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In SU(2) gluodynamics, the Debye gluon contribution WD(A0) to the effective action of the temporal 

gauge field component (we consider A0 = const) is calculated at high temperature in the background 
extRξ   

gauge. It is shown that at A0 ≠ 0 the standard definition 
0 0k = , 0k →

�
 corresponds to long distance 

correlations for the longitudinal in internal space gluons. The transversal gluons become screened by the A0 

background field. Therefore, they give zero contributions and have to be excluded from the correlation 

corrections. The total effective action accounting for the one-loop, two-loop, and correct WD(A0) satisfies 

Nielsen’s identity that proves gauge invariance of the A0 condensation phenomenon. 
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1. Introduction 

Investigation of QCD high temperature phase ‒ quark-gluon plasma (QGP) ‒ is a 

paramount problem nowadays. The order parameter of the phase transition here is Polyakov’s 

loop. In the imaginary time formalism, it is the integral of the gluon field component A0 along 

an imaginary time direction contour. This integral observable is not a solution to gluon field 

equations. Therefore, instead a related parameter, so-called A0 condensate, A0 = const, is also 

discussed. It is a constant part of the temporal gauge field component. In perturbation field 

theory, the A0 ≠ 0 has been determined in loop expansion of an effective action in the two-

loop order [1, 2]. Different aspects of the condensation are discussed in the literature. 

Numerous references can be found, in particular, in review paper [3]. This classical field 

would be very essential for phenomenology. It is relatively simple to take it into account in 

actual calculations. It looks as a color chemical potential in finite temperature field theory. 

Influence of A0 on various processes has also been discussed (see references in recent papers 

[4, 5]). In [6, 7] the gauge fixing independence (and hence a gauge invariance) of A0 ≠ 0 has 

been called in question. In particular, it was stated that the contributions of the plasmon 

diagrams to the effective action WD(A0), which describe the long-range correlation corrections 

to the one-loop effective potential W
(1)

(A0), cancel the part of the two-loop one, W
(2)

(A0), and 

the A0 = 0 must be detected. However, in contrast, in [8, 9] it has been shown that for the sum 

of the one-loop plus two-loop effective action the result A0 ≠ 0 followed. Just for this case 

Nielsen’s identity holds. This, in accordance with the general theory (see, for example, [3]), 

means that the A0 condensation is a gauge invariant phenomenon which is realized at two-

loop level. The contradiction of these conclusions is obvious. 

In the present paper we investigate the role of the plasmon diagrams in more details. To 

realize this, using the SU(2) gluodynamics as an example, we calculate the plasmon 

contribution in a general relativistic  gauge. We show that at A0 ≠ 0 the screening at low 

momenta of transversal color field modes takes place. Therefore they do not give 

contributions to the effective action of the correlation corrections. This is in contrast to the 

calculation procedures applied in the Feynman gauge in [6, 7]. Hence the cause for the 

discrepancy of the results [6, 7] and [3] becomes clear. We derive the correct expression for 

the plasmon contributions
(3)

0( )DW A  (see (13)), which is gauge fixing independent. Nielsen’s 

identity holds for the total effective action 
( ) (1) (3) (2)

0 0 0 0( ) ( ) ( ) ( )tot

DW A W A W A W A= + + .
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That proves the gauge invariance of the A0 condensate. 

In next section, we present a general theory of investigations and some previous 

results necessary for what follows. In section 3, we carry out actual calculations. The 

discussion of the results obtained and the difference between the cases of the SU(2) and 

SU(3) gluodynamics are given in the last section. 

2. Consideration at two-loop order 

Consider the total action for the configuration under consideration in the form 

Let us consider SU(2) gluodynamics in the Euclidean space time embedded in the 

background field 
3

0 0A A constα α
µ µδ δ= =  described by the Lagrangian 

�2 21 1
( ) [( ) ]

4 2

a aL G D A CD D Cµ µµν µ µξ
= + −  (1) 

The gauge field potential
a

a aA Q Aµµ µ= +  is decomposed into quantum and classical parts. 

