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Introduction 

Solving the problems of competition in mathematics requires from the participants 

an involvement not only at the level of knowledge, but also elements of creativity. The 

solution of such problems is far beyond the curricular contents of the school. We propose 

in this article to highlight some didactic aspects on solving the contest problems in 

mathematics. 

Initially, we will introduce some definitions: 

a) Definition of 𝒗𝒑 function 

We define 𝑣𝑝(𝑛) to be the greatest power of a prime 𝑝 that divides 𝑛. 

 (Example:   𝑣3(3) =  1, 𝑣2(16) = 4,   𝑣3(63) = 2 ) 

b) Proprieties of 𝒗𝒑 function 

The following will hold for any natural numbers 𝑘, 𝑎, 𝑏 and for any prime 𝑝 : 𝑣𝑝(𝑝𝑘) = 𝑘  

𝑣𝑝(𝑎𝑏) = 𝑣𝑝(𝑎) + 𝑣𝑝(𝑏), 

If 𝑝 ∤ 𝑘then 𝑣𝑝(𝑘) = 0, 

𝑣𝑝(𝑛!) =  ∑ ⌊
𝑛

𝑝𝑖
⌋∞

𝑖=1 . (Legendre’s Formula) 

c) Proprieties of some recurrent expressions in the article  
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METODOLOGIA UTILIZĂRII LEMEI LTE ȘI A LEMEI LUI HANSEL ÎN 

PROBLEME DE CONCURS LA MATEMATICĂ



 

If for a natural number 𝑛 and a prime 𝑝 we have 𝑛 ⋮ 𝑝 then (𝑎𝑛 − 𝑏𝑛) ⋮ (𝑎𝑝 − 𝑏𝑝) 

And (𝑎𝑛 − 𝑏𝑛) ⋮ (𝑎 − 𝑏) 

Theorem Statements 

Hansel’s Lemmas 

Lemma 1: Let𝑥 and 𝑦 be (not necessarily positive) integers and let 𝑛 be a positive integer. 

Given an arbitrary prime p such that:gcd(𝑛, 𝑝) = 1,𝑝 ∣ 𝑥 − 𝑦 and neither 𝑥 nor 𝑦 is 

divisible by 𝑝. We have 𝑣𝑝(𝑥𝑛 − 𝑦𝑛) = 𝑣𝑝(𝑥 − 𝑦). 

Proof: We will use the fact that 𝑥𝑛 − 𝑦𝑛 = (𝑥 − 𝑦)(𝑥𝑛−1 + 𝑥𝑛−2𝑦 + ⋯ + 𝑦𝑛−2𝑥 +

𝑦𝑛−1).      So 𝑣𝑝(𝑥𝑛 − 𝑦𝑛) = 𝑣𝑝(𝑥 − 𝑦) +  𝑣𝑝(𝑥𝑛−1 + 𝑥𝑛−2𝑦 + ⋯ + 𝑦𝑛−2𝑥 + 𝑦𝑛−1).                  

Also from 𝑝 ∣ 𝑥 − 𝑦 we have that 𝑥 ≡ 𝑦(𝑚𝑜𝑑 𝑝).  

Therefore 𝑥𝑛−1 + 𝑥𝑛−2𝑦 + ⋯ + 𝑦𝑛−2𝑥 + 𝑦𝑛−1  ≡  𝑥𝑛−1 + 𝑥𝑛−1 + ⋯ + 𝑥𝑛−1 + 𝑥𝑛−1  ≡

𝑛𝑥𝑛−1 ≢ 0 (𝑚𝑜𝑑 𝑝), in other words 𝑝 ∤  𝑥𝑛−1 + 𝑥𝑛−2𝑦 + ⋯ + 𝑦𝑛−2𝑥 + 𝑦𝑛−1, so 

𝑣𝑝(𝑥𝑛−1 + 𝑥𝑛−2𝑦 + ⋯ + 𝑦𝑛−2𝑥 + 𝑦𝑛−1) = 0.  

Hence 𝑣𝑝(𝑥𝑛 − 𝑦𝑛) = 𝑣𝑝

𝑝(𝑥𝑛 + 𝑦𝑛) = 𝑣𝑝(𝑥 + 𝑦). 

