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A B S T R A C T 

The paper describes a method for solving the procurement optimization 

problem based on inverse calculations. The method involves solving the 

unconstrained optimization problem and adjusting the obtained values of 

arguments subject to the constraint. Compared to conventional nonlinear 

optimization methods, the proposed method is easier to implement with 

computer software, since it does not require any determination of additional 

variables and multiple solutions to an unconstrained optimization problem. A 

solution to a two-constraint problem using inverse calculations has been 

considered. In this case, the optimization problem is transformed into a single-

constraint problem. Therefore, when constructing a system of equations for 

determining increments of arguments, the transformed form of the objective 

function and the constraint are taken into account. This paper discusses a 

solution to a procurement portfolio development problem for a confectionery 

company with a limited budget and a target value of contribution margin. The 

obtained solution was compared with the solution produced by the 

mathematical software package and the penalty method. The result of this 

comparison is presented in the paper. The proposed algorithm can be used in 

systems intended to support the procurement decision making process. The 

algorithm can also be used to solve quadratic programming problems of the 

considered form in other fields of research. 

© 2020 Published by Faculty of Engineeringg  

 

 

 

 

1. INTRODUCTION  
 

In the course of its activities, a company needs to use 

various resources. Therefore, the procurement 

management has a significant impact on the overall 

performance. When operating in a competitive 

environment and having a variety of proposals to choose 

from, the company needs to make decisions regarding 

procurement parameters, such as a product mix, a list of 

suppliers, etc. However, since its financial resources are 

limited, the company needs to use them as efficiently as 

possible. Thus, the company faces a procurement 

optimization problem, i. e. the need to choose the best 

option among the existing alternatives, which would 

maximize the value of procurement by using available 

resources. In different studies, the procurement 

optimization means optimization of supplier selection, 

optimization of supplies, and optimization of material 

costs. There are a number of models and methods to solve 

this kind of problems. Let us review some studies in the 

field of enterprise resource management. 
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A large number of studies are dedicated to problems of 

inventory management in which the costs connected with 

delivery, storage and shortage serve as an objective 

function (Cretu, Fontes, & Homayouni, 2019). In case of 

constant demand and constant time between deliveries, 

the classical Wilson model can be used. Some studies 

propose some modifications of this model to take into 

account more complex conditions, e. g., the presence of 

several product mixes (Chen, 2003; Haksever & 

Moussourakis, 2005). The paper (Chen, 2003) considers 

the case where the demand is random. Chang, Ouyang, 

and Teng (2003) proposed a model in which the supplier 

grants a delay in payment to the buyer for large orders. In 

(Dewi, Baihaqi, & Widodo, 2015), the objective function 

includes seven types of costs: procurement, ordering, 

storage, delivery delays, penalty, and operating costs. 

Classical optimization methods (penalty method, 

Lagrangian method), the fuzzy-set theory, the queueing 

theory, transformations based on Cauchy inequality 

(Teng, 2009), etc. are used to solve inventory 

management problems. The authors of (Krichena, 

Laabidia, & Abdelazizb, 2011) use the game theory to 

search for forms of cooperation in procurement between 

retailers with a single supplier who grants quantity 

discounts and delays in payment. For more complex 

problems, such as optimization of multi-level inventory 

management systems, the simulation method (Chu, You, 

Wassick, & Agarwal, 2015) is used. The paper 

(Sauvageau & Frayret, 2015) discusses the use of an 

agent-based approach for optimizing waste paper 

procurement. Storage costs, quality of purchased 

products, and average stock level are considered as 

indicators of procurement activities. The most common 

heuristic optimization methods. The paper (Liu & Tao, 

2015) presents a multi-criteria optimization model 

designed to minimize the time gap between deliveries, 

purchase and delivery costs. In order to solve the 

problem, the particle swarm optimization algorithm was 

used. The study (Yao & Chiou, 2004) discusses a model 

with a single supplier and several customers. The 

optimization problem is to minimize supplier costs with 

limited customer costs. It proposes a solving algorithm 

based on enumerating values of the original variables: the 

production interval and the replenishment interval (how 

often the product stock is replenished by customers). 

