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A B S T R A C T 

 

The three-dimensional problem of the fracture for the single edge notched tension plate 
(SENT) of orthotropic material is considered in this paper. The finite element solution is 
used to evaluate the singular and non-singular terms of the William series, i.e. Stress 
intensity factor (SIF) and T-stresses namely T11, T13 and T33. Based on the obtained 
numerical results, a fitting procedure is performed in order to propose analytical 
formulations giving the fracture parameters near the crack tip. The obtained results are in 
good agreement with the finite elements calculation and other literature results.  

1 Introduction 

The frequent use of orthotropic materials in industry requires the extension of the concepts of fracture mechanics, which 
is currently the subject of much research in the world. Most are focused on the first singular term of the Williams series called 
stress intensity factors (SIF).Irwin establishes the theory of SIF [1] introduced the linear elastic fracture mechanics (LEFM). 
Later in 1968, Rice defined the J-Integrale independent of the integration path to solve two-dimensional cracking problems 
in nonlinear elastic materials [2, 3]. In fact, it is well established that J is equivalent to the rate of energy restitution defined 
by Grifith [4-6]. Thus, J-integral can be used for deduction of SIF [7]. However, the second term of the Williams series, so-
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called T-stress provides another parameter to identify the severity of stress and displacement fields near a crack tip [8-10]. In 
this context, Cotterell worked on the singular term T-stress to predict crack growth paths under Mode I condition [11]. In 
fact, Cotterell and Rice concluded in [12], that for the crack path is always stable, whereas for T > 0 the propagation becomes 
unstable. Similar results had been obtained previously in [13, 14], although experimental tests showed the presence of a 
positive threshold Tth > 0 above which instability of crack propagation occurs [15, 16]. In the same context, the role of T-
stress in the brittle fracture for linear elastic materials under mixed-mode loading has aroused an extensive work as like in 
[17-19], where, Smith et al [20, 21]. had shown that the brittle fracture can be controlled by a combination of singular stresses 
(characterized by K) or non-singular stress (T-stress). Moreover, in mode II, the T stress is stated to have an influence on the 
results of the singular stress field [21, 22]. Similarly to isotropic materials, LEFM concepts are used in fracture analysis of 
orthotropic materials [23-25].  

The use of SENT samples in fracture mechanics studies is justified by the fact that surface cracks are common flaws in 
many structural components [26]. Accurate stress analyses of these surface-cracked components are needed for reliable 
prediction of their crack-growth rates and fracture strengths. 

 However, because of the complexities of such problems, exact solutions are not available [27]. The use of approximate 
fitted analytical equations let engineers to obtain, easily stress-intensity factors for surface cracks under service loading. 
Moreover, with the development of the numerical tools it has become possible to multiply the simulations with several 
geometrical parameters. This allowed the researchers to develop simple analytic expressions that calculate fracture 
parameters that were difficult to compute. The contribution of this work pays in this direction by proposing expressions easy 
to use and intended for the engineers confronting this kind of design problems. 

In this paper, a finite element study is inspired by the published work of Chung-Yi [8] who worked on an orthotropic 
plate with a central crack. This allowed us to perform the case of single edge cracked orthotropic plate. Thus, the main 
objective is to propose analytical expressions for a direct calculation of the failure parameters for such case. This is made 
possible by fitting procedure of the numerical results obtained by the different models. 

2 Methodology 

In this work the composites with macro through-the-thickness cracks are modeled as linear, orthotropic materials using 
linear elastic fracture mechanics (LEFM), the Williams series expansion for pure mode I crack-tip fields, including only the 
singular term and constant term, can be written as [28]: 

 

11 11

22

33 33

12

13 13

23

3cos 1 sin sin
2 2 22

3cos 1 sin sin
2 2 22

2 cos
22

3sin cos cos
2 2 22

0

I

I

I

I

K T
r

K
r

K T
r

K
r

T

 θ θ θ σ = − +  π  
 θ θ θ  σ = +  π  


θ σ = υ +
π

 θ θ θ σ =
 π


σ =
 σ =

  (1) 

