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A B S T R A C T 

The overall aim of this paper is the development of nonlinear formulations of BEM 
(Boundary Element method) for the analysis of fracture problems and also the realization 
of a probabilistic approach to the fatigue problem through the coupling between a 
mechanical model that deals with the propagation of cracks under fatigue, and structural 
reliability models. On the BEM/MEF coupling model, the crack propagation model was 
introduced on a linear elastic regime. This model leads to interesting results and allows to 
analyse some structures where this effect is important. Closing the topic related to the 
development of BEM formulations, a formulation was also developed for the analysis of 
fatigue cracking propagation problems. Probabilistic models are applied to the analysis of 
structures submitted to fatigue. It is known that the integrity of the structures in service 
essentially depends on its ability to maintain a resistance pattern over time. To this 
probabilistic model was coupled an optimization algorithm for the determination of 
parameters such as the geometry dimensions of the structure as well as intervals for the 
performance of the maintenance and inspection procedures, taking into account objective 
functions written in terms of structural cost and safety. The investigation shows that direct 
coupling scheme converged for all problems studied, irrespective of the problem 
nonlinearity.  

1 Introduction 

      In order to allow the analysis of a larger range of materials, the concept of fracture encompassing the cohesive fracture 
was extended. The cohesive models have their origins in Dugdale and Baremblatt works [1, 2] and later extensively studied 
numerically and experimentally in the works of [3, 4]. 

In this model, the existence of a process zone located in front of the region where there is the proper separation of the 
fissure surfaces is considered. In this process zone, loss of stiffness occurs with the increase of the micro-cracks and the 
consequent dissipation of energy. Considering this small zone, a possible approximation would be done to consider that the 
dissipation takes place in a fictitious fissure placed before the real fissure. In this fictitious region, a fictitious boundary 
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aperture in which the transfer of tension occurs between the surfaces of the crack is idealized. The constitutive relation that 
governs the maximum stress in the process zone and the opening of the faces of the crack reflects the softening behavior. 

The simplest representation of this model is to use a linear curve given by two parameters of the material, maximum 
fictitious aperture and maximum tensile strength. However, in the literature there are several other suggested approximations. 
Some recent important works on the subject, besides those mentioned, are [5 – 10]. Fracture work using other numerical 
methods as finite element method and non-knitted methods can be found in [11]. 

In this way, complex problems can be addressed by making more realistic considerations about the uncertainties present 
in the structure, based on statistical data, obtaining a more accurate and realistic design, maintenance and inspection design. 
Models such as those proposed allow the realization of a real risk analysis in relation to the use of the structure or the part in 
analysis. 

With respect to the progress and advances in the formulations of the boundary element method (BEM), the objective of 
this work is to develop models that deal with the process of crack growth in flat areas composed of fragile, quasi-fragile and 
ductile materials. Considering these different types of materials, the numerical formulation adopted in the analysis should 
represent the nonlinear structural behavior due to the process of crack propagation and consequent structural degradation. 
One of the contributions presented in this paper refers to the employment of the tangent in solving these non-linear problems. 
This operator allows the nonlinear problem to be solved by using a smaller number of iterations, when compared to models 
that employ constant operator, thus making the formulation more precise and also efficient from a computational point of 
view. It should be emphasized that the consistent tangent operator depends on the nonlinear law adopted in the problem. Thus 
for each nonlinear problem, to be solved, one must deduce the terms of this operator. 

This work deals with two topics that have been widely discussed by the scientific community: development of the BEM 
formulations for use in engineering problems as well as reliability and optimization models applied in the analysis of time 
dependent problems. The resulting model of this triple coupling can be applied to several particular problems. In particular, 
in this work this model is used to approach problems of design, inspection and maintenance of structures subject to the growth 
of cracks under fatigue effects, considering a probabilistic analysis of structures. 

2 Mechanical fatigue model 

The determination of the stress intensity factors using the displacement correlation technique is performed by correlating 
the displacements determined numerically at the nodal points of the element located at the crack end with analytical solutions. 

For 2D structures, the stress intensity factors for modes I (opening) and II (sliding) are given according to the following 
expressions [12]: 

 
( )

2. . .
1

K CODI r
π µ

κ
=

+
  (1) 

 
( )

2. . .
1

K CSDII r
π µ

κ
=

+
  (2)  

, where: COD "Crack Open Displacement" difference between the displacements perpendicular to the plane of the crack 
and CSD "Crack Sliding Displacement" difference between the displacements parallel to the plane of the crack. KI and KII 
are the stress intensity factors for modes I and II, respectively, r is the distance between the crack tip and the computational 
point (i.e., mesh node) and µ and  κ are the material properties. In order to calculate stress intensity factors at the crack tip, 
these variables are evaluated for four pairs of mesh nodes near the crack tip. Then, the stress intensity factors at the crack tip 
are obtained from a local extrapolation process. This process leads to accurate results as presented in [13, 14]. 