 

There are also studies (Castro, Aguirre, Zeballos, & 

Mendez, 2011) that solve the problem on the basis of a 

hybrid algorithm combining simulation and 

mathematical programming. 

 

Suppler selection is an important aspect of procurement 

activities. It can be influenced by various factors, such as 

product quality and reliability of a supplier, as well as its 

pricing policy. The study (Tu et al., 2018) presents a 

supplier selection model aimed at minimizing 

procurement costs and maximizing the quality of service. 

Constraints of the problem determine the minimum 

number of selected suppliers, and the agreement between 

the purchase volume and the existing demand. The study 

(Yadav & Sharma, 2016) discusses the supplier ranking 

process based on a set of characteristics (price, discounts 

offered, meeting delivery deadlines, quality of 

packaging, reputation, etc.) and their weighting factors. 

The higher the value of the integrated indicator, the more 

preferable the selection of the respective supplier.  

 

When solving product mix optimization problems, it is 

necessary to determine a range of products based on their 

individual parameters (marginal profit, price, unit costs, 

etc.). For example, the quantity of each product can be 

determined in such a way as to maximize the total profit 

for a given demand and the operating time of equipment. 

The business profile of a company can be taken into 

account as well; for example, in the paper by Manakhov 

(2016), the products are sold on credit.  

 

In reference (Buravlev & Ivancov, 2012), a procurement 

optimization problem for military equipment is 

discussed. The total costs for a given number of years was 

used as an objective function to be minimized. The 

compliance of the total purchase volume with the 

requirements of the state arms program was taken as a 

constraint. In order to solve the problem, dynamic 

programming was used. The paper (Capliced & Sheffi, 

2003) considers the procurement optimization for a 

carrier. It presents a problem aimed at minimizing the 

cost of procurement while meeting the existing demand.  

 

This study is dedicated to solving the procurement 

optimization problem, i. e. the choice of the type and 

quantity of goods ordered by a firm with a limited budget 

from suppliers (Farmanov, 2008). Thus, the problem 

considers two basic processes: purchasing products from 

a supplier and selling products to customers. The 

purchase volume of a certain product is used as a 

controlled variable. 

 

2. METHODS FOR SOLVING THE 

OPTIMIZATION PROBLEM 
 

Optimization methods are widely used in solving the 

economic problems related to optimal resource 

management. The statement of the optimization problem 

involves identifying an objective function to be 

minimized or maximized, and constraints on its 

arguments. Linear programming problems (objective 

function and constraints are linear) and nonlinear 

programming problems (objective function and/or 

constraints are nonlinear) can be distinguished according 

to the type of the objective function and constraints.  

 

This study is dedicated to solving quadratic programming 

problems with two constraints in the form of equality: 

1

2

( ) min,

( ) 0,

( ) 0,

f x

h x

h x

→

=

=

   (1) 
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where 𝑓(𝑥)  is the quadratic function; 

ℎ(𝑥)  is the linear function. 

 

The paper considers the case where the partial derivatives 

of the objective function depend on a single argument 

and are linear, i. e. second-order partial derivatives of the 

objective function are constant. 

 

Two classical methods, the penalty method and the 

Lagrangian method, are most commonly used for solving 

nonlinear programming problems. Both methods are 

based on reducing a constrained optimization problem to 

an unconstrained optimization problem. The penalty 

method introduces two concepts: the penalty function 

formed from the initial objective function and the penalty 

function of a constraint and a penalty parameter. At each 

iteration, the unconstrained optimization problem of the 

penalty function is solved for a given penalty parameter, 

the value of which gradually increases. The algorithm 

stops working when the elements of the iteration 

sequences change slightly from step to step. If the 

sequence of function arguments is valid, the penalty 

method is called internal; otherwise, it is called external. 