Where, υ is the Poisson’s ratio, r and θ are the polar coordinates in the plane normal to the crack front and the subscripts 
1, 2 and 3 designate a local Cartesian system formed by the planes normal, tangential and parallel to the crack front. The 
magnitude of the singular term KI is the local mode I stress intensity factor. There are three non-zero components involved 
in the constant T-stress terms: T11, T33 and T13. In practice, T11 is usually simply called the T-stress, which represents tensile 
or compressive stress acting in the crack plane and perpendicular to the crack front, while T33 represents the stress acting in 
the crack plane, and tangent to the crack front. The third T-stress component T13 is the shear stress perpendicular to the crack 
plane. For orthotropic material, these three components are independent of each other for three-dimensional crack front. It 
can be shown further that T11 and T13 are related through [8, 29] 
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Where, ε33 is the tangent strain component at the crack front, sij are components of compliance matrix and s'ij are 
components of reduced compliance matrix for orthotropic  material .I(1)(x3) and I(2)(x3) are values of the interaction integral 
[8]. In three-dimensional modeling of crack along a given location x3, the T33 component is also induced by the extension 
strain ε33(x3) along the crack front. Thus, T33 can be evaluated as  

 ( ) ( )33 3 33 3 13 11 35 13
33

1T x ε (x ) s T s T
s

 = − +    (4) 

A modified J-integral, namely the equivalent domain integral, is used for a three-dimensional orthotropic cracked solid 
to evaluate the stress intensity factor along the crack front using the finite element method. Therefore, the local stress intensity 
factor kI(x3) can be calculated as 

 ( ) ( )1 3
I 3 '

11

2 J x
k x

s e
=  (5) 

Where, J1(x3) represents the value of the equivalent domain integral [8] and e is expression for manipulation of elastic 
constant eigenvalues. 

 

3 Geometrical Model And Material Properties 

The geometry of entire plate considered in this analysis is shown in Figure 1. It has a total length of 2l =2.032 m, a total 
width of 2w =1.016 m, and a total thickness of 2t =0.0084m.  

 

Figure 1: Through-thickness single edge notched cracked plate subjected to a uniform far-field displacement. 

The X-axis is parallel to the crack surface and the Y-axis is orthogonal to the crack surface. The Z-axis is normal to the 
X-Y plane. A uniform displacement u∞ equivalent to a strain value of 0.1% is prescribed on the far ends at Y =± l.  

In these calculations, the composite material considered is AS4 carbon warp-knit fabric [29, 8], designed by the Boeing 
Company, with six layers of the warpknit fabric (0.0084m). Each layer of fabric with fiber volume content of 59.4% contains 
AS4 fibers, along the 0° direction (Figure 1) to form the laminate. The resulting materials properties are listed in Table 1. 
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Table 1: Mechanical properties of the orthotropic plate [29, 8] 

EX (GPa) EY (GPa) EZ (GPa) GYZ (GPa) GXZ (GPa) GXY (GPa) νYZ νXZ νXY 

35.591 81.172 10.549 4.413   3.930   17.092 0.22 0.29 0.18 
 

Due to heterogeneity in fiber reinforced composites and inhomogeneity in the composite laminates, fracture processes 
emanating from crack-like flaws are far more complicated than those occurred in metals. In this paper the composites with 
through-the-thickness cracks are modeled as linear, orthotropic, homogeneous materials using linear elastic fracture 
mechanics (LEFM) for the purpose of verification and comparison. The effects of microscopic failure mechanisms such as 
fiber bridging, matrix cracking, and delamination, which accompany fracture, are not taken into account in the modelling. 
The influence of stitching pattern and knit architecture on the failure initiation of the composites may be of minor importance 
thus is not considered. This can be argued by a previous studies dealing with this subject [8, 29]. 

4 Finite elements model 

Due to loading and geometry symmetry, just one-quart of a through-thickness SENT specimen is modeled by finite 
elements. Therefore, symmetric boundary conditions are imposed in the X-symmetry and Z-symmetry places as illustrated 
in Figure 2. The displacement loading is applied on the surface at Y = l. The finite element model is generated and solved by 
a general-purpose finite element code ANSYS-12.1 [30]. A typical mesh of the finite element model is shown in Figure 3 
and Figure 4. They include coarse 20-node brick-shaped elements called SOLID95 far away from the crack front and refined 
SOLID95 elements at 20 nodes near the crack front. The elements attached on the crack front are 15-node wedge-shaped 
elements (SOLID95 element prism option). The overall mesh of L20 model contains 5640 elements and 25183 nodes with 
75549 degrees of freedom. 