Proof: We will use the fact that 𝑥𝑛 + 𝑦𝑛 = (𝑥 + 𝑦)(𝑥𝑛−1 − 𝑥𝑛−2𝑦 + ⋯ − 𝑦𝑛−2𝑥 +

𝑦𝑛−1).      So 𝑣𝑝(𝑥𝑛 + 𝑦𝑛) = 𝑣𝑝(𝑥 + 𝑦) +  𝑣𝑝(𝑥𝑛−1 − 𝑥𝑛−2𝑦 + ⋯ − 𝑦𝑛−2𝑥 + 𝑦𝑛−1).                  

Also from 𝑝 ∣ 𝑥 + 𝑦 we have that 𝑥 ≡ −𝑦(𝑚𝑜𝑑 𝑝).  

Therefore 

𝑥𝑛−1 − 𝑥𝑛−2𝑦 + ⋯ − 𝑦𝑛−2𝑥 + 𝑦𝑛−1  ≡  𝑥𝑛−1 − 𝑥𝑛−2(−𝑥) + ⋯ − 𝑥(−𝑥)𝑛−2 + 𝑥𝑛−1  ≡

 𝑥𝑛−1 + 𝑥𝑛−1 + ⋯ + 𝑥𝑛−1 + 𝑥𝑛−1  ≡ 𝑛𝑥𝑛−1 ≢ 0 (𝑚𝑜𝑑 𝑝), in other words 𝑝 ∤  𝑥𝑛−1 −

𝑥𝑛−2𝑦 + ⋯ − 𝑦𝑛−2𝑥 + 𝑦𝑛−1, so 𝑣𝑝(𝑥𝑛−1 − 𝑥𝑛−2𝑦 + ⋯ − 𝑦𝑛−2𝑥 + 𝑦𝑛−1) = 0.  

Hence 𝑣𝑝(𝑥𝑛 + 𝑦𝑛) = 𝑣𝑝(𝑥 + 𝑦)■ 

Lifting the exponent lemma (LTE) 

The First Lemma: Let 𝑥 and 𝑦 be (not necessarily positive) integers and let 𝑛 be a positive 

integer and 𝑝 be an odd prime such that 𝑝 | 𝑥 − 𝑦 and none of 𝑥 and 𝑦 are divisible by 𝑝. 

We have 𝑣𝑝(𝑥𝑛 − 𝑦𝑛) = 𝑣𝑝(𝑥 − 𝑦) + 𝑣𝑝(𝑛). 

The Second Lemma: Let 𝑥, 𝑦 be two integers, 𝑛 be an odd positive integer, and 𝑝 be an 

odd prime such that 𝑝 | 𝑥 +  𝑦 and none of 𝑥 and 𝑦 are divisible by 𝑝.  

We have  𝑣𝑝(𝑥𝑛 + 𝑦𝑛) = 𝑣𝑝(𝑥 + 𝑦) + 𝑣𝑝(𝑛). 

(Note: We can see that the second form of the LTE lemma can be deduced form the first 

by setting 𝑦 ≔  −𝑦  and setting 𝑛 to be odd.) 

Proof Sketch: The proof of the LTE lemma is similar to the given proof of Hansel’s 

Lemma. Taking care of the case where gcd(𝑛, 𝑝) > 1 can be handled by using induction 

on the number of prime factors of n  
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(𝑥 − 𝑦)■ 

Lemma 2: Let 𝑥 and 𝑦 be (not necessarily positive) integers and let 𝑛 be a odd positive 

integer. Given an arbitrary prime p such that: gcd(𝑛, 𝑝) = 1,𝑝 ∣ 𝑥 + 𝑦 and neither 𝑥 nor 𝑦

 is divisible by 𝑝. We have 𝑣
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We can use Lifting The Exponent Lemma and Hansel’s Lemma in lots of problems 

involving exponential equations, especially when we have some prime numbers. The 

conditions required seem very particular, but with enough experience of problem solving 

in number theory these lemmas become one of the most important tools. This lemmas 

shows how to find the greatest power of a prime 𝑝 in exponential expressions. 

The proofs of these lemmas use nothing but simple mathematical proprieties and 

methods. 

Some proofs were left unnoted because understanding the theorems usage and its 

meaning is more important than remembering its detailed and somewhat long proof. 

Example Problems 

Problem 1. (Art of Problem Solving). Let 𝑥, 𝑦, 𝑝, 𝑛, 𝑘 be natural numbers such that 𝑥𝑛 +

𝑦𝑛 = 𝑝𝑘. 

Prove that if  𝑛 > 1 is odd, and 𝑝 is and odd prime, the 𝑛 is a power of  𝑝. 