For example, when using the quadratic penalty applicable 

in the presence of a constraint (equality), the solution to 

the minimization problem will be reduced to finding the 

minimum of the penalty function for different values of 

the penalty parameter 𝑅: 

2

1

( , ) ( ) ( ),
k

l
l

P x R f x R h x
=

= +   (2) 

where 𝑃(𝑥, 𝑅) is the penalty function; 

𝑓(𝑥) is the objective function; 

ℎ(𝑥) is the constraint function;  

𝑘 is the number of constraints.  

  

The Lagrangian method implies transforming the 

constrained optimization problem into the unconstrained 

optimization problem with some unknown parameters — 

Lagrange multipliers (Trunov, 2014). When solving the 

problem, it is necessary to form the Lagrange function to 

be minimized: 

1

( , ) ( ) ( ),
k

l l
l

L x f x h x 
=

= +  (3) 

where 𝐿(𝑥, 𝜆) is the Lagrange function; 

𝜆 is the Lagrange multiplier. 

 

Unconstrained optimization problems can be solved by 

using zero-order methods, which use only values of the 

function and arguments at calculated points (Hooke-

Jeeves, simplex, template-based search), first-order 

methods (gradient descent, Cauchy, Fletcher-Reeves, 

etc.), which involve calculating the first partial derivative 

of the optimized function at test points, and second-order 

(Newton) methods, which require the existence of the 

first and second partial derivatives of the function to be 

optimized. 

Such problems can be also solved by methods modifying 

or combining the algorithmic aspects of penalties and 

Lagrange multipliers. For example, this approach is used 

by (Hosobe, 2015). 

 

Computer implementation of the existing methods is a 

time-consuming process. The penalty method requires 

multiple solutions to the unconstrained optimization 

problem, determining an increment of the parameter 𝑅. 

The Lagrange multiplier method introduces additional 

variables 𝜆 and, therefore, increases the dimension of the 

problem.  

 

Also, evolutionary algorithms are used to solve nonlinear 

programming problems. As an example of these 

algorithms, a genetic algorithm can be given. It is used to 

generate populations of solutions, and then perform 

mating, mutation, selection and generation of a new 

population (Isaev, 2005). In reference (Isaev, 2005), a 

penalty function is generated on the basis of an objective 

function and constraints. The advantage of such methods 

is that they can provide a solution to global optimization 

problems in cases where the optimization of a function 

by classical methods is difficult due to its behavior.  

 

However, the resulting solution will be suboptimal and 

vary from implementation to implementation. The 

disadvantages of such methods include the high cost of 

computing resources arising from the need to generate 

multiple solutions and perform multiple iterations to 

improve them. Also, the implementation of such 

algorithms, sets of solution correction rules, is a time-

consuming process. Therefore, the use of such methods 

is not always reasonable.   

 

The paper is aimed at developing a method based on 

inverse calculations for solving a procurement 

optimization problem with a limited budget and a target 

value of total contribution margin. This method is easier 

to implement with computer software compared to 

conventional techniques. 

 

3. INVERSE CALCULATIONS IN THE 

ECONOMIC DECISION-MAKING 

PROCESS 

 
Activities of socio-economic entities can be analyzed 

using various indicators which are related to each other 

through additive, multiplicative, multiple, and mixed 

relationships. Based on the causal relationship of 

variables, problems can be divided into direct and inverse 

ones. The direct problem is aimed at determining the 

resulting indicator using the available values of original 

variables and the type of relationship in order to assess 

the status of an entity. Determining the profit of an 

enterprise using the target values of income and expenses 

can be given as an example.  
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The inverse problem is more complex than the direct one 

and aims to select values of original variables so that the 

target value of the resulting variable is obtained. The 

ultimate goal of solutions to these problems is to make 

optimal management decisions, for example, to 

determine the level of income and expenses that would 

provide a target profit growth. 

