

 THE TRICK FROM ALIENS IN COMPETITIVE PROGRAMMING

Șerban CERCELESCU

International Computer High-School, Bucharest, Romania

Abstract. The scope of this article is presenting a very useful DP optimization technique, introduced in

the competitive programming community with the problem Aliens at IOI 2016. The technique is used to

reduce dimensions in particular DP configurations, by exploiting the convex nature of some cost

functions. We will introduce the technique by starting with a simpler DP problem, show the optimization

from 𝑂(𝑁2) to 𝑂(𝑁𝑙𝑜𝑔𝑉𝐴𝐿) then reveal the full solution of the original problem. Apparently, the official

name of this optimization technique is “parameter search” and the Chinese community calls it “wqs

binary search”.

Keywords: dynamic programming, parameter search, competitive programming.

TRUCUL PROBLEMEI ALIENS ÎN PROGRAMAREA COMPETITIVĂ

Rezumat. Scopul acestui articol reprezintă ilustrarea unei tehnici de optimizare a DP foarte utilă,

introdusă în comunitatea de programare competitivă odată cu problema Aliens la Olimpiada

Internațională de Informatică din 2016. Tehnica este utilizată pentru a reduce dimensiunile în anumite

configurații DP, prin exploatarea caracterului convex al unor funcții de cost. Vom introduce această

tehnică începând cu o problemă DP mai simplă, vom arăta optimizarea de la O (N2) la O (NlogVAL), apoi

vom dezvălui soluția completă a problemei originale. Aparent, denumirea oficială a acestei tehnici de

optimizare este „căutare de parametri”, iar comunitatea chineză o numește „căutare binară wqs”.

Cuvinte cheie: programare dinamică, căutare de parametri, programare competitivă.

A problem example: You are given an array v of integers (possibly negative) of length N

(≤105) and a number K (≤ N). Select at most K disjoint sub-arrays of the initial sequence

such that the sum of the elements included in the sub-arrays is maximized. The standard

approach to such a problem would be a DP of the form:

𝑑𝑝[𝑛][𝑘]= [“the solution for an array with the first n elements of the given array and k

sub-arrays to be taken”] where

4), supposing that K is

comparable in size to N. It is left as an exercise to the reader to find a way of optimize

this recurrence to 𝑂(𝑁2). The trick behind the “aliens optimization” is that we can add a

cost (penalty) which we will denote by λ for each taken sub-array. If λ=0, then the

solution would be taking a sub-array for each positive element, but by increasing the

value of λ, the optimum solution shifts to taking fewer sub-arrays. Now we just have to

find a λ that allows us to take as many sub-arrays as possible, but still fewer that K. To do

a small recap, λ is the cost we assign to adding a new sub-array, and increasing λ will

decrease the number of sub-arrays in an optimal solution or keep it the same, but never

increase it. That suggests that we could just binary search the smallest value of λ that

yields an optimal solution with less than K elements.

CZU: 004.02 DOI: 10.36120/2587-3636.v18i4.104-108

Acta et Commentationes, Sciences of Education, nr. 4 (18), 2019 ISSN 1857-0623
p. 104-108 E-ISSN 2587-3636

104

Implementing this recurrence directly would be 𝑂(𝑁

𝑑𝑝 𝑛 𝑘 = 𝑚𝑎𝑥{𝑑𝑝 𝑛 − 1 𝑘 , 𝑚𝑎𝑥𝑖=𝑘
𝑛−1{𝑑𝑝 𝑖 − 1 𝑘 − 1 + 𝑣𝑘

𝑛

𝑘=𝑖

}}

minbound = 0, maxbound = 1e18
while maxbound - minbound > ε:
 λ = (maxbound + minbound) / 2
 #compute dp and aux for λ
 if cnt[n] <= k:
 minbound = λ
 else:
 maxbound = λ
#compute dp and cnt for the final λ (= final minbound)
return dp[n] + cnt[n] * λ #note that if there are less than k positive values, then cnt[n] < k