For the determination of the propagation angle the circumferential tension, σθθ, must be maximum and consequently a 
principal stress. According to the concepts of the solid mechanics for this situation to occur, the shear stress must be zero. 
Thus, to determine the direction of the crack propagation, θp, one must take τrθ = 0. Through this condition it is possible to 
obtain: 

 ( ) ( )( ).sin . 3.cos 1 0K Kp pI IIθ θ+ − =  (3) 
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Using trigonometric relationships, it is possible to rewrite the above relationship as: 

 
2

1t 8
2 4

K Kp I Ig
K KII II

θ  
    = ± +          

 (4) 

For this purpose, the maximum circumferential stress criterion is used [12]. According to this criterion, the cracks are 
assumed to grow indirection θp, which is perpendicular to the maximum circumferential stress at the crack tip 

 3 2cos 3. .cos .sin
2 2 2
p p pK K KI II

θ θ θ     
= −     

     
 (5) 

where K: is the effective stress intensity factor. 

A widely used criterion is that presented in [15, 16]. This criterion consistently describes only the propagation of fissures 
in region II and is usually referred to in the literature as the "Paris Law". The relationship between the crack growth rate and 
the variation of the stress intensity factors is given by: 

 .da nC K
dN

= ∆  (6) 

where: C and n are the material constants, a represents the crack length, N is the number of loading cycles, and ∆K is the 
stress intensity factor range. 

3 Formulations of the BEM for Cohesive Fracture Analysis 

In this section, the nonlinear formulations proposed in this work will be presented for the analysis of problems involving 
nonlinear (cohesive) fracture and also contact between bodies using (BEM) equations. 

First, the model developed for the analysis of nonlinear fracture problems will be discussed. However, it is proposed in 
this work a formulation that solves the non-linear problem using a consistent tangent operator. This model also leads to good 
results; however this formulation requires a considerably smaller number of iterations to obtain the equilibrium in each 
increment of load, making it more efficient from a computational point of view. 

A model was also developed for the analysis of the cracks propagation in materials that are governed by the concepts of 
linear elastic fracture mechanics. In this model the stress intensity factors are calculated using the displacement correlation 
technique. In addition, three theories of modes interaction were also implemented to obtain the crack propagation angle and 
also the equivalent stress intensity factor. From the formulation point of the BEM, this problem is also treated by considering 
a consistent tangent operator, which will also be shown in this paper. 

As for the contact model, a formulation was developed, employing also a consistent tangent operator, for the analysis of 
the contact in two different problems. The first one refers to the contact between faces of cracks, that is, in the simulation of 
the closing of a crack. For the second, this model is applied to the analysis of composite materials which allows the simulation 
of contact and slip between the various materials that make up the structure. In both applications the Coulomb law is adopted 
to govern the adhesion behavior of the contact region, that is, the displacements and surface forces in this region. 

Several BEM formulations have been proposed in the literature to properly handle crack problems [17–27]. For crack 
simulation, a finite gap between two crack surfaces has to be considered as well as an accurate integral scheme to evaluate 
the integrals along the quasi-singular elements.  

Initially one can write the general equation of the BEM, in the following way: 

 HU GP=  (7) 

The matrices and vectors described in Eq. (7) can be divided according to their location in the model. The source points 
may be on the contour, c, or on the faces of fissures, f. Like this: 

 
C C C C
C C f f C C f f

f f f f
C C f f C C f f

H U H U G P G P

H U H U G P G P

+ = +

+ = +
  (8) 
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, where Uc and Uf are the displacements assigned to the boundary and crack surface nodes, respectively, Pc and Pf are the 
boundary and the crack surface tractions, respectively, and Hcc, Hfc, Gcc and Gfc are the corresponding matrices that account 
for the displacement and the traction effects. The subscript c indicates that the collocation point is on the boundary and the 
super scripts specify the boundary (c) or crack surface (f) values. 

The crack presents two faces, one of them located to the right and the other to the left of its average geometric line. In 
Eq. (8) the fountain points located on the fissure can be separated into fountain points belonging to the left face and the right 
face. Like this: 

 
C CR R CL L C CR R CL L
C C f f f f C C f f f f

f fR R fL L f fR R fL L
C C f f f f C C f f f f

H U H U H U G P G P G P

H U H U H U G P G P G P

+ + = + +

+ + = + +
  (9) 

, where indices R and L, distinguish the source points located on the right and left faces of the fissure respectively. The 
system of equations presented in Eq. (9) can be solved for the known in the contour.   

4 Structural Reliability model 

The design, sizing and prediction of good structural functioning, lead to checks on the structural elements with respect 
to requirements resulting from physical and mechanical knowledge and also from the experience of their analysts and 
builders. These requirements translate, in more or less complex forms, into criteria whose objective is to define threshold 
values for structural variables such as stresses arising from requests, displacements, deformations, among others. In a 
structural reliability analysis, each criterion can be understood as a statistical event and its consequences as failure scenarios. 
The verification of each criterion, therefore, results in verification of each potential failure mode. To do so, one must describe 
and formulate the problem considering its variables with due uncertainties. The objective is then to evaluate a probability, 
that of finding a fault situation, considering the statistical knowledge of each variable and its influence on the structural 
behaviour [28]. 

In structural engineering, reliability problems can be formulated by means of their capacity or resistance, R, and demand 
or effect of the actions, S. The analysis is usually based on the calculation of the complement of reliability, ie, the propensity 
to fail Pf. If resistance and request are statistically independent random variables, with known probability distributions and 
time stationary, the probability of failure, Pf, can be evaluated by the solution of the following equation [29]: 

 [ ]Prob ( ) 0 ( ). ( )
0

R SP R S F x f x dxf
∞

= − ≤ = ∫   (10) 

In Eq. (10) FR(x) is the cumulative probability function of the resistance and fS(x) is the probability density function of 
the request. Eq. (10) is known as convolution integral with respect to "x", corresponding to the sum of all the request cases 
for which the resistance is smaller than the request. 