 

Figure 2: One-quart of the plate to be generated as a geometrical model. 

 

Figure 3: Finite element mesh of a one-quart single edge notched-cracked plate: a) the complete L20 model and b) 
Zoom of Mesh refinement near crack front region. 
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Figure 4 :Mesh detail near the crack front of L20 model a) Detail of radius of the outer surface of Ring near the crack 
tip and b) Sizes of element layers through of the half thickness t. 

4.1 Mesh size effect 

A parametric study of the mesh stability is carried out according to the thickness of the SENT models. For this, the half-
thickness of the plates is divided respectively into 10,15,20,25 and 30 layers (table 2) to evaluate the effect of the size of 
elements on the FEM results. 

Table 2: Parameters of the different meshes for the study of the mesh stability case of t/w=0.00825 

Notation Number of layers Number of elements Number of nodes 
L10 10 2988 13043 

L15 15 4398 19113 

L20 20 5640 25183 

L25 25 7050 31253 

L30 30 8460 37323 
 
As prospected and in accordance with the literature [31] the mesh size has no effect on the fracture parameters calculated 

with the energy approach based theory. Effectively, Figures 5, 6, 7 and 8 show clearly the stability of the results for KI, T11, 
T13 and T33, respectively. Therefore, a choice was made on the L20 model to conduct the rest of the study. 

 

Figure 5: Distribution of the normalized SIF along the crack front for various a/w ratios (case of t/w=0.00825). 
(a)Finite element models of L10, L15 and L20, (b) Finite element models of L20, L25 and L30 
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Figure 6: Distribution of the normalized T11 along the crack front for various a/w ratios (case of t/w=0.00825). (a)Finite 
element models of L10, L15 and L20, (b) Finite element models of L20, L25 and L30 

 

Figure 7: Distribution of the normalized T13 along the crack front for various a/w ratios (case of t/w=0.00825). (a)Finite 
element models of L10, L15 and L20, (b) Ffinite element models of L20, L25 and L30 

 

Figure 8: Distribution of the normalized T33 along the crack front for various a/w ratios (case of t/w=0.00825).  
(a)Finite element models of L10, L15 and L20, (b) Finite element models of L20, L25 and L30 



 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 6 (2019) 593–608 599 

 

5 Results and discussion 

5.1 Model Validation 

Before addressing the focused analysis, the obtained results are compared to those published by Yuan and Yang [29]. 
These researchers used methods based on the Betti's reciprocal theorem and the equivalent domain integral (EDI) to extract 
SIF and T-stress for single edge notched tension (SENT) specimens of stitched warp-knit fabric composites [29, 32]. Table 
3 summarizes the comparison between the obtained results. Obviously, present results are in accordance with those given by 
Yuan and Yang. The largest deviations are 3.96% for stress intensity factor KI and 2.41% for T11 stress. 

Table 3: Comparison of fracture parameters for single edge notched tension (SENT) specimens. 

a/w 
Thickness 
(mm) 

End Disp 
(mm) 

KI  [30] 
( MPa m ) 

Actual KI 
( MPa m ) 

Error 
(%) 

T11[29] 
(MPa) 

Actual T11 
(MPa) 

Error 
(%) 

0.25 8.788 1.720 74.062 71.127 3.96 -82.74 -83.36 0.75 

0.34 8.585 1.621 85.160 85.172 0.01 -76.53 -78.10 2.05 

0.25 8.179 1.306 79.227 78.423   1.01 -124.80 -128.38 2.87 

0.33 8.153 1.214 88.127 88.133 0.01 -113.77 -116.039 1.99 

0.50 8.103 0.823 75.051 77.845 3.72 -71.71 -69.98 2.41 
 

Next, a comparison of the force versus crack opening displacement (COD) between an experimental test [33] and FEM 
results for SENT specimens of stitched warp-knit fabric composites is presented in Figure 9. This latter shows a good 
correlation of the results obtained by the present model. 