Such problems are widely used in astronomy, physics, 

economics, etc.  

 

The complexity of solving inverse problems is due to the 

fact that they are not correct. The concept of correctness 

was defined by J. Hadamard, and means that the solution 

to the problem exists, is unique on a certain set, and 

continuously depends on input data. A valuable 

contribution to the study of inverse problems was made 

by A. Tikhonov, who demonstrated that the specification 

of additional conditions for a solution provides a stable 

problem. He proposed a way to regularize an incorrect 

problem, i.e. reducing the original problem of solving 

some operator equation to a problem of finding the 

minimum of some functional. 

 

A set of inverse calculation tools was developed to solve 

inverse problems in the field of economics using expert 

information specified by an analyst. A solution based on 

inverse calculations (Odincov, 2004) is understood to be 

finding the increments of function arguments using the 

following information: initial values of arguments and 

functions, a new value of the function, coefficients of 

relative importance of arguments, and direction of 

changes in arguments.  

 

The problem is presented as a system of equations where 

the ratio of changes in the arguments is equal to the ratio 

of the relative priority coefficients. In the case of two 

arguments, the system can be expressed as:   

 

1 1

2 2

1 1 2 2

;

( , ) .

x

x

h x x x x y y






=


 +  +  = + 

 (4) 

 

where 𝑥1 , 𝑥2 are the initial values of the arguments;  

∆𝑥1 , ∆𝑥2 are the changes in the arguments; 

𝛼1, 𝛼2 are the relative priority coefficients of the 

arguments 𝑥1 , 𝑥2 respectively;  

𝑦 is the initial value of the resulting indicator;  

Δ𝑦 is the change in the resulting indicator;  

ℎ is the function of relationship between the arguments.  

 

By solving the system, analytical formulas for 

determining changes in the arguments can be obtained.  

So, let us consider the procurement costing problem. 

Input data: 

• the purchase volume of the first product (𝑥1) is 

equal to 11 kg; 

• the purchase volume of the second product (𝑥2) 

is equal to 16 kg; 

• the purchase price of the first product is 125 

units of money; 

• the purchase price of the second product is 105 

units of money. 

 

The total procurement cost is equal to: 

125 ∙ 11 + 105 ∙ 16 = 3,055 units of money.  

 

It is necessary to reduce the number of the first and 

second products so that the cost of procurement is equal 

to 2,500. Figure 1 shows point Q, corresponding to the 

initial values of the variables, and a graph showing the 

values of the variables 𝑥1 and 𝑥2 at which the 

procurement cost is 2,500. It can be seen that the target 

result can be achieved by many combinations of values 

of 𝑥1 and 𝑥2. Therefore, in order to solve the problem, it 

is necessary to involve some expert information: to 

specify whether the variables will decrease or increase, 

as well as the degree of their change which can be 

determined using the relative priority coefficients. 

 
Figure 1. Line of the target level of procurement cost 

 

Assume that the relative priority coefficient for the first 

product be 0.4, for the second one — 0.6. The target value 

of the resulting indicator should be achieved by reducing 

the purchase volume for each product, i.e., the change in 

the total purchase volume is mainly due a decrease in the 

purchase volume of the second product.   

 

The system of equations has the form: 

 

1

2

1 2

0.4
;

0.6

125(11 ) 105(16 ) 2500.

x

x

x x


=


 − + − =

 

 

Solution to the system: ∆𝑥1=2.743, ∆𝑥2=2.02.  

 

Solving problems of this kind is relevant, because it helps 

to answer the question “how to do it so that ...?”, and 

determine control actions to achieve the desired state of 

an economic entity, which is the essential function of 

systems supporting optimal decision-making. Thus, it is 

possible to solve the most important problem, 

synthesizing management by objectives with the 

balanced scorecard, where the root of the tree represents 

0
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the strategic objective, while operational indicators are 

located at terminal nodes (Figure 2) (Odintsov, 2014).  