The covariant derivative in Eq. (1) is ( ) ,
c

ab ab abcD A gє Aµµ µ µδ= ∂ −  

,a a a b cG D Q D Q Q Qµ νµν ν ν µ ν= − −  g is a coupling constant, internal index a = 1,2,3. The 

Lagrangian of ghost fields ,C C is determined by the background covariant derivative 

( )D Aµ and the total one ( )D A Qµ + . As in [2, 8], we introduce the ”charged basis” of 

fields: 

0 3 1 2 0 3 1 21 1
, ( ), , ( ).

2 2
A A A A іA C C C C іCµ µ µ µ µ

± ±= = ± = = ±  (2) 

In this basis a scalar product is 
0 0a ax y x y x y x y x y+ − + − − += = + +  and the structure 

constants are:  = 1 for a = +, b = ‒, c = 0. Feynman rules are the usual ones for the 

theory at finite temperature with modification: in the background field 
a

Aµ  a sum over 

frequencies should be replaced by  in all loops 

of the fields ,Q Cµ
± ±

. This frequency shift must be done not only in propagators but also 

in three particle vertex [6]. The effective action W(A0) is given as a functional integral 

over fields with a compact imaginary time direction 0 ≤ t ≤ 1/T = β: 

� 3
0

0

exp ( ) exp[ ( )],W A VT N DQDCDC d d x L QJ

β

τ − = − −  ∫ ∫ ∫  (3) 

where N is T-independent normalization factor, V is a space volume, J is an external 

source. The effective action up to two-loop order reads: 

(1) (2) 4 (1) 2

4 4

4 (2) 2 2 2

2 2 2 3 1

2
( ) ( ) ( ), ( ) [ (0) 2 ( / 2)],

3

1 2
( ) [ ( / 2) 2 ( / 2) (0)] (1 ) ( / 2) ( / 2)

2 3

W x W x W x W x B B x

W x g B x B x B g B x B x

β π

β ξ

= + = +

= + + −
 (4) 
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where we introduce the dimensionless variable 0gA
x

T
=

π
 and  

2

1 2

3 2 4 3 2

3 4

1 1
( ) ( ), ( ) | | ,

2 6

3 1 1
( ) ( ) , ( ) 2 | | ,

2 2 30

B x x є x B x x x

B x x є x x x B x x x x

= − = − +

= − + = − + −
 (5) 

are the Bernoulli polynomials, . For ξ = 1 it has been calculated in [6] (for 

SU(3) theory see [2, 8]). 

As we see, W(x) is ξ-dependent. This point served as an origin for doubts in the 

gauge invariance of the gluon field condensation phenomenon. As we mentioned in 

Introduction, this problem has been solved within the Nielsen identity method in [8, 9]. 

So here we restrict ourselves to considering the plasmon contribution for ξ to be an 

arbitrary number. 

3. Plasmon contribution 

To be consistent, first we calculate the plasmon contribution in a way developed in 

[6, 7] for the value of ξ = 1. As it is well known [10, 11], the plasmon contribution to the 

effective action WD is to be properly accounted for by summing the ring diagrams with 

leading infrared singularities, which are present in propagator ∼ 1/k
2
. To do that, the 

difference ∆π between the infrared limit of the one-loop polarization tensors at finite 

temperature and the zero temperature ones for all the gluon fields should be computed. 

Now, let us calculate WD(A0). By using the Feynman rules described above and 

taking into account the explicit form of the gluon propagator in the basis (2), 

00

2 2 2 2 2 0 2
(1 ) , , ,

( ) ( ) ( ) ( ) ( ) ( )

ab a b ab
ab

a a a a
D

+− −+

+ −

 
= − − =  

 

µν µ ν
µν

δ δ κ κ δ δ δ δ
ξ

κ κ κ κ κ κ κ
 (6) 

where 
2

2 2
00( ) ( )k k g A k± = ± +

�
, we obtain: 

0

3 2 2

0
3

2 , ( , ,0)

1 ( (0)) ( ( ))
( , ) ,

2 (2 ) 1 ( (0))( ( ))

ab ba

D ab ba
k nT a b

d k П D k
W A

П D k= = + −

= −
−∑ ∑∫

π

ξ
π

 (7) 

where 
00 0

(0) ( ) |
ab ab

k
П k

→
= ∆ �

�

π is the asymptotic form of the one-loop polarization tensor 

and limit 0| | 0k →
�

 is to be calculated in a way depending on the definition of ”infrared 

mass shell” at 00, 0.T A≠ ≠
 

Now, we are going to calculate Eq. (7) in three ways. First was proposed in [6, 7]. 