This equation can also be written in terms of the cumulative probability function of the request, FS(x), and the probability 
density function of the resistance fR(x). Like this: 

 [ ] [ ]Prob ( ) 0 1 ( ) . ( )
0

S RP R S F x f x dxf
∞

= − ≤ = −∫   (11) 

The first order reliability or FORM method provides an estimate of the probability of failure of the structure by 
linearization of the limit state function at the design point in the standard normal space. Linearization is done through a hyper 
plane tangent to the fault surface at the design point. The FORM approximation is sufficiently accurate for cases where the 
curvature of the fault surface is small and the probability of failure has a small value. In addition, the error in this type of 
approach depends on the concavity of the fault surface, ie for concave surfaces, the approach is in favour of safety, whereas 
for convex surfaces, the FORM is against safety. 

The second order reliability method SORM is an attempt to improve the approximation of the failure probability based 
on more information about the failure surface of the structure. The principle is exactly the same as the FORM approach, but 
requires a better understanding of the geometry of the boundary state function in the neighbourhood of the design point. In 
this type of approach, the boundary state function is treated as a hyper-surface of the second degree instead of the hyper plane 
tangent. Additional information about the limit state function is its main curvatures, in addition to the reliability index. The 
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method requires that at the point of design, the quadratic approach surface is continuous and that it is twice differentiable, 
besides having the same tangent plane and the same main curvature as the real limit state function. There are several quadratic 
approximations available in the technical literature for the shape of the hyper surface used in SORM. The choice depends on 
the required accuracy as well as the available processing time. Among the various options for SORM are: Approximation by 
a centred hyper-sphere, eccentric hyper-sphere and asymptotic approximations [30, 31]. 

Finally, as seen in this topic we tried to present some important concepts of reliability theory. Other definitions on 
probability, structural life and reliability can be found in the literature, but the definitions presented are perfectly compatible 
with the use of reliability theory in this work. 

5 5. Optimization model 

Three models developed in this work will be presented in this section for the analysis of the maintenance and design of 
structures submitted to fatigue. The first model deals with the determination of the optimum inspection moment for a given 
reliability index. In this case the model determines the number of cycles in which maintenance is to be performed to maintain 
the desired level of safety. In this model are considered perfect and imperfect maintenance. In the first case, the structural 
part is replaced, once the number of critical loading cycles is reached, by another equal and in good condition. With imperfect 
maintenance, it is accepted that the faces of the cracks are closed with some type of bonding material before the replacement 
of the structural element. It should be emphasized that in this model only the inspection moment is determined without, 
however worrying about the cost of the inspection. The cost variable is considered in the other models of optimization and 
reliability built in this work. 

The second model refers to a Reliability Based Design Optimization (RBDO) model where the geometry dimensions of 
the structural element are obtained from the reliability and optimization analyzes. The objective of this model is to obtain the 
geometric dimensions of the structural element in order to minimize the volume of the structure, considering a given level of 
structural safety desired, in order to obtain the minimum cost of the structure production. Thus, the equation to be minimized 
must relate the dimensions of the structure to its volume, while the constraint equation of the optimization problem relates 
the structural dimensions to the reliability index, being constructed by means of response surfaces of the structure geometry 
variables. 

The third developed model aims to obtain the minimum dimensions of the structure as well as the maintenance and 
inspection intervals that lead to the minimum cost of the structure taking into account the costs of design, inspection, 
maintenance and failure. Thus, the function to be minimized is a cost function that covers design, inspection, maintenance, 
and failure costs. The restriction function of the analysis is constructed based on the evolution of the reliability index over 
time, being defined by means of response surfaces of the variables. 

5.1 Sequential Quadratic Programming (SQP) 

According to [32, 33] SQP is one of the most efficient methods for solving nonlinear programming problems. The main 
idea of this class of methods is to transform a constrained optimization problem into an unrestricted optimization problem by 
generating quadratic sub problems, which are more easily solved at each step. 

This set of methods was popularized mainly from the mid-70s with the emergence of the Quasi-Newton versions and 
their generalizations. The works of [34-36] stand out at the beginning of the development of the method. SQP research deals 
with the efficient use of second derivatives of objective function, particularly in difficult-to-solve problems. Thus the SQP 
methods are generalizations of the Newton method for the general optimization problem where a problem with objective 
function and non-linear constraints is currently addressed. The main idea of the method is to linearize the optimality 
conditions of the problem, expressing the equations resulting from this process in a solvable system. Linearization allows the 
adoption of algorithms with fast local convergence making the method efficient. In this way the SQP works by replacing, at 
each iteration, the objective function by a quadratic approximation of the Lagrangian function of the original problem at a 
point xk and the constraints by linear approximations also at the point xk. This process even justifies the name of the method. 
This approximation can be done by expanding the Taylor series Lagrangian function and taking the first three terms for the 
objective function, the first two terms, for the constraints. In this way the sub problem to be solved at each iteration k is a 
quadratic problem with linear constraints, which, compared to the original problem, can be considered to be easier to solve. 
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These methods can be considered primitive-dual methods, in the sense that they work simultaneously in the space of the 
primary variables and in the space of the multipliers of Karush-Kuhn-Tucker (KKT), dual variables. 