 

 
Figure 2. Elements of the inverse problem 

 

This method has been adopted in solving socio-economic 

problems. In particular, it is used to generate a value of a 

certain integrated quantity by determining its component 

indicators. For example, the paper (Vishtak & Shtyrova, 

2014) considers the development of the integrated quality 

indicator of continuing education at university, which is 

determined by a set of groups of indicators at a lower 

hierarchy level: indicators of learning outcomes, quality 

indicators of the learning process, management quality 

indicators of an organizational unit; indicators of 

resource availability. In turn, each of the above groups of 

indicators is determined by indicators of a lower 

hierarchy level. Thus, the problem is solved from top to 

bottom of the hierarchical structure presented in the tree-

like form. In reference (Barmina & Kvyatkovskaya, 

2010), the integrated performance indicator of a business 

company is developed using a hierarchical structure as 

well. It presents methods for determining integrated 

performance indicators and a set of measurable quality 

indicators based on cognitive modeling. The inverse 

calculation mechanism is used to solve a problem of 

developing recommendations on how to improve the 

performance of a company. 

 

The paper (Blyumin & Borovkova, 2018) discusses the 

use of inverse calculations to determine performance 

indicators for employees at a university department so 

that the desired department’s rating is reached. A further 

analysis of the final changes identified employees who 

could make the greatest inputs to the overall department’s 

rating. 

 

In most cases, the integrated indicator is developed using 

additive convolution, in which increments of the 

arguments can be determined using the following 

formulas (𝑢 are the weighting factors of the indicators 

that constitute the integrated characteristic 𝑦):  

1 1 1 2 2 2

1
2

1 2
1

2
1

2 1
2

( ) ( ) ,

,

.

u x x u x x y y

y
x

u u

y
x

u u









+  + +  = + 


 =

+


 =

+

(5) 

Some studies are aimed not only at using the inverse 

calculation tools for solving applied problems, but also at 

modifying these tools for individual tasks. For example, 

the paper (Odintsov & Romanov, 2014) considers the 

existence of constraints on values of indicators.  

 

A separate area of research is dedicated to the 

development of methods and algorithms based on inverse 

calculations which do not require any expert information 

or require it to a lesser extent. Relying on expert opinions 

has its positive aspects: several possible solutions to the 

problem can be considered; relative priority coefficients 

can be set taking into account the real possibility of a 

direction of change in the arguments. However, when 

using expert information, an analyst needs to take some 

additional steps to identify and justify it. The resulting 

solution is subjective and depends on the analyst’s 

experience and competence. In addition, the statement of 

the problem may imply the optimization of individual 

parameters instead of using expert information or using 

the existing relationship between indicators. 

 

The problems that can be solved without involving expert 

information include, but not limited to, a problem aimed 

at finding a solution as close as possible to the original 

one, i.e. with a minimal change in arguments. Here, the 

initial values characterize the current state of an entity of 

interest. Therefore, the less they change, the less effort is 

required to achieve the goal. 

 

Classical metrics (Euclidean metric, squared Euclidean 

metric, or Manhattan distance) can be considered as a 

measure of deviation of the obtained solution from the 

original one. For example, the paper (Gribanova, 2018) 

discusses a solution to a problem in the case where the 

sum of squares of argument increments is minimized. 