Solution: Let 𝑔 = gcd(𝑥, 𝑦). Clearly 𝑔 is a power of , so dividing both sides by 𝑔𝑛 we get 

the same equation. So we may assume gcd(𝑥, 𝑦) = 1, which will give us 𝑥 + 𝑦 is divisible 

by 𝑝. 

Assume 𝑛 = 𝑝𝑡𝑟 for some natural numbers 𝑡 , 𝑟. If we assume that > 1, by LTE we get 

𝑣𝑝(𝑥𝑝𝑡𝑟 + 𝑦𝑝𝑡𝑟) = 𝑣𝑝(𝑥 + 𝑦) + 𝑣𝑝(𝑝𝑡𝑟) = 𝑣𝑝(𝑥 + 𝑦) + 𝑣𝑝(𝑝𝑡) = 𝑣𝑝(𝑥𝑝𝑡
+ 𝑦𝑝𝑡

) = 𝑘.  

So 𝑝𝑘𝑚 = 𝑥𝑝𝑡
+ 𝑦𝑝𝑡

≤  𝑥𝑝𝑡𝑟 + 𝑦𝑝𝑡𝑟 = 𝑝𝑘 ≤ 𝑝𝑘𝑚. So 𝑚 = 1 and = 1, hence 𝑛 is a power 

of 𝑝 ■ 

Problem 2. (UNESCO contest, 1995). Let 𝑎, 𝑛 be natural numbers and 𝑝 an odd prime, 

such that 𝑎𝑝 ≡ 1(𝑚𝑜𝑑 𝑝𝑛). Prove that 𝑎 ≡ 1( 𝑚𝑜𝑑 𝑝𝑛−1)  

Solution: The statement is equivalent to 𝑎𝑝 − 1 is divisible by 𝑝𝑛. Clearly gcd(𝑎, 𝑝) =

1and 𝑎 − 1 ⋮ 𝑝. 

𝑣𝑝(𝑎𝑝 − 1𝑝) = 𝑣𝑝(𝑎 − 1) + 𝑣𝑝(𝑝)  ≥ 𝑛. 

So 𝑣𝑝(𝑎 − 1) ≥ 𝑛 − 1 ⇔ 𝑎 − 1 ⋮  𝑝𝑛−1■ 

Problem 3. (Bulgaria 1997) Assume that 3n − 2𝑛 = 𝑝𝑘 for some natural numbers 𝑛, 𝑘 and 

a prime 𝑝. Prove that 𝑛 is a prime. 

Solution: Suppose for contradiction that 𝑛 = 𝑞𝑟.  

We get 3𝑞 − 2𝑞|(3𝑞)𝑟 − (2𝑞)𝑟 , 𝑠𝑜 𝑝|3𝑞 − 2𝑞 . 

Applying LTE we get 𝑣𝑝(3𝑞𝑟 − 2𝑞𝑟) = 𝑣𝑝(3𝑞 − 2𝑞) + 𝑣𝑝(𝑟). Hence𝑝 | 𝑟⇒3𝑝 − 2𝑝|3𝑛 −

2𝑛⇒3𝑝 − 2𝑝 ≡ 0 (𝑚𝑜𝑑 𝑝) ⇒ 3 − 2 ≡ 0(𝑚𝑜𝑑 𝑝)(𝐵𝑦 𝐹𝑒𝑟𝑚𝑎𝑡′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚) which is a 

contradiction. 

Problem 4. ( TST Romania 2009) Let 𝑎 , 𝑛 ≥ 3 be two positive integers such that there 

exists a natural number 𝑘 satisfying  

𝑛 | (𝑎 − 1)𝑘. Prove that  𝑛| 𝑎𝑛−1 + 𝑎𝑛−2 + ⋯ + 𝑎 + 1. 

Solution: 𝑎𝑛−1 + 𝑎𝑛−2 + ⋯ + 𝑎 + 1 =  
𝑎𝑛−1

𝑎−1
. 
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Let 𝑝 be a prime that divides 𝑛. 𝑣𝑝(𝑎𝑛 − 1) =  𝑣𝑝(𝑎 − 1) + 𝑣𝑝(𝑛)  ⇒  𝑣𝑝 (
𝑎𝑛−1

𝑎−1
) =

𝑣𝑝(𝑛)⇒𝑛|
𝑎𝑛−1

𝑎−1
. 