In general, nonlinear programming algorithms solve problems of obtaining extremes by calculating, at each iteration, 
two main parameters: direction of descent (or rise if the problem is maximization) and distance to travel in the calculated 
direction (unidirectional end). Through the SQP, the descent (or climb) directions are obtained for each variable considered 
in the problem. The problem of obtaining the unidirectional end is solved using another type of optimization algorithm, in 
this case applied to unidirectional problems. There are several algorithms to treat this last problem, being possible to 
emphasize the methods of polynomial approximations and also dichotomy. However in this work we chose to use the Golden 
Section method to solve the one-way problem.  

For a more in-depth discussion of this method and also of other non-linear programming methods it is suggested to refer 
to the following references [32, 37-39].  

5.2 Equations of the SQP Method 

In this item will be presented the equations used by the SQP and also the philosophy of this method. Initially, it is 
observed that problems that only contain equality restrictions are not very common in engineering practice, but the initial 
discussion to be presented here will be restricted to this case. Thus the following problem will be addressed which one wishes 
to solve: 

 
( )

experience plan (EP) ( ) 0 1.....
Minimize f x
Subject to h x i mi

nx R

= =

∈

  (12) 

, where: : :n n n nf R R and h R R→ →   are functions that are continuously differentiable functions and h a vector of 

m functions hi. The Lagrangian function for this problem is given by:   

 ( , ) ( ) ( )
1

m
L x f x h xi ii

λ λ= + ∑
=

  (13) 

The main idea of the SQP for the EP problem is from xk, make an approximation that generates a quadratic sub problem 
and, after solving this sub problem, define the new point xk+1. One way to find the optimal solution to this sub problem is to 
find the KKT point. This search is done by solving the system with n + m variables x and λ and n + m equations. 

 
( ) ( )

1( , ) 0
( )

m
f x h xi iiF x

h xi

λ
λ

 ∇ + ∇∑ == = 
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  (14) 

We will use Ak to denote the Jacobian matrix of constraints h at point xk, that is: 

 1 2( ), ( ),........ ( )
tk k k k

mA h x h x h x = ∇ ∇ ∇    (15) 

and the hessian matrix in x of the Lagrangian function associated with the problem EP at the point (xk, λk) will be denoted 
by: 

 2 2 2( , ) ( ) ( )
1

mk k k k k kW L x f x h xxx i ii
λ λ= ∇ = ∇ + ∇∑

=
  (16) 

Since A, at the optimal point, has a complete rank, the optimal solution * *( , )k kx λ , of the EP problem satisfies Eq. (14). 
The Newton pitch of the iteration k is given by: 

 
1

1

k k kx p x
k k kλ ν λ

+     
     = +

+          
  (17) 
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Where pk and vk is the solution of the following KKT system: 

( , )

( )0

t k k kk k p L xW A x
k kk h xA

λ

ν

     −∇
     =
     −    

 (18) 

It should be noted that the Jacobian matrix of Eq. (14) at the point (xk, λk) is 

( , )
0

tk kW Ak k kJ J x
kA

λ
 
 = =
  

     (19) 

Newton's pitch is well defined when the matrix Jk is non-singular. As this condition is met, Newton's algorithm for 
nonlinear systems converges quadratically to the solution. However, Newton's method has some drawbacks: 

1) The system shown in Eq. (18) can determine not only the possible local minimizers, but also the maximizers as
well as saddle points.

2) The sequence (xk, λk) may not converge if the choice of the starting point is not sufficiently close to the optimal
solution.

The choice of a starting point close to the optimal solution of the problem is the main drawback for the construction of 
the general and real algorithm based on Newton's method. In order to remedy these drawbacks and still make use of the 
quadratic convergence of the Newton pitch, when the starting point is close to the optimal solution, the Newton method 
associated with other methods is used. 

5.3 Structure of the Method 

There is another way of looking at Eq. (18) systems. Suppose that in the iteration k the quadratic sub problem defined is: 

1

2
t k t kMinimize p W p f p+ ∇

 (QS) ( ) 0k kSubject to A p h x+ = (20) 

Where Wk is given by Eq. (16). It should be noted that the objective function of the QS problem differs only by a constant 
of the quadratic approximation of the Lagrangian function associated to the QS problem, defined as follows: 

1( , ) ( ( ))
2

t k t k t k kL p p W p f p A p h xλ λ= + ∇ + +  (21) 

In fact, given (xk, λk) the quadratic model for the Lagrangian function is: 

1( ) ( , ) ( , )
2

k k t k k t kM p L x L x p p W pL λ λ= + ∇ + (22) 

But we have that: 

( , ) ( ) ( )
tk k k k kL x f x h xλ λ= +  (23) 

( , ) ( )
tt k k t k k kL x p f x A pλ λ∇ = ∇ +   (24) 

Thus Eq (22) can be rewritten as: 

1( ) ( )
2

t k t kM p p W p f x pL ν= + ∇ + (25) 

Since the constant v can be defined as: 

( )( , ) ( ) ( )
t tk k k k k k k kL x A p f x A p h xν λ λ λ= + = + + (26)
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Considering the restriction of the sub problem QS, we have ( )kf xν = . Thus, each iteration of the SQP consists of 
minimizing the quadratic model of the Lagrangian function, subject to the linearization of the constraints. 