Using geometry, the authors determined systems of 

equations to be solved by finding a change in the 

arguments. So, for the problem presented in Figure 3 the 

shortest distance from point Q to the straight line 𝑥2 =
2500−105𝑥1

125
  is the length of the perpendicular QD. Thus, 

when moving from point Q to point D, the change in the 

arguments will be minimal. The change in the first 

argument (∆𝑥1) is equal to the length of segment QB; the 

change in the second argument (∆𝑥2) is equal to the 

length of segment BD (𝑄𝐷2 = 𝐷𝐵2 + 𝑄𝐵2). 
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Figure 3. Solving the problem while minimizing 

changes in the arguments 

 

As can be seen from Figure 3, angle QDB is equal to 

angle DSB. Since the tangent of the angle is equal to the 

slope, the ratio of the increments is equal to the slope with 

the variable 𝑥1  with a minus sign, while values of the 

increments can be determined by the following system: 

 

2

1

1 2

0.84;

125(11 ) 105(16 ) 2500.

x

x

x x


=


 +  + +  =

 

 

Solution to the system:  ∆𝑥1= –2.603, ∆𝑥2= –2.187. 

 

4. METHOD FOR SOLVING THE 

PROBLEM BASED ON INVERSE 

CALCULATIONS  
 

This approach can be used to solve quadratic 

programming problems. 

 

The study (Gribanova, 2019) describes an algorithm to 

solve a quadratic programming problem with a single 

linear constraint using inverse calculations: 

 

1

( ) min,

( ) ,
n

i i
i

f x

h x a x A
=

→

= =
   (6) 

 

 where 𝑎 is numerical values with the arguments;  

𝐴 is the specified value of the constraint.  

 

This algorithm includes the following main steps. 

 

Step 1. Solve the unconstrained optimization problem: 

determine the minimum point of the objective function 

𝑓(𝑥). As a result, values of   𝑥̂ are obtained. 

 

Step 2. Calculate values of 𝜂𝑖,𝑗  as the ratio of second-

order partial derivatives of the objective function (𝑗 – 

index of the variable used as the basic index; 𝑘𝑖  is the  

 

value of the second-order partial derivative with respect 

to the variable 𝑥𝑖, 𝑖 = 1. . 𝑛, 𝑖 ≠ 𝑗; 𝑛 is the number of 

variables): 

, .i
i j

j

k

k
 =    (7) 

Step 3. Values of  𝑟𝑖,𝑗  are calculated as a ratio of 

numerical values with the arguments in the constraint 

(which are equal to the partial derivatives for the 

corresponding variables): 

, .i
i j

j

a
r

a
=   (8) 

Step 4. Solve the system of equations: 

, ,

1

, 1.. , ;

( ) .

i
i j i j

j

n

i i i
i

x
r i n i j

x

a x x A



=


= = 




+  =




 (9) 

The following general formulas for the increments, 

obtained by solving the system of equations, can be used 

for the considered problem: 

1

,

,1,

,

,

,

, 1.. , .

n

i i
i

j n
i j

i j
i ji i j

i j
i j

i j

A a x

x
r

a a

r
x x i n i j





=

= 

−

 =

+

 =  = 





)

 (10) 

 Let us consider the use of this apparatus for solving the 

following quadratic programming problem: 

2 2
1 2

1 2

( ) 4 min,

2 3.

f x x x

x x

= + →

+ =
  (11) 

Figure 4 shows a contour plot and line 𝑥1 = 3 − 2𝑥2. The 

objective function   reaches its minimum at point Q (0;0). 

The problem is reduced to moving from the minimum 

point Q to a point on the constraint line, while minimizing 

change in the arguments   and   (Figure 1). The shortest 

distance from point Q to the straight line 𝑥1 = 3 − 2𝑥2 is 

the length of the perpendicular QD.  

 

Values of the increments can be determined by the 

following system: 

 

2

1

1 2

2;

0 2(0 ) 3.

x

x

x x


=


 +  + +  =

 

 

Solution to the system: ∆𝑥1 =0.6,  ∆𝑥2=1.2. 
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Figure 4. Graphic representation of the problem 

 

However, it is now necessary to take into account the 

difference in influence of the arguments on the change in 

the function 𝑓(𝑥). To do this, we calculate the second-

order partial derivatives (first-order partial derivatives 

will be linear functions, the change rate of which is to be 

calculated): 

 

 
𝜕2𝑓(𝑥1,𝑥2)

𝜕𝑥1
2 = 8, 

𝜕2𝑓(𝑥1,𝑥2)

𝜕𝑥2
2 = 2.  