Problem 5. (P4 IMO 2019): Find all pairs of positive integers (𝑛, 𝑘) such that: 

𝑘! = (2𝑛 − 1)(2𝑛 − 2)(2𝑛 − 4) ⋯ (2𝑛−2𝑛−1) 

(Hint: The main idea is to try to bound the ranges of 𝑘 and 𝑛 to reduce the problem to just 

solving some finite cases.) 

Solution: Comparing the 𝑣2 on both sides we get: 

𝑣2(𝐿𝐻𝑆) = ∑ ⌊
𝑘

2𝑖
⌋

∞

𝑖=1
 ≤ 𝑘 

𝑣2(𝑅𝐻𝑆) = 1 + 2 + ⋯ + 𝑛 − 1 =
𝑛(𝑛 − 1)

2
 

Hence 𝑘 ≥
𝑛(𝑛−1)

2
. 

(Note. that 𝑣3(22𝑖 − 1) = 1 +  𝑣3(𝑖)(𝐵𝑦 𝑡ℎ𝑒 𝐿𝑇𝐸 𝐿𝑒𝑚𝑚𝑎 1)and 𝑣3(22𝑖−1 − 1) = 0.) 

Comparing the 𝑣3on both sides we get: 

𝑣3(𝐿𝐻𝑆) = 𝑣3(𝑘!) ≥
𝑘

3
 

𝑣3(𝑅𝐻𝑆) = ∑ 1 +   𝑣3(𝑖)
⌊
𝑛

2
⌋

𝑖=1
=  ⌊

𝑛

2
⌋ +  𝑣3(⌊

𝑛

2
⌋ !) ≤

𝑛

2
+

𝑛

4
 

𝑘

3
≤ 𝑣3(𝑘!) = 𝑣3((2𝑛 − 1)(2𝑛 − 2)(2𝑛 − 4) ⋯ (2𝑛−2𝑛−1)) ≤

𝑛

2
+

𝑛

4
 

And finally 
𝑛(𝑛−1)

2
 ≤ 𝑘 ≤

9𝑛

4
 , meaning𝑛 ≤ 4. Now we can check that the only solutions 

are (𝑘, 𝑛) = (1,1), (3,2). ■ 

Problem 6. (Shortlist IMO 2014) Find all triplets of natural numbers (𝑛, 𝑚, 𝑝) such that 

both 𝑥 + 𝑦𝑝−1 𝑎𝑛𝑑 𝑥𝑝−1 + 𝑦 are powers of 𝑝, where 𝑝 is a prime. 

Solution: If = 2, then any pair (𝑥, 2𝑘 − 𝑥) is a solution. If 𝑝 ≥ 3 we have that: 

If 𝑝 divides one of 𝑥or 𝑦, then it clearly divides the other. Assume that 𝑣𝑝(𝑥) = 𝑎 and 

𝑣𝑝(𝑦) = 𝑏 and 𝑎, 𝑏 > 0. WLOG assume that 𝑏 ≤ 𝑎. 𝑣𝑝(𝑥𝑝−1 + 𝑦) = 𝑏 , but clearly 

𝑥𝑝−1 + 𝑦 > 𝑝𝑏 , which is a contradiction. 

If 𝑝 does not divide any of 𝑥 and 𝑦, then we have 𝑥𝑝−1 − 1 ⋮ 𝑝 𝑎𝑛𝑑 𝑦𝑝−1 − 1 ⋮ 𝑝. 

Clearly  𝑥 ≠ 𝑦, WLOG assume x > y.  

Let  𝑝𝑏 = 𝑥 + 𝑦𝑝−1 𝑎𝑛𝑑 𝑝𝑎 = 𝑥𝑝−1 + 𝑦, 𝑤𝑖𝑡ℎ 𝑎 > 𝑏. We have that: 

𝑝𝑏 = 𝑥 +  𝑦𝑝−1|𝑥𝑝−1 + 𝑦 ⇒  𝑝𝑏|𝑦𝑝−2(𝑥𝑝−1 + 𝑦) − 𝑥 − 𝑦𝑝−1 = 𝑥(𝑥𝑝−2𝑦𝑝−2 − 1) ⇒ 

𝑝𝑏|𝑥𝑝−2𝑦𝑝−2 − 1. But 𝑥 ≡  −𝑦𝑝−1(𝑚𝑜𝑑 𝑝𝑏)⇒ (𝑥𝑦)𝑝−2 − 1 ≡ −𝑦𝑝(𝑝−2) − 1 (𝑚𝑜𝑑 𝑝𝑏) 

