of plastification of the riggers and adhesion of these to the domain were also treated, being presented in this work the equations for their consideration.

On the BEM/MEF coupling model, the crack propagation model was introduced on a linear elastic regime. This model leads to interesting results and allows us to analyse some structures where this effect is important. This latter model can be improved in the future by considering the nonlinear effects on crack propagation, where the consistent tangent operator model applied to quasi-fragile materials could be inserted.

Closing the topic related to the development of BEM formulations, a formulation was also developed for the analysis of fatigue cracking propagation problems. This model is applicable to materials of fragile and ductile behaviour and has great application in several structures, especially those inserted in the context of mechanical structures (aeronautics, naval, automobile, etc). This model uses the law of Paris and the results obtained through this formulation were interesting. It was possible to approach structures with multiple cracks, thus making it possible to study structures where damages grow in
different positions inside the body. In the future, this model could be extended to the consideration of fatigue and corrosion in structures formed by quasi-fragile materials such as concrete.

Probabilistic models were also considered in this study, being applied to the analysis of structures submitted to fatigue. It is known that the integrity of the structures in service essentially depends on its ability to maintain a resistance pattern over time. The formation and growth of cracks due to fatigue processes are among the main causes of ruptures of real structural systems, such as those present in aeronautical structures, naval structures, automobile and marine structures in general. Thus, precise analysis of the growth of pre-existing cracks during the use of a structure or equipment plays a fundamental role in the design of a project, which aims to guarantee its functionality during a useful life. The algorithms FORM, SORM, MSR and the direct coupling between FORM and mechanical model (direct coupling) were implemented. According to the results obtained, it can be seen that the direct coupling provided better responses when compared to the MSR. This is because, in this method, no approximation is made on the form of the limit state equation, the gradients of this equation being obtained directly through queries to the mechanical model. Although the MSR also provides accurat s, it has been found that this method is more computationally costly, and does not offer convergence for reliable alysis a certain experimental plans.

To this probabilistic model was coupled an optimization algorithm for the erminat of p meters such as the geometry dimensions of the structure and also intervals for the maintenance pand man ins, on procedures, taking into account objective functions written in terms of structural cost and safe Tho azation gorithms SQP and Golden Section were implemented. It should be emphasized that this model y oplied in an as of simple examples, only with the purpose of showing its great potentiality. Thus, work dealing in th roblem precise and general mechanical models will always provide contributions. Thus, these triple cour ${ }^{2}$ godels an good suggestion for future research.
Finally, it should be noted that this paper addressed issues that ay be considered irnovative in some fields as formulations of the BEM and also in structural reliability.