Let us consider the standard definition of Π
ab 

0

2

00 0,|( )| 0
( ) | ,ab ab

Dk k
П k m

= →
= ∆ = −�π  (8) 

where  is the Debye mass squared [6] and all x-dependent terms are omitted 

as in [6, 7]. Substituting expressions (6) and performing integration we get 

2
(1) 1 2 2

4

1 1
(1 ) (1 ) (3 ) ( 0),

6 4 4 36
d

g g x
W f n− + 

= − + − − + + − + ≠ 
 

λ σ λ σ ξ
β σ σπσ

 (9) 



O�A� Borisenko  V�V� Skalozub 

6 

where 

1/2 1/2
2 2 2

2

2 2

6(1 )
1 ; (1 )

3

x g
x

g

±   −
= + = + ±   
   

ξ π
σ λ σ

π
 (10) 

and the explicit expression for Π00 was used. As usually (see [6, 7]) only the zero mode (n 

= 0), is picked out and the non-static mode contributions are denoted as ( 0)f n ≠ . As we 

see, (1)

DW is ξ -dependent and for ξ = 1 it coincides with the results of [6, 7]. In contrast to 

statements of these papers, one can conclude that the applied procedure results in the 

gauge variant expression. It is easy to verify using Eqs. (4), (9) that in the sum 

 the linear terms are cancelled, as in the Feynman gauge. So, 

following the idea of [6, 7], we would conclude that there is no A0 condensation (in order 

∼ g
2
). 

However, the ξ-dependence of WD may call a doubt on reliability of the latter 

conclusion. On theoretical grounds, it is well known that the plasmon contributions are 

gauge invariant either in QED or QCD [10, 11]. So, this functional must be taken into 

account together with (4). ξ-dependent terms in WD have the order ∼ g
2
. 

But the Nielsen identity holds for the functional (4) alone [8, 9]. Hence it 

immediately follows, the properties described by the sum Wtot occur to be gauge 

dependent. In particular, this concerns the result A0 = 0 of [6, 7]. 

It is not difficult to find the origin for the gauge dependence of . It comes out 

from the definition of the infrared mass shell in the case of A0 ≠ 0 used in these papers. 

Really, as it is well known, the plasmon corrections sum up the singular infrared 

contributions of the tree-level propagators and have the order g
3 

in coupling constant. 

However, from Eq. (6) it follows that only for the longitudinal modes in the internal 

space (a = b = 0) the standard definition: 0 0,| | 0k k= →
�

 
reproduces the infrared 

divergence of D
00

(k). At arbitrary A0 ≠ 0 for transversal modes (a, b = ±) this limit is a 

regular one. 

To have a singular infrared contribution, a slightly modified definition of infrared 

mass shell for transversal modes should be introduced: 0 0( ) 0,| | 0k gA k± = →
�

. With this 

definition used the infrared singularity of the  is reproduced and its gauge 

invariance is obvious. To incorporate this definition in Eq. (7), it is necessary to calculate 

the components 00 0( 0, )П A k+− ≠  of the one-loop polarization tensor.  

Omitting standard one-loop calculations, let us write down the final result, 

0 0 0 0

2 2 00 2 2

00 2 2 00 2( ) 0,| | 0 0,| | 0
| 2 ( (0) ( / 2)), | 4 ( / 2)).

k gA k k k
П g T B B x П g T B x+−

± = → = →
− = ⋅ + − =��� ���  (11) 

Substituting expressions (11) into Eq. (7) and integrating over momentum space, we 

obtain 

3 4
(2) 3/2 3/2

0 2 2 2

2 1
( ) [ ( / 2) 2[ ( / 2) (0))] ].

3 2
D

g T
W A B x B x B= − + +

π
 (12) 

This nonanalytic term has the order ∼ g
3 

and is gauge invariant, as it should be for 

plasmon diagram corrections [10]. 