 

The ratio of partial derivatives is equal to 4. Let us adjust 

the system of equations taking into account the calculated 

ratio of second-order partial derivatives: 

 

2

1

1 2

2
2;

8

0 2(0 ) 3.

x

x

x x


=


 +  + +  =

 

 

Solution to the system: ∆𝑥1=0.176, ∆𝑥2=1.412 (point S). 

The obtained solutions match the solution to the 

quadratic programming problem obtained using the 

Mathcad package. 

 

This paper considers the optimization problem with two 

constraints:  

1
1

2
1

( ) ,

( ) .

n

i i
i

n

i i
i

h x a x A

h x c x C

=

=

= =

= =





  (12) 

where 𝑐 is numerical values with the arguments;  

𝐶 is the specified value of the constraint.  

 

In this case, it is necessary to derive a mathematical 

expression of the variable 𝑥𝑠 from the equation ℎ1. 

As a result, the optimization problem is given by:  

1,
2

1,
2 1

( ,..., ,..., ) min,

( ,..., ,..., ) .

n

i i
i i s

n
s

n

i i
i i s

n
s

A a x

f x x
a

A a x

h x x C
a

= 

= 

−

→

−

=





 (13) 

 

5. SOLUTION TO THE PROCUREMENT 

OPTIMIZATION PROBLEM  
 

Let us consider the application of the considered method 

for solving the procurement optimization problem, based 

on the data provided by a confectionery company 

(Gribanova, 2018). The company makes a daily demand 

forecast based on available statistical data for previous 

periods. The company needs to purchase goods in such a 

way as to best meet the demand with limited financial 

resources. The input data for the model include: 

• 𝑏𝑖 is the forecast value of average demand for 

the product 𝑖  (𝑖 = 1. . 𝑛,  𝑛 is the number of 

product items); 

• 𝑎𝑖  is the purchase price of the  𝑖th product; 

• 𝐴  is the amount of the procurement budget. 

 

The resulting problem is a quadratic programming 

problem with a linear constraint in the form of the 

equality: 

2

1

1

( ) ( ) min,

( ) .

n

i i
i

n

i i
i

f x x b

h x a x A

=

=

= − →

= =





 (14) 

This problem also allows the contribution margin to be 

taken into account and a constraint on its specified value 

to be added:  

2

1

1
1

2
1

( ) ( ) min,

( ) ,

( ) .

n

i i
i

n

i i
i

n

i i
i

f x x b

h x a x A

h x c x C

=

=

=

= − →

= =

= =







 (15) 

where C is the value of total contribution margin; 

𝑐𝑖 is the contribution margin of the  𝑖th product. 

 

Details of three confectionery products are given in Table 

1. The procurement budget is 3,000 rubles. The target 

value of total contribution margin is 1,150 rubles. 
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The single-constraint quadratic programming problem 

can be presented as follows:  

2 2 2
1 2 3

2
4

1 2 3 4

( ) ( 11) ( 16) ( 8)

( 5) min

125 105 170 160 3000.

f x x x x

x

x x x x

= − + − + − +

+ − →

+ + + =

  (16) 

The minimum of the objective function 𝑓(𝑥) represents 

the forecast demand 𝑏: 𝑥̂1 = 11, 𝑥̂2 = 16, 𝑥̂3 = 8, 𝑥̂4 =
5. Thus, when solving the procurement optimization 

problem, values of the forecast demand can be taken as 

the solution obtained in the first step of the considered 

algorithm, i. e. there is no need to solve the unconstrained 

optimization problem. 

 

Table 1. Input data 

Indicator 
Product number, 𝑖 
1 2 3 4 

Forecast 

demand, kg 
11 16 8 5 

Purchase price, 

rubles per kg 
125 105 170 160 

Contribution 

margin, rubles 
50 40 40 55 

 

Since in this case the arguments equally influence the 

change in the function, all values of  𝜂𝑖,𝑗 are equal to 1. 