If the conditions used to show the uniqueness of Jk occur, the sub problem QS has a unique solution (pk,µk) satisfying: 

0
tk k k kW p f A

k kA p h

µ + ∇ +  =
 + 

(27) 

It should be noted that pk and vk can be identified as the solution of the Newton Eq. (18). Subtracting 
tk kA λ  on both 

sides of Eq. (18) yields: 

( )
1 ( )0

t kk k p f xW A
k kk h xA λ

     −∇
   = +     −  

(28) 

By the non-singularity of the coefficients of the matrix we have that p = pk and k λk+1= νk. 

In conclusion, the KKT system shown in Eq. (18) for the EP problem is equivalent to the optimality conditions for the 
QS problem. 

The interpretation in terms of Newton's method facilitates the convergence analysis while the structure of Quadratic 
Sequential Programming allows developing practical algorithms to solve problems like QS. 

The structure of the SQP for nonlinear problems with equality constraint is easily extended to problems with inequality 
constraints of the type: 

( ) 0kA p g x+ ≤  (29) 

At each step the quadratic problem must be solved: 

1
2

 (QSI) ( ) 0

t k t kMinimize p W p f p

kSubject to A p g x

+ ∇

+ ≤

(30)

The problem can be solved similarly to the manner described for the equality problem. The existing modification relates 
to the fact that in step pk and the new estimate of the multiplier λk+1 are defined by the solution and the Lagrange multipliers 
corresponding to the problem QSI. 

5.4 SQP Method Algorithm 

Consider that you want to solve the following optimization problem: 

( )
( ) 0

Minimize f x
Subject to g xj ≤    , j=1,…ng (31) 

Assuming that in the ith iteration the iterative process lies on a given point xi, the direction of descent (rise) of the objective 
function must first be determined for the determination of the desired end. This direction, s, is obtained from the resolution 
of the following quadratic programming problem: 

1( ) ( ) . ( ) . . ( , ).
2

( ) . ( ) 0

T TMinimize s f x s g x s A x si i i i
TSubject to g x s g xj i i

ϕ λ= + +

+ ∇ ≤
 , j=1,…ng (32) 

Where g is the gradient of the objective function f, A is a definite positive approximation for the Hessian of the 
Lagrangian function. After solving this quadratic programming problem, the values for the Lagrange multipliers will be 
obtained, as well as the slope directions, variables (si, λi). Thus the next point of the iterative process is obtained by means 
of the following expression: 

.1x x sii α= ++ (33)
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Being that it is found by minimizing the following one-dimensional function: 

 ( ) ( ) min 0, ( )
1

ng
f x g xj ij

α µ  Ψ = + ∑  =
  (34) 

In this equation μj is equal to the absolute value of the Lagrange multipliers for the first iteration, as shown in Eq. (35): 

 ( )1( ) ( 1) ( 1)max ,
2

i i i
j j j jµ λ µ λ− − = +  

 (35) 

, where the index i denotes the number of the iteration. In this work, the unidirectional problem is solved using the Golden 
Section method. The matrix A is a definite positive matrix that approximates the Hessian of the objective function. In the first 
iteration this matrix is defined as an identity matrix being updated as the iterative process progresses. This update is done 
using the equation proposed by BROYDON- FLETCHER-SHANNO-GOLDFARB, equation BFGS, and recommended in 
[39]. Like this: 

 . . . .

. . .

T TA x x A l lA Anew T Tx A x x x

∆ ∆ ∆ ∆
= − +

∆ ∆ ∆ ∆
  (36) 

Given that in this equation ∆x and ∆l are defined as: 

 1x x xii∆ = −+  (37) 

 ( , ) ( , )1l L x L xx xi i ii λ λ∆ = ∇ − ∇+  (38) 

, where L is the Lagrangean function and x∇  represents the Lagrangian function gradient with respect to the variables 

x. To ensure that A is positive definite, ∆l is modified if the following relation is true. 

 . 0, 2. . .T Tx l x A x∆ ∆ ≤ ∆ ∆  (39) 

If Eq. (39) is true, ∆l must be recalculated by the following equation: 

 . (1 ) .l l A xθ θ∆ = ∆ + − ∆   (40) 

where: 

 0,8. . .

. . .

Tx A x
T Tx A x x l

θ ∆ ∆
=

∆ ∆ − ∆ ∆
 (41) 

Given the equations and the SQP algorithm, it will be shown the applications resulting from the coupling between this 
optimization method and the reliability mechanistic model. 

6 Optimization models for determining the inspection instance and maintenance 

In this item we discuss a model developed in this work for the determination of the ideal moment for performing the 
structural inspection and maintenance for a given desired level of security. This model, resulting from the triple coupling 
between mechanical fatigue, reliability and optimization, considers two types of maintenance: perfect maintenance and 
imperfect one. In the first type of maintenance, it is considered that the structure is replaced by a similar one in perfect 
condition after reaching the number of critical loading cycles, which is determined according to the desired structural safety. 
In this model we aim to determine the number of load cycles limit for which the structure should be replaced. 