𝑑𝑝𝜆[𝑛]=[“The solution for the prefix of length n of our initial array v, where adding a

sub-array comes with cost λ”]

Besides just the dp, we will store another auxiliary array:

𝑐𝑛𝑡𝜆[𝑖] = [“how many sub-arrays does 𝑑𝑝𝜆[𝑛]employ in its solution”]

These recurrences are easily implementable in linear time using partial sums and

maxima. The pseudocode behind all of it would go something like this:

Proof and Formal Requirements: In the case of our initial problem, the fact that

increasing λ never increases the number of sub-arrays taken was probably a very intuitive

fact, but we'd like to find an actual proof that this works and find a general criterion for

using the peak setting optimization in reducing DP dimensions. This criterion is in a way

concavity (or convexity). Let's denote by ans[k] the answer for the problem, but using

exactly k sub-arrays. The key observation in proving that our solving method is correct is

that the ans[k] sequence is concave, that is 𝑎𝑛𝑠[𝑘] − 𝑎𝑛𝑠[𝑘 − 1] ≤ 𝑎𝑛𝑠[𝑘 − 1] −

𝑎𝑛𝑠[𝑘 − 2]. A more natural way of thinking about this and the actual way most people

“feel” the concavity/convexity is by interpreting it as if I have k sub-arrays and add

another one, it will help me more than if I had k + 1 sub-arrays and added another one.

Now let's see how this concavity helps us prove the correctness of our solution.

Suppose λ=0. Our solution will just find the global maximum of our concave sequence,

be it ans[k]. Notice that no matter the value of λ, the fact that our sequence is concave

won't change. Let's shift our attention for a bit from concave sequences to concave

functions. 𝑓(𝑥) = 𝜆𝑥 − 𝑥2 is a fine example. By changing λ, we can move the peak of

the function wherever we want and the function will remain concave.

Now let's go back to our more “discrete” sequence. We have an algorithm that finds

p and ans[p] such that ans[p] is the maximum of the sequence, but we don't want the

maximum of the sequence, we want ans[k] for some given k. So... we can force k to be

the maximum of the sequence, by adding a linear function to our sequence (ans[k] →

ans[k] + λk), just as we changed the peak of our continuous function, we can forcefully

change the peak of our sequence, which is exactly what we did in our solution.

The algorithm will yield that the maximum of the sequence is at k with the value

ans[k] + λk and we just need to subtract λk to obtain our desired value: ans[k]. As for the

Serban Cercelescu

105

 𝑖 − 1 − 𝜆}} 𝜆+ 𝑑𝑝

𝑘=𝑖

𝑛

𝑘{ 𝑣𝑖=1
𝑛−1 𝑛 − 1 , 𝑚𝑎𝑥𝜆 𝑛 = 𝑚𝑎𝑥{𝑑𝑝𝜆𝑑𝑝

general criterion, you might have already guessed it: if (𝑎𝑛𝑠[𝑘])1≤𝑘≤𝑛 is the sequence of

answers for given ks, the sequence must be convex or concave, that is:

∀𝑖 ∈ (1. . . 𝑛), 𝑎𝑛𝑠[𝑖] − 𝑎𝑛𝑠[𝑖 − 1] ≤ 𝑎𝑛𝑠[𝑖 + 1] − 𝑎𝑛𝑠[𝑖]

or

∀𝑖 ∈ (1. . . 𝑛), 𝑎𝑛𝑠[𝑖] − 𝑎𝑛𝑠[𝑖 − 1] ≥ 𝑎𝑛𝑠[𝑖 + 1] − 𝑎𝑛𝑠[𝑖]