 

Figure 9: COD versus force for Edge Notch Specimens. 

5.2 Finite element results 

 The normalized stress intensity factor has the form of normalized SIF =KI/σ∞(π.a)0.5, while the normalized T-stresses 
are defined as normalized T11=T11/ σ∞ , normalized T13=T13/ σ∞ and normalized T33=T33/ σ∞. Here σ∞, is the average stress 
computed from the total nodal force F resulted from the far-field displacement u∞, on the plane of Y = l (see Figure 10) 
divided by the cross-sectional area of the plate. For a cracked plate, σ∞=F/(2w.t)  where 2w is the half width and t is the half 
thickness. The thickness of the plate is also normalized because the variations of the stress intensity factor and the T-stresses 
over the thickness are to be investigated. The normalized thickness of an element is defined as normalized t=x3/t. Where, x3 

indicates the coordinate at the center of the element [8]. To determine the distribution of the stress intensity factor and the T-
stresses over the thickness of a particular model, these parameters are first calculated from each of the three adjacent rings of 
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elements very close to the crack front (Rings #2, #3, and #4 as shown in Figure 12.a) by the equivalent domain integral and 
interaction integral. Then, an average value is carried out over three domains. These average values are calculated as follows: 
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It is noted that T33(x3) depends on the T11 and the T13 as given by Eq. (4). 

Figure 13 presents the normalized SIF curves over half of the thickness for different crack aspect ratios. One can note 
the symmetry in the distribution of the SIF with respect to x3=0. It can be mentioned that normalized SIF is relatively stable 
through the thickness; an exception is noted in the region near the free surface where the latter decreases slightly. This is due 
to the free surface singularity. The same trend is observed for all analyzed crack lengths (Figure 14). The normalized SIF 
increases from 1.10 to 2.54 as the a/w ratio increases as shown by Figure 14. The superposition of curve of different thickness 
indicates that normalized SIF is insensitive to the variation of the plate thickness. 

 

Figure 13: Distribution of the normalized SIF along the crack front for various a/w ratios (case of t/w=0.00825). 

 

Figure 14: Normalized SIF at the center of crack front for different thicknesses. 
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In the following, the results relating to the non-singular terms of the William series are presented. For the thinner plate 
(t/w=0.00825), Figure 15 indicates that the distribution of the normalized T11 over a half of the thickness for different crack 
aspect ratios is symmetric with respect to x3=0. A relative monotonous distribution of normalized T11 is noted over a half of 
the thickness. An exception is noted in the region near the free surface (x3/t ≥0.85). This result is consistent with the literature 
[34-37] which confirms that the crack front intersection with the free surface implies a singularity called weak zone 
singularity of the corner. Indeed Hartranft and Sih  argued in [34] that the classical theory of the singularity of stresses and 
strains  in 2D are not valid for the case of 3D at the free surface because such a field violates the physical characteristics of 
deformations of the body. This is valid for all plate widths (Figure 15). 

 

Figure 15: Normalized T11 stresses versus the normalized thickness for different lengths (case of t/w=0.00825). 

Figure 16 indicates that the value of normalized T11 at the center of the thickness decreases gradually from –0.39 to –
3.40 as the a/w ratio increases from 0.1 to 0.9. Identical trends are noted for all plate thicknesses indicating the non-
dependency of normalized T11 term of the plate thickness. 

 

Figure 16: Normalized T11 stresses at the center of crack front (x3/t=0) for different thicknesses. 

Figure 17 summarizes the distribution of the normalized T13 stresses over the half crack front thickness for the case of 
the thinner plate (t/w=0.00825) for different a/w ratios. Unlike normalized T11, normalized T13 decreases along the crack 
front thickness. Note that the trend is anti-symmetric with respect to x3=0 (front center). Instead, the magnitude of the 
normalized T13 stresses decreases gradually from zero at the center of thickness to a much smaller value near the free surface. 
This latter back to zero to satisfy the unstressed free surface condition. 
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Figure 17: Normalized T13 stresses versus the normalized thickness for different lengths (case of t/w=0.00825). 