In the imperfect maintenance model, the number of inspections and maintenance planned before the replacement of the 
structural element by another should be initially defined. Maintenance is said to be imperfect because the structure is not 
replaced when it reaches the limit state, but is repaired. In the studied case, growth of cracks under fatigue, maintenance is 
carried out by inserting a type of bonding material between the faces of the cracks. The limit state considered for determining 
the time of inspection for imperfect maintenance is the length of the cracks. Thus, the number of cycles of critical loading is 
determined considering a certain level of safety and the maximum length of cracks. 
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The level of security to be considered in each case depends on the importance of the structural element considered in the 
structural system to which it belongs. Onoufriou [40] presents a table, which is reproduced below, containing the values for 
the target reliability index according to the importance of the structural element studied. These values will be adopted in the 
analyzes developed in this work. 

Table1 Target Reliability Indices according to [40] 

Consequence of Failure Target Reliability Index Probability of Failure 

Very serious 4.2 1,4. 10-5 

serious 3.7 1,1. 10-4 

Not serious 3.1 9,7. 10-4 

Local Effects 2.3 1,0. 10-2 

Does not affect 1.0 1,0. 10-1 
 

In both models, the optimization algorithm chosen is the Golden Section since the optimization problem depends on a 
single variable that is the number of active loading cycles. It should be emphasized that in this model the cost of maintenance 
as well as the materials involved in structural repair is not discussed. This variable will be considered in the other models 
constructed in this work. 

6.1 Perfect Maintenance Model 

In this model, the objective is to determine the ideal time for the inspection and maintenance, for a given level of desired 
safety, in order to replace the structural element considered by another in good condition. In this model, the optimization 
problem to be solved is that presented in Eq. (42): 

Determine the number of loading cycles in order to: 

 ( , , ) ( , , ) argMinimize f x y z x y z T etStructuralβ β= −   (42) 

in this equation, x represents the random variables of the reliability problem, y the variables to be optimized and z the 
parameters of the mechanical fatigue model. βTarget indicates the target reliability index chosen for the moment of 

maintenance, and βStructural is the reliability index calculated with the parameters of the reliability model and the number of 
load cycles determined by the optimization model. 

In this model the boundary states are: a stress intensity factor greater than the threshold stress intensity factor, a crack 
propagation rate greater than the limit propagation rate, and finally a connection of the crack with some side of the structure. 

6.2 Perfect Maintenance Model Applied to a Beam under Three-Point Bending 

In this item, the perfect maintenance model will be applied to the study of the structure shown in Fig (1). It is a beam of 
Sv of length and Wv of height with a central notch of depth equal to a0, which was requested to flexion in three points under 
concentrated load F. In this analysis, the propagation of the crack under fatigue will be carried out considering the oscillatory 
loading regime composed of a complete loading and unloading cycle.  

 
Figure 1 Structure considered. 
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The following properties were adopted for the constituent material of the structure: longitudinal modulus of elasticity 
E=2.1 × 108 kN/m2, Poisson coefficient ν = 0.20, tensile strength factor Kc = 1.04 x 105 kN/m3/2, tensile strength factor of the 
Paris law ∆Kth = 1.0 kN/m3/2 and exponent n parameter of the Paris law n = 2.70. The Paris law was integrated considering 
the increase in crack length equal to ∆a = 0.05 m. 

The reliability model was constructed considering 3 random variables: the active load, F, the parameter C of the Paris 
law and the initial length of the crack, a0. The following statistical properties were adopted for these random variables: F ∼ 
N(5.0; 0.80) kN, parameter C of the Paris law C∼ LN (3,0.10-10 ;1,8.10-10 ) m/cycles (kN/m3/2)n and initial crack length a0 ∼N( 
0,01; 0,003) m. The other variables of the analysis are considered as deterministic. The span of the beam was considered 
equal to sv= 5.0 m and the height of the beam was allowed equal to Wv =1.25 m. The tolerance adopted for the convergence 
of the analysis was considered equal to 1x10-4. To complete the analysis data, the target reliability index for the optimization 
model was considered equal to βTarget = 3,10. This value is recommended in [40], being shown in Table 1, for ruptures that 
do not seriously affect the behavior of the structural system to which it belongs. 

 

Figure 2- Diagram  β x Number of Cycles. 

In Fig. (2), the convergence diagram for the Golden Section optimization model is presented. The analysis was developed 
considering three interventions in the considered beam. As shown in this figure, the convergence of the reliability / 
optimization model for each of these curves was obtained using 26 calls from the reliability model. In addition, these curves 
show a good performance of the optimization algorithm which converges smoothly to the solution. 

In Fig. (3), the maintenance curves obtained by the used model are shown. It is verified that the maintenances should be 
carried out when the number of load cycles acting on the structure is equal to 3,942 × 105 or multiples of that value. At that 
moment the structure will meet the reliability index equal to the desired one in the analysis. 

6.3 Imperfect Maintenance Model Applied to a Beam under Three-Point Bending 

It will be discussed in this item the application of the imperfect maintenance model to the study of the structure shown 
in Fig. 1. In this analysis the propagation of the fatigue crack will be carried out under oscillatory loading composed of a 
complete loading and unloading cycle. 

The reliability model was constructed considering 2 random variables: the active load, F and the parameter C of the Paris  
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Figure 3 Maintenance Curves (Predictive). 

law. The following statistical properties were adopted for these random variables: F ∼ N(5.0; 0.80) kN, parameter C of 
the Paris law C∼ LN (3,0.10-10 ;1,8.10-10 ) m/cycles (kN/m3/2)n. The other variables of the analysis are considered as 
deterministic. The span of the beam was considered equal to sv= 5.0 m, the height of the beam was allowed equal to Wv=1.25m 
and the initial crack length from a0.= 0.01 m. The tolerance adopted for the convergence of the analysis was considered equal 
to 1x10-4. To complete the analysis data, the target reliability index for the optimization model was considered equal to 
 βTarget = 2.30, according to the criteria of Table 1. The structure was analysed considering that the maintenance process will 
consist of an imperfect maintenance and a perfect maintenance. 