Reconstruction Issues: Let's get back to our initial problem (there are N integers, you

have to choose K sub-arrays etc...) and let's change the statement, instead of selecting at

most K, you have to select exactly K sub-arrays. The difference is quite subtle, and the

actual result is different iff there are less than K non-negative integers in the sequence. In

this case, we just have to replace return dp[n] – λ*aux[n] with return dp[n] – λ*k. This

may seem weird and quite unintuitive as for why it works. Let's look at a few proprieties

of our algorithm. First of all, it may not be the case that for each k we have a

corresponding set of lambdas, that is: if for a given p, the maximum λ for which taking p

objects is optimal, then the solution for λ←λ+ε where ε is an arbitrarily small value, may

use more than p+1 objects, i.e. there may be no choice of λ for which the optimal solution

employs a fixed number of elements. This may seem as a small game-killer for our

technique, but let's look at the cause of this issue. Looking back at the Proof paragraphs,

we are given the condition:

∀𝑖 ∈ (1. . . 𝑛), 𝑎𝑛𝑠[𝑖] − 𝑎𝑛𝑠[𝑖 − 1] ≤ 𝑎𝑛𝑠[𝑖 + 1] − 𝑎𝑛𝑠[𝑖]

In case of equality, we may have the following situation: 𝑎𝑛𝑠[𝑖 + 1] = 𝑎𝑛𝑠[𝑖] + 𝑡,

𝑎𝑛𝑠[𝑖 + 2] = 𝑎𝑛𝑠[𝑖] + 2𝑡etc. If the λ we choose equals t, then all of these solutions will

seem equivalently “good”. In fact, if a sub-array of solutions ans[a], ans[a + 1],…, ans[b]

for an arithmetic progression, there is no choice of λ that finds any other optimal solution

other than using a or b objects. However, the fact that our solution fails only on possible

arithmetic progressions from our sequence (i.e. if the sequence is not strictly convex) is

the very thing that will help us solve this issue. Suppose we find the smallest lambda that

makes the solution employs ≤ k objects (let's say it uses a objects). This means the

answer using exactly p objects is dp[p] − λp, but this basically implies that between p and

k (the fixed number of objects we want to use) there is an arithmetic progression (i.e.

ans[k] = ans[p] + t*(k − p)). So if the answer for p would be dp[n] − pλ, then the answer

for k must be dp[n] – pλ − (k − p)λ (which equals dp[n] − λk). This is quite weird as by

finding a solution for p, we also find the answer for k, even if (aux[n] = p) ≠ k. The

downside of this workaround, is that even if we can find the value of the answer, a

general method of reconstructing the solution (finding out what sub-arrays should we

select) may not always exist.

Integral Lambda Search: You might have noticed that we are binary searching a

floating point λ, not an integral valued one. The reason is that if the prerequisites of

applying the optimization are satisfied, then we have proved that a λ exists, not that it

The trick from Aliens in competitive programming

106

would have an integral value. The thing is, in most DP problems, the optimization works

just as well with integers. It's just not that obvious to prove why.

Let's consider a convex sequence of N elements, call it V1...N. Now let's consider a

set of points P={(i, pi) | i [1...N]}, once drawn, together with the line segments between

consecutive points (which will bear great importance in the following steps), you will see

a convex/concave lower/upper hull.

A key observation now is that when looking at our convex sequence geometrically,

the “peak” of the sequence will be the unique point that has segments with different signs

of the slope to its left and to its right (with the exception the edge cases where the

optimum is the first or last element of the sequence). In our drawn example, that peak is

the 6th point, with a segment with negative slope value on its left and positive on its right.

Another useful observation is that if we have two lines𝑦 = 𝑎1𝑥 + 𝑏1and 𝑦 = 𝑎2𝑥 + 𝑏2,

adding a constant value λ to both their slopes doesn't change the x coordinate of their

intersection abscise.

In our context, this means that if we add a constant value to all the slopes of the

segments, the intersection points will remain the same, so the peak x coordinate will still

be integral. Now all that is left to do is “say” this: if we want to force a position t to be

the global optimum of this sequence and the slope of the segment to the left of the point

is l and the slope of the segment right of the point is r and {l,r} Z, then there exists at

least one value λ Z such that l + λ and r + λ have different signs. Translating this

directly into terms of our convex sequence of answers, where our “slopes” are just the

differences between two adjacent answers (i.e. slope[k] = ans[k + 1] − ans[k]), if the

values of ans are integral, then obviously the differences (slopes) will also be integral, so

if the answers to our problem are integral, then we can always binary search λ as an

integral value.