Figure 18 presents the values of normalized T13 at the crack front center versus the crack length ratios for different 
thickness to width ratios. It can be mentioned that the normalized T13 absolute values increase gradually with respect to a/w 
ratio. Furthermore, it is indicated that T13 is sensitive to the change in thickness of the plate. 

 

Figure 18: Normalized T13 stresses at the center of crack front (x3/t=0) for different thicknesses. 

Figure 19 resumes the obtained results of the third normalized term T33. It can be seen that the trend of normalized T33 
stress is symmetrical with respect to x3=0 and it is almost constant when x3/t < 0.40, but decreases behind this position 
because of boundary effects.  

Figure 20 presents the normalized T33 at the middle position of the crack front as a function of the crack lengths with 
respect to different plate thickness. One can see that the T33-stresse increases in absolute value as the crack length increases 
as well. Figure 20 indicate also that normalized T33 is dependent on the plate thickness. This dependency becomes non-
significant for large thicknesses. 

At this stage, it is possible to fit the various curves presented above. The goal is to formulate analytical expressions 
including the geometric parameters of crack and plate as variables. These combine different factors of rupture such as SIF 
and T stresses with the a/w and t/w. 
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Figure 19: Distribution of the normalized T33 stresses through half of the crack front for various a/w ratios 
(t/w=0.00825). 

 

 

Figure 20: Normalized T33 stresses (x3/t=0) for different thicknesses. 

 

5.3 Analytical formulation 

Based on the numerical results of the different simulation, analytical expressions have been developed for the 
convenience of engineering applications. The choice of analytical functions is based on curve fitting trends. More detailed 
discussion about the fitting method can be developed in [38, 39].The range of applicability of the formulated expressions is 
0.1 ≤ a/w ≤ 0.9 and 0.00825 ≤t/w≤0.200. As imposed by the trends of the presented curves in Figure 17, The normalized 
stress intensity factor solutions at x3/t=0 (mid-plan) can be fitted with polynomial equations which are given by cubic form 
as follows:  

 ( ) ( ) ( )2 3
0 1 2 3A A a/w A a/w A a/wNormalized SIF = + + +  (9) 

Where Ai are polynomial factors, these factors are obtained by closely adjusting the curves presented in Figure 17. 
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The coefficients Ai vary slightly in relation to the t/w ratios (Table 4). Thus, by grouping the different ratio of thickness  
t /w in curves of Ai as a function and making adjustment, it was obtained the following expression: 
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0.006204 3
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Table 4: Parameters of polynomial equation fitted for normalized stress intensity factors. 

t/w A0 A1 A2 A3 

0.00825 0.93906 2.0090 -7.1390 7.5841 

0.016 0.93762 2.0991 -7.3766 7.7525 

0.064 0.94375 2.0340 -7.2119 7.6452 

0.128 0.95096 1.8998 -6.8063 7.3314 

0.200 0.94037 2.0351 -7.2117 7.6303 
 

In the same way as for normalized SIF, the normalized T-stresses solutions at x3/t=0 (mid-plan) can be fitted with 
polynomial equations and written as: 

 ( ) ( ) ( )2 3
11 0 1 2 3/ / /Normalized T B B a w B a w B a w= + + +   (11) 

 ( ) ( ) ( )2 3
13 0 1 2 3/ / /Normalized T C C a w C a w C a w= + + +    (12) 

         ( ) ( ) ( )2 3
33 0 1 2 3/ / /Normalized T D D a w D a w D a w= + + +  (13) 

Where, Bi , Ci and Di are polynomial factors which are given in Tables 5, 6 and 7 ,respectively.  