The number of loading cycles, to be obtained by the optimization model, to perform the imperfect maintenance will be 
calculated considering as a limit state the length of the crack equal to 10 cm. In this way the optimization model will calculate 
the number of load cycles in which maintenance is to be performed so that the reliability index of the structure is equal to the 
desired target. The imperfect maintenance will be carried out considering that the bonding material placed on the faces of the 
crack has a rigidity equal to KSPRING = 1,0. 109 kN / m. 

In Fig. (4) the convergence diagram for the Golden Section optimization model is presented. In a comparative way, the 
analysis of this structure was carried out considering also the perfect maintenance model. As this figure shows for the 
construction of each curve, that is, for the convergence of the model, 21 calls of the reliability model are necessary. 

In Fig. (5) the maintenance curves for the analysis of the considered structure are presented. The green curve shows the 
evolution of the reliability index in relation to the number of loading cycles applied until the first inspection, when the crack 
reaches a length of 10 cm. It is noted that for imperfect maintenance the first inspection should be done when the number of 
loading cycles is equal to 6.873 × 105. At that time the adhesive material is applied to the faces of the crack and the structure 
is exposed again to the loading of fatigue. From this point on we must verify the curve in red which represents the evolution 
of the reliability index in relation to the number of cycles of load acting after performing the maintenance in the structural 
element. It is observed that after the maintenance the structure recovers part of its capacity resistant to fatigue and 
consequently part of its structural safety. According to the optimization analysis performed, the structural element studied 
should be replaced when the number of cycles of loading acting equals 1.01 × 106. Only by comparison the structure was 
also analysed considering perfect maintenance. The evolution of the reliability index in relation to the number of load cycles 
acting on the perfect maintenance model is shown by the blue curve. It is observed that by means of this model the structure 
must be replaced when exposed to 7,845 × 105 charge cycles. Thus, by performing only imperfect maintenance on the 
structural element, it is possible to increase the useful life of the structure by approximately 23%, which is a significant gain. 
This is further increased by conducting more inspections over time. 
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Figure 4- Diagram b vs Number of Cycles. 

 

Figure 5 Evolution of b with the number of load cycles applied. Maintenance Curves. 

6.4 The reliability analysis 

The reliability analysis of the structure shown in Figure (5) will be performed by considering two different scenarios that 
differ in the number of random variables considered in the analysis. In the first scenario, 3 random variables will be 
considered, while in the second scenario, 5 random variables will be considered. 

6.4.1 1st Scenario 

In the reliability analysis performed   were considered as random variables the force applied at the right end of the 
structure, Fx, the coefficient C of the Paris law and the distance between the holes, Df. The following statistical properties 
were adopted for these random variables: acting load Fx ~ LN (6.0; 1.0) kN/m, distance between holes Df ~ N (0,025; 0,001) 
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m and parameter C of the Paris law, C ~ LN (1,63.10-13; 4,0.10-14) m/cycles (kN/m3/2)n. The other variables involved in the 
problem were considered as deterministic. The initial crack length was allowed to equal a = 0.50 mm, the diameter of the 
holes of the plate D = 5.0 mm and the number of cycles of applied load equal to Nacting cycles = 4.0 1013 Cycles. The tolerance 
adopted for the convergence of the analysis was considered equal to1.10-4. 

The results were obtained in terms of the coordinates of the design point and the reliability index. In Fig. (6), Fig. (7), 
Fig. (8) and Fig. (9) we present the results for the convergence of the random variables of the analysis and also for the 
reliability index, β.  

 

Figure 5 Structure analysed. Dimensions in millimetres. 

These diagrams show good direct coupling performance. In this analysis, 19 iterations were performed, resulting in 76 
calls from the mechanical model to convergence. During the analysis, some points were observed where the algorithm faced 
difficulties of convergence. However the method was able to overcome these points and achieve convergence. This indicates 
that, in addition to being efficient, this method is also robust. 

  

Figure 6- Convergence for loading Figure 7- Convergence parameter C (Law Paris) 
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Figure 8- Convergence for Df Figure 9- Convergence for β 

6.4.2 2nd Scenario 

In the second scenario of the reliability analysis of this problem are considered 5 random variables. The analysis will be 
carried out assuming that the working load, Fx, the parameter C of the Paris law, the diameter of the holes, D, the distance 
between the holes, Df, and the initial length of the cracks, a0 are random variables. The following statistical properties were 
adopted for these random variables: acting load Fx ~ LN (6.0; 20) kN/m, distance between holes Df ~ N (0,025; 0,001) m and 
parameter C of the Paris law, C ~ LN ( 1,63.10-13; 4,0.10-14) m/cycles (kN/m3/2)n, holes diameter D ~ N (0.005; 0.0001) and 
initial crack length a0 ~ LN (0, 0005; 0.0003) m. The number of active charging cycles was considered as deterministic being 
equal to Nacting cycles = 4.0 1013 Cycles. The other variables involved in the problem were considered as deterministic. The 
tolerance adopted for the convergence of the analysis was considered equal to1.10-4. 