Aliens – IOI 2016: I find it quite amusing that when the IOI introduces some totally new

technique for 99% of its contestants (like the convex hull trick with the problem batch

scheduling at IOI 2002), the technique is usually merely a sub-problem of a task that is

Serban Cercelescu

107

quite difficult on its on own, even without the fact that the contestant is required to

rediscover some then obscure technique.

So is the case with Aliens (IOI 2016), even if you know the optimization, it's still

quite a tricky convex hull trick problem.

The solution goes something like this:

First of all, notice that if a point lies below the main diagonal, we can just replace it

with its transpose (i.e. (x, y) → (y, x)), as any photo that captures (x, y) will also capture

(y, x). After this transformation, notice the fact that we might be left off with a lot of

useless points, that if removed will not change our answer. That is because if we have two

points p2 = (x1, y1) and p2 = (x2, y2) such that x1 ≤ x2 and y1 ≥ y2, any photo that captures p2

will also capture p1, but not all photos capturing p2 will capture p2 and given that we

must capture all points (so p2 must be captured), we might as well remove p1 because it

would have been captured by the photo containing p2 anyway. We can remove these

useless points using a stack, and we'll be left with a sequence of points (x1, y1), (x2, y2),…,

(xb, yb) that if sorted in increasing order by the x coordinate, the sequence will also be

sorted in decreasing order by the y coordinate. From now on, we will consider the

sequence of points in this order.

Let’s define dp[n][k] = {[“minimum area of a square that covers all points from t + 1 to

n”] +

dp λ[t] - [“the area of the intersection between the square and the ones used in dpλ[t]”] +

λ}, which is 𝑑𝑝𝜆[𝑛] = 𝑚𝑖𝑛𝑡=1
𝑛−1{(𝑥𝑛 − 𝑦𝑛 + 1)2 + 𝑑𝑝𝜆[𝑡] − 𝑚𝑎𝑥(𝑥𝑡 − 𝑦𝑡+1, 0)2 + 𝜆},

which can be computed in linear time using the convex hull optimization.

Conclusions

“The aliens trick” is a very powerful optimization technique that most probably will

soon be widespread in the competitive programming world, exploiting the convex nature

of the solution space of some problems. I see this optimization, as a vital technique in the

toolkit of all future and current competitive programmers.

Bibliography

1. Meenakshi K. R. Dynamic Programming for Coding Interviews: A Bottom-Up

approach to problem solving. 1st Edition. Kindle Edition, 2017. 144 p.

2. Lew A., Mauch H. Dynamic Programming. A Computational Tool. Springer, 2007.

377 p.

3. https://ioinformatics.org/files/ioi2016problem6.pdf

4. https://www.hackerearth.com/practice/algorithms/dynamic-

programming/introduction-to-dynamic-programming-1/tutorial/

5. https://www.tutorialspoint.com/data_structures_algorithms/dynamic_programming.

htm

The trick from Aliens in competitive programming

108

https://www.amazon.com/Meenakshi/e/B07Z3D1XQ1?ref=dbs_a_def_rwt_hsch_vu00_taft_p1_i0
https://www.amazon.com/Meenakshi/e/B07Z3D1XQ1?ref=dbs_a_def_rwt_hsch_vu00_taft_p1_i0
https://ioinformatics.org/files/ioi2016problem6.pdf
https://www.hackerearth.com/practice/algorithms/dynamic-programming/introduction-to-dynamic-programming-1/tutorial/
https://www.hackerearth.com/practice/algorithms/dynamic-programming/introduction-to-dynamic-programming-1/tutorial/
https://www.tutorialspoint.com/data_structures_algorithms/dynamic_programming.htm
https://www.tutorialspoint.com/data_structures_algorithms/dynamic_programming.htm