Now, another question arises: How the condition (k0 ± gA0) = 0 could be 

implemented in the imaginary time formalism? In fact, it is not possible at arbitrary 

values of A0 because of the k0 = 2πTn, n = 0, ±1, ±2,… The only way is gA0 = 0 for n = 0, 
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gA0 = 2πT for n = ‒ 1, gA0 = −2πT for n = + 1. These are the values corresponding to the 

Z(2) symmetry, which takes place for SU(2) gauge fields with unbroken symmetry of the 

Lagrangian (1) at finite temperature. For these values of A0 the values of B2(x/2) = 1/6 and 

the squared bracket in Eq. (12) is the fixed number. This case corresponds to the effective 

action including the one-loop plus (2)

0( )DW A  which describes the Z(2) phases without 

symmetry breaking. This is the exact meaning of the second considered definition of the 

infrared mass shell. 

However, to investigate the spontaneous symmetry breaking we have to put A0 value 

to be arbitrary and determine it from the minimum condition of the effective action. Since 

for this case the symmetry is broken, no infrared singularities present for the transversal 

propagators in Eq. (12). Therefore we have to drop the contribution of these modes in Eq. 

(6), which comes from the polarization tensor (11). Thus, the correct expression for the 

plasmon contribution is 

3 4
3 3/ 2

0 2

2
( ) ( / 2).

3
D

g T
W A B x= −

π
 (13) 

It comes from neutral gluon components of the internal space and obviously is gauge 

invariant. For this case the Nielsen’s identity holds and the effective action 

) has a non-trivial minimum 0A const= . Thus, in 

accordance with general principles of this approach (see [8], [3]), we have to conclude 

that the A0 condensation takes place at two-loop level and is a gauge invariant 

phenomenon. 

4. Discussion 

In the present paper we analyzed the role of the plasmon contributions to the 

effective action of the gluon condensate A0 = const at high temperature. 

Our main result is two-fold. First we shown explicitly that the conclusion of [6, 7] 

derived from the effective action 
(1)

0( , 1)totW A ξ = (Eqs. (4), (9)) is inconsistent with 

Nielsen’s identity and so occurs to be gauge non-invariant. We have calculated the gauge 

independent plasmon contribution 
(2) (12)DW , which takes into consideration the special 

definition of the infrared mass shell 0 0 0,| | 0k gA k± = →
�

 for the transversal internal 

space gluons, which corresponds to the Z(2) unbroken symmetry. This possibility has also 

been mentioned in [2]. But for broken symmetry at high temperature these modes become 

massive and should be excluded from the long-range corrections. As a result, the modes 

occur to be long range and contribute to the effective action. It is gauge fixing 

independent and satisfies Nielsen’s identity. This effective action has a nontrivial 

minimum that implies the gauge invariance of the gluon condensation phenomenon as a 

whole. In this approach, the ξ-dependence of the minimum position simply means that 

there is a set of special unknown this moment diagrams, which contribution cancels the 

non-invariant terms. The cancelation does not change the minimum value of the effective 

action as well as other characteristics of particles. 

The one of the applications of the results obtained is the early Universe before the 

electroweak phase transition. At high temperatures, the symmetry is restored and the W 

and Z bosons as well as photons convert into charged and neutral gluons and Abelian 

gauge fields from U(1) gauge group. For the former fields, all the results obtained are 

relevant. That means the presence of the condensate generated in the weak sector of the 

Standard Model. Detailed investigation of this phenomenon will be present in other 
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publication. As far as we know, it was not discussed elsewhere already. The detailed 

investigation of the plasmon contributions was not given in the review [3] or anywhere 

else. So, the present paper removes this shortcoming. 

To complete, we note that the considered SU(2) gluodynamics differs a little from 

the SU(3) one. In the latter case, two background fields  and  corresponding to the 

commuting generators  and  are expected to be generated. In principle, some 

combinations of these fields could become massless. It may happen after the 

diagonalization of the non-diagonal matrix of charged gluon fields appearing from the 

one-loop polarization tensors entering Eq. (7). This possibility is assumed in [2]. It is 

realized in case when both of condensed fields are nonzero. However, as it is shown in 

[8], [9], and [3], at two-loop level only the condensate 
3

0A const=  is generated. 

Therefore, there are no massless (or unstable) charged modes at high temperature. As a 

result, the situation in SU(3) gluodynamics is similar to the case studied here. 
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