As in the first scenario the results were obtained in terms of the coordinates of the design point and the reliability index. 
In Fig. (10), (11), Fig. (12) and Fig. (13) are presented the results for the convergence of the random variables of the analysis 
and also for the reliability index, β. 

  

Figure 10- Convergence for loading Figure 11- Convergence parameter C (Law Paris) 
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Figure 12- Convergence for Df Figure 13- Convergence for a0 

These diagrams show good direct coupling performance. In this analysis, 12 iterations were performed, resulting in 72 
calls from the mechanical model to convergence. In this analysis there were no excerpts with the occurrence of instabilities 
and convergence difficulties, which led to the convergence of the problem with only 12 iterations. 

Based on the results of this section, it is verified that the model using Direct coupling is a robust and efficient method of 
reliability. 

7 Conclusion 

In this paper, problems involving the coupling between the mechano-reliability model and an optimization algorithm 
were discussed. The parameters that result from this analysis are the dimensions of the geometry of the structural element 
and also the intervals for carrying out the maintenance and inspection procedures. 

A BEM formulation for contact analysis at the interface between bodies and also cracks was developed. Adhesion and 
contact problems are of great interest in engineering, since in many situations the loads are transmitted through the friction 
between the components of the structural elements. This formulation also employs a consistent tangent operator for the 
solution of the nonlinear system of equations, the surface forces in the contact region being governed by Coulomb's law. This 
model leads to results compatible with those obtained by the ANSYS program. Despite providing good results, the 
formulation was applied to simple problems. This formulation may be in the future coupled with other non-linear models for 
the simulation of complex problems such as structural analysis of the superstructure / foundation / soil. 

Another interesting contribution of this work refers to the models that treat stiffened domains. This formulation derives 
from the BEM/MEF coupling where the BEM equations discrete the domain under analysis and those of the MEF the 
stiffeners. However, the models discussed here consider two degrees of freedom per node in each rigger, thus enabling 
approach to problems where riggers form a lattice configuration within the body. The nonlinear effects of plastification of 
the riggers and adhesion of these to the domain were also treated, being presented in this work the equations for their 
consideration. 

On the BEM/MEF coupling model, the crack propagation model was introduced on a linear elastic regime. This model 
leads to interesting results and allows us to analyse some structures where this effect is important. This latter model can be 
improved in the future by considering the nonlinear effects on crack propagation, where the consistent tangent operator model 
applied to quasi-fragile materials could be inserted. 

Closing the topic related to the development of BEM formulations, a formulation was also developed for the analysis of 
fatigue cracking propagation problems. This model is applicable to materials of fragile and ductile behaviour and has great 
application in several structures, especially those inserted in the context of mechanical structures (aeronautics, naval, 
automobile, etc). This model uses the law of Paris and the results obtained through this formulation were interesting. It was 
possible to approach structures with multiple cracks, thus making it possible to study structures where damages grow in 

0 2 4 6 8 10 12
2.49

2.50

2.51

2.52

2.53

2.54

2.55

2.56

2.57

2.58

Di
sta

nc
e b

et
we

en
 h

ol
es

, D
f, (

m
) x

 E
10

-2
 

Iterations
0 2 4 6 8 10 12

4.5

5.0

5.5

6.0

6.5

7.0

In
iti

al
 cr

ac
k 

len
gt

h 
(m

)

Iterations

RETRACTED



 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 6 (2019) 215–232  231 

 

different positions inside the body. In the future, this model could be extended to the consideration of fatigue and corrosion 
in structures formed by quasi-fragile materials such as concrete. 

Probabilistic models were also considered in this study, being applied to the analysis of structures submitted to fatigue. 
It is known that the integrity of the structures in service essentially depends on its ability to maintain a resistance pattern over 
time. The formation and growth of cracks due to fatigue processes are among the main causes of ruptures of real structural 
systems, such as those present in aeronautical structures, naval structures, automobile and marine structures in general. Thus, 
precise analysis of the growth of pre-existing cracks during the use of a structure or equipment plays a fundamental role in 
the design of a project, which aims to guarantee its functionality during a useful life. The algorithms FORM, SORM, MSR 
and the direct coupling between FORM and mechanical model (direct coupling) were implemented. According to the results 
obtained, it can be seen that the direct coupling provided better responses when compared to the MSR. This is because, in 
this method, no approximation is made on the form of the limit state equation, the gradients of this equation being obtained 
directly through queries to the mechanical model. Although the MSR also provides accurate answers, it has been found that 
this method is more computationally costly, and does not offer convergence for reliable analysis with certain experimental 
plans. 

To this probabilistic model was coupled an optimization algorithm for the determination of parameters such as the 
geometry dimensions of the structure and also intervals for the maintenance performance and inspection procedures, taking 
into account objective functions written in terms of structural cost and safety. The optimization algorithms SQP and Golden 
Section were implemented. It should be emphasized that this model was applied in the analysis of simple examples, only 
with the purpose of showing its great potentiality. Thus, work dealing with this problem with precise and general mechanical 
models will always provide contributions. Thus, these triple coupling models are a good suggestion for future research. 

Finally, it should be noted that this paper addressed issues that may be considered innovative in some fields as formulations 
of the BEM and also in structural reliability. 
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