⇒  

𝑝𝑏|𝑦(𝑝−2)𝑝 + 1. Since 𝑦𝑝−2 + 1 ≡ 0 (𝑚𝑜𝑑 𝑝) ⇒  𝑣𝑝(𝑦𝑝(𝑝−2) + 1) = 𝑣𝑝(𝑦𝑝−2 + 1) + 1⇒ 

𝑥 + 𝑦𝑝−1 = 𝑝𝑏|𝑝(𝑦𝑝−2 + 1) ⇒ 𝑝(𝑦𝑝−2 + 1) ≥  𝑝𝑏 =  𝑥 + 𝑦𝑝−1 >  𝑦 + 𝑦𝑝−1

= 𝑦(𝑦𝑝−2 + 1) 
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⇒ 𝑝 > 𝑦 ⇒ 𝑦 = 𝑝 − 1. 

𝑥 + 𝑦𝑝−1|𝑝(𝑦𝑝−2 + 1) = (𝑦 + 1)(𝑦𝑝−2 + 1) = 𝑦𝑝−1 + (𝑦𝑝−2 + 𝑦 + 1) < 2𝑦𝑝−1 +

2𝑥⇒𝑥 + 𝑦𝑝−1 = 𝑝(𝑦𝑝−2 + 1) ⇒ 𝑝𝑏−1 = (𝑝 − 1)𝑝−2 + 1. 

For 𝑝 = 3 we get 𝑦 = 2 𝑎𝑛𝑑 𝑥 = 5. If 𝑝 > 3 , we have that (𝑝 − 1)𝑝−2 + 1 > 𝑝 and 

(𝑝 − 1)𝑝−2 + 1 ≡ 𝑝(𝑝 − 2) − 1 + 1 ≡ −2𝑝(𝑚𝑜𝑑 𝑝2) ⇒ (𝑝 − 1)𝑝−2 + 1 can not be a 

power of p.  

So finally we have the solutions: (𝑥, 𝑦, 𝑝) = (𝑥, 2𝑘 − 𝑥, 2), (2,5,3), (5,2,3). 

Problem 7. (Iran 2008) Let 𝑎 be a natural number such that 4(𝑎𝑛 + 1) is a perfect cube 

for any natural number 𝑛. Prove that 𝑎 = 1. 

Solution: Set 𝑛 = 2𝑘 for some natural number 𝑘. Take some prime divisor of 𝑎2 + 1, 𝑝. 

3 | 𝑣𝑝(4(𝑎𝑛 + 1)) =  𝑣𝑝(𝑎2 + 1) + 𝑣𝑝(𝑘), but clearly we can change the value of 𝑘, such 

that 3 does not divide 𝑣𝑝(4(𝑎𝑛 + 1)). 

Problem 8. (China TST 2009) Let 𝑎 and 𝑏 be two natural numbers greater than 1, and 𝑏 is 

odd, and 𝑛 is a natural number such that  𝑏𝑛|𝑎𝑛 − 1. Prove that 𝑎𝑏 >
3𝑛

𝑛
. 

Solution: Let 𝑝 be the smallest prime divisor of 𝑏 ( 𝑝 ≥ 3, 𝑠𝑖𝑛𝑐𝑒 𝑏 𝑖𝑠 𝑜𝑑𝑑). 

Then 𝑝𝑛|𝑏𝑛|𝑎𝑛 − 1 ⇒ 𝑛 ≤ 𝑣𝑝(𝑏𝑛) ≤ 𝑣𝑝(𝑎𝑛 − 1).  

We also have that 𝑣𝑝(𝑎𝑛 − 1) ≤  𝑣𝑝((𝑎𝑝−1)𝑛 − 1) = 𝑣𝑝(𝑎𝑛 − 1) + 𝑣𝑝(𝑛) = 𝑣𝑝(𝑛(𝑎𝑛 −

1))⇒  𝑛 ≤ 𝑣𝑝(𝑎𝑛 − 1) ≤ 𝑣𝑝(𝑛(𝑎𝑛 − 1))⇒𝑝𝑛 ≤ 𝑛(𝑎𝑛 − 1)⇒𝑎𝑏 > 𝑎𝑝−1 − 1 ≥
𝑝𝑛

𝑛
≥

3𝑛

𝑛
. 

Conclusions 

Even though number theory is not covered as a topic in school, students that are 

preparing for national and international contests need to have advanced knowledge in some 

topics as LTE and Hansel’s Theorem. This article is a guideline to the study of these 

theorems on a variety of contest problems.  
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