Table 5: Parameters of polynomial equations fitted for normalized T11-stresses. 

t/w B0 B1 B2 B3 

0.00825 0.1584 -5.6704 17.137 -16.578 

0.016 0.19781 -6.6425 19.584 -18.522 

0.064 -0.50613 1.358 -1.278 -3.2003 

0.128 -0.38433 1.1756 -2.9588 -0.91807 

0.200 -0.4641 1.2691 -2.8604 -2.1244 

 

Table 6: Parameters of polynomial equations fitted for normalized T13-stresses. 

t/w C0 C1 C2 C3 

0.00825 0.00053135 -0.021083 0.050174 -0.043805 

0.016 0.00011168 -0.012882 0.030493 -0.026889 

0.064 -1.5264E-05 -0.0057143 0.01297 -0.011827 

0.128 -9.62E-05 -0.0031333 0.0066737 -0.0064006 

0.200 -0.00011298 -0.0022068 0.0045584 -0.0045596 
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Table 7: Parameters of polynomial equations fitted for normalized T33-stresses. 

t/w D0 D1 D2 D3 

0.00825 0.004208 -3.7738 8.7006 -7.9481 

0.016 0.01676 -2.8436 6.6337 -6.005 

0.064 0.060286 -0.75488 1.5698 -1.7424 

0.128 -0.056606 -0.33875 0.42936 -0.6609 

0.200 -0.06459 -0.1529 0.041224 -0.40532 

In the same way as for normalized SIF, the analytic expressions of normalized T11, T13 and T33 are given by writing the 
different factors Bi, Ci and Di as adjusted by a power law. As a result, expressions of normalized T11, normalized T13 and 
normalized T33 are obtained as follows: 
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w w w w w

t a0.9205 .
w w

Normalized T
− −

−

              = − − +              
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 (14)
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w w w w w
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−
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  (16) 

5.4 Validation of the proposed analytical expressions 

To consolidate the validation of the proposed expressions in this work, it is preceded to a complementary modeling of 
the orthotropic cracked plate. Different parameters were used compared to the first analysis. Thus, comparison of the obtained 
by FEM results to those given by the proposed expressions was made. Figures 21.a and 21.b show the example of the 
normalized KI calculated by FEM compared to that calculated analytically using equation 10.  

 

Figure 21: Comparison of FEM results and the proposed expression for normalized stress intensity factor. 



606 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 6 (2019) 593–608 

 

It is very clear that the proposed solution fits well with the values obtained numerically. Typical results of T-stresses 
from finite element analysis and analytical equations for t/w=0.00825 and 0.016 are shown in Figure 22. It can be seen that 
all the results of the non-singular terms (T-stresses) calculated numerically by FEM are in good correlation with results 
obtained by the proposed analytical solutions given by equations 14, 15 and 16.  

 

Figure 22: Comparison of FEM results and the proposed expressions for normalized T-stresses: a) Normalized T11 for 
t/w=0.00825, b) Normalized T11 for t/w= 0.016,c) Normalized T13 for t/w=0.00825, d) Normalized T13 for t/w=0.016,e) 

Normalized T33 for t/w=0.00825 and f) Normalized T33 for t/w=0.016. 

6 Conclusion 

A 3D finite element models have been realized to compute the SIF and components of non singular terms T-stress for 
orthotropic edge cracked plates. A parametric study has been conducted and analytical formulations giving KI, T11, T13 and 
T33 were proposed. The relative crack depth a/w is varied by 0.1, 0.3, 0.5, 0.7 and 0.9. And the relative thickness of the 
specimen t/w is chosen as 0.00825, 0.016, 0.064, 0.128 and 0.200.  
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 The main conclusions are as follows: 

− Stress intensity factor (KI) is independent of the thickness. 
− The distribution of SIF adopts the same trend regardless of the thickness in the studied range. 
− The same observations are made for the T11. 
− The T13 is dependent on the thickness. The latter is anti symmetric. 
− The T33 also is dependent on the thickness, but adopts a trend similar to that of KI and T11. In other words, 

T33 is distributed similarly for the different thicknesses of the orthotropic plate. 
− Adequate adjustments can be used to develop simple and easy-to-use expressions for calculating of the fracture 

parameters. As indicated by the different comparisons, all the results of fracture parameters from analytical 
expressions are in very good agreement with those performed by the finite element analysis. Thus, for reasons 
of simplicity, these analytical formulations can be used for the encountered engineering applications dealing 
with the case of single edge notched cracked orthotropic plates. 

As a perspective of this work, it is proposed to realize experimental tests to study the failure behaviour of the used 
material by using the proposed expressions in this work. These experimental tests allow as to model the crack propagation 
and to predict the structure lifetime subjected to the same conditions of loading. 
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