References

[1]- D.S. Dugdale, Yielding of steel s 5096(60)90013-2
[2]- G.I. Barenblatt, The mathematio the 129. doi:10.1016/S0065-2
[3]- A. Hillerborg, M. Mod Peters ${ }^{-2}$ fracture mechanic and 8846(76)90007
[4]- A. Carpinter echa of Materrars and Fracture. Pitagora Editrice, Bologna, 1992.
[5]- F. Barpi, S Valo ze-eff ts induced bifurcation phenomena during multiple cohesive crack propagation. Int. J. Sol $\mathrm{It}^{35} \mathrm{H}^{10}$, 1851-1861. doi:10.1016/S0020-7683(97)00158-3
[6]- J. F as, M Alices, Guinea, F.J. Gómez, D.A. Cendón, I. Arbilla, Generalizations and specializations of cohesi Eng. Fract. Mech. 70(14) (2003) 1759-1776. doi:10.1016/S0013-7944(03)00123-1
[7]- A. Carpin P. Cornetti, F. Barpi, S. Valente, Cohesive crack model description of ductile to brittle size-scale transition: dithaional analysis vs. renormalization group theory. Eng. Fract. Mech. 70(14) (2003) 1809-1839. doi:10.1016/S0013-7944(03)00126-7
[8]- V. Tvergaard, Cohesive zone representations of failure between elastic or rigid solids and ductile solids. Eng. Fract. Mech. 70(14) (2003) 1859-1868. doi:10.1016/S0013-7944(03)00128-0
[9]- M. Elices, G.V. Guinea, J. Planas, J. Gomez, The cohesive zone model: Advantages, Limitations and Challenges. Eng. Fract. Mech. 69(2) (2002) 137-163. doi:10.1016/S0013-7944(01)00083-2
[10]- Y.W. Mai, Cohesive zone and crack-resistance (R)-curve of cementitious materials and their fibre-reinforced composites. Eng. Fract. Mech. 69(2) (2002) 219-234. doi:10.1016/S0013-7944(01)00086-8
[11]- E.D. Leonel, O.B.R. Lovon,W.S. Venturini, Boundary element formulation applied to multi-fractured bodies. In: Proceedings of the Bound elem method XXVIII Computational Mechanics Publications, Sounthampton, 2006.
[12]- Y. Mi, Three-dimensional analysis of crack growth. Topics in engineering, vol. 28. Computational Mechanics Publications; 1996.
[13]- E.D. Leonel, W.S. Venturini. Dual boundary element formulation applied to analysis of multi-fractured domains. Eng. Anal. Bound. Elem. 34(12) (2010) 1092-99. doi:10.1016/j.enganabound.2010.06.014
[14]- E.D. Leonel, W.S.Venturini, Multiple random crack propagation using a boundary element formulation. Eng. Fract. Mech. 78(6) (2011) 1077-1090. doi:10.1016/j.engfracmech.2010.11.012
[15]- P.C Paris, M.P. Gomez, W.P. Anderson, A rational analytic theory of fatigue. Trend Eng. 13(1961) 9-14.
[16]- P.C. Paris, F. Erdogan, A critical analysis of crack propagation laws. J. Basic. Eng.-T ASME 85(1963) 528-534. doi:10.1115/1.3656900
[17]- A.P. Cisilino, M.H. Aliabadi, Three-dimensional boundary element analysis of fatigue crack growth in linear and non-linear fracture problems. Eng. Fract. Mech. 63(6) (1999) 713-733. doi:10.1016/S0013-7944(99)00047-8
[18]- D.N. Dell'Erba, M.H. Aliabadi, Three-dimensional thermo-mechanical fatigue crack growth using BEM. Int. J. Fatigue 22(4) (2000), 261-273. doi:10.1016/S0142-1123(00)00011-6
[19]- H.L. Oliveira, E.D. Leonel, Dual BEM Formulation Applied to Analysis of Multiple Crack Propagation. Key Eng. Mat. 560(2013) 99-106. doi:10.4028/www.scientific.net/KEM.560.99
[20]- E.D. Leonel, W.S. Venturini, A.A. Chateauneuf, BEM model applied to failure amolvsis of multi-fractured structures. Eng. Failure Anal. 18(6) (2011) 1538-49. doi:10.1016/j.engfailanal.2011
[21]- X. Yan, A finite main crack interaction with an arbitrarily oriented micro- defect. 971-980. doi:10.1016/j.engfailanal.2005.04.004
[22]- P.O. Bouchard, F. Bay, Y. Chastel, Numerical modelling of crack comparison of different criteria. Comput. Method. Appl. M. 192(35 R6) 7825(03)00391-8
[23]- X. Yan, Automated simulation of fatigue crack propagation for elastic fracture mechanics problems by boundary element method. Eng. Fract. ch. 74,14) (2007) 2225-2246. doi:10.1016/j.engfracmech.2006.10.020
[24]- E.D. Leonel, W.S. Venturini, Non-linear boundary ele nt formulation with tangent operator to analyse crack propagationin quasi-brittle materials. Eng. An. Bound Elem. 34(2) (2010) 122-129. doi:10.1016/j.enganabound.2009.08.005
[25]- H. Kebir, J. Roelandt, L. Chambon, Dual boun ment metrod modelling of air craft structural joints with multiple site damage. Eng. Fract. Mech. 73(4) (20 4^{7} doi:10.1016/j.engfracmech.2005.08.006
[26]- F.R.M. Romlay, H. Ouyang, A.K. A A.N. amed, Modeling of fatigue crack propagation using dual boundary element method and Ga an Mc e Carl nethod. Eng. Anal. Bound. Elem. 34(3) (2010) 297-305. doi:10.1016/j.enganabound. 20
[27]- C.G. Nogueira, E.D. Leone obabilis nodels applied to safety assessment of reinforced concrete structures subjected to chloride ingr . E Failure $A>31$ (2013) 76-89. doi:10.1016/j.engfailanal.2013.01.023
[28]- B. M. Ayyub, R.H. M I en, Probà ty, statistics, and reliability for engineers and scientists. CRC press, 2016.
[29]- R.E. Melchers, A seck, ${ }^{\text {atructural }}$ bility analysis and prediction. John Wiley \& Sons, 2018.
[30]- M. Modarres, M.P, pry, V. Krivtsov, Reliability engineering and risk analysis: a practical guide. CRC press, 2016.
[31]- O. Lars Relig lity a Lecture notes, Lund University, 2015.
[32]- J. Noce S. Ditht, Numerical Optimization. Springer Series in Operations Research. Springer Verlag, 1999
[33]- M. Lukic, remona, C. Probabilistic optimization of welded joints maintenance versus fatigue and fracture. Reliab. Eng. S Safe. 72(3) (2001) 253-264. doi:10.1016/S0951-8320(01)00019-9
[34]- M.J.D. Powell, Avast algorithm for nonlinearly constrained optimization calculations. In: G.A. Watson editor, Numerical Analysis Dundee, Number 630 in Lecture notes in Mathematics, p. 144-157. Springer-Verlag. 1977.
[35]- M.J.D. Powell, Algorithms for nonlinear constraints that use Lagrangian functions. Math. Program. 14 (1) (1978) 224-248. doi:10.1007/BF01588967
[36]- S.P. Han, A globally convergent methods for nonlinear programming. J. Optimiz. Theory. App. 22(3) (1977) 297309. doi:10.1007/BF00932858
[37]- J.F. Bonnans, J.C. Gilbert, C. Lemarechal, C.A. Sagastizabal, Numerical Optimization: Theoretical and Practical Aspects. Springer Verlag, Berlin, 2002.
[38]- R.T. Haftka, M.P. Kamat, Elements of Structural Optimization. Dordrecht: Martinus Nijhoff Publishers. 1985.
[39]- G.N. Vanderplaats, Numerical Optimization Techniques for Engineering Design, Colorado Srings : Vanderplaats Research \& Development. 2001.
[40]- T. Onoufriou, Reliability based inspection planning of offshore structures. Mar. Struct. 12(7-8) (1999) 521-539. doi:10.1016/S0951-8339(99)00030-1.

[^0]: * Corresponding author.

 E-mail address: sahli_ah@yahoo.com