Let us calculate the values of 𝑟𝑖,𝑗  using the purchase price 

data 𝑎𝑖: 𝑟1,4 =
𝑎1

𝑎4
= 0.781, 𝑟2,4 =

𝑎2

𝑎4
= 0.656, 𝑟3,4 =

𝑎3

𝑎4
= 1.063. 

 

Next, using inverse calculations, we can determine 

changes in order quantities by solving the system of 

equations: 

1 2 3

4

1

4

2

4

3

4

125(11 ) 105(16 ) 170(8 )

160(5 ) 3000;

0.781;

0.656;

1.063.

x x x

x

x

x

x

x

x

x




 +  + +  + +  +

+ +  =
 

=



=



 =


 

 

The resulting increment values are equal to Δ𝑥1 =
−3.412, Δ𝑥2 = −2.866, Δ𝑥3 = −4.64, Δ𝑥4 = −4.367. 

Therefore, the following values (kg) will be the solution 

to the problem: 

 

1

2

3

4

11 3.412 7.588,

16 2.866 13.134,

8 4.64 3.36,

5 4.367 0.633.

x

x

x

x

= − =

= − =

= − =

= − =

 

Table 2 presents the results obtained using the penalty 

method (quadratic penalty). 

 

For a variant of problem (16), the Lagrange function will 

have the form: 

2 2 2
1 2 3

2
4 1 2 3 4

( , ) ( 11) ( 16) ( 8)

( 5) (125 105 170 160

3000).

L x x x x

x x x x x





= − + − + − +

+ − + + + + −

−

    (17) 

Table 2. The results obtained using the penalty method 

Penalty 

parameter R 

Arguments of the function  𝑓(𝑥) 

𝑥1 𝑥2 𝑥3 𝑥4 

0 11 16 8 5 0 

50 7.717 13.169 3.118 0.766 60.553 

100 7.588 13.134 3.36 0.633 60.459 

 

To solve the problem, it is necessary to calculate the 

partial derivatives of the function with respect to the 

variables x:  

 

1
1

2
2

3
3

4
4

( , )
125 2 22,

( , )
105 2 32,

( , )
170 2 16,

( , )
160 2 10.

L x
x

x

L x
x

x

L x
x

x

L x
x

x














= + −




= + −




= + −




= + −



 

 

Then it is necessary to solve the system of equations: 

 

1

2

3

4

1 2 3 4

125 2 22 0,

105 2 32 0,

170 2 16 0,

160 2 10 0,

125 105 170 160 3000 0.

x

x

x

x

x x x x









+ − =


+ − =


+ − =
 + − =

 + + + − =

 

 

The solution to the system: 𝑥1=7.588, 𝑥2=13.134, 

𝑥3=3.36, 𝑥4=0.633, 𝜆=0.055. The value of the objective 

function f is 60.459. 

 

With the obtained values of the arguments, the total 

contribution margin is 1,074 rubles. For example, we 

need to find a solution at which the total contribution 

margin would reach 1,150 rubles. The optimization task 

is given by:  

  

2 2 2
1 2 3

2
4

1 2 3 4

1 2 3 4

( ) ( 11) ( 16) ( 8)

( 5) min,

125 105 170 160 3000;

50 40 40 55 1150.

f x x x x

x

x x x x

x x x x

= − + − + − +

+ − →

+ + + =

+ + + =

 (18) 
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Let us solve this problem using the proposed approach. 

In the first equation, we select a variable with the highest 

numerical value and express it as: 

1 2 4
3

3000 (125 105 160 )

170

x x x
x

− + +
= .  (19) 

Then the optimization problem is given by:  

 

2 2
1 2

21 2 4

2
4

1 2 4
1 2

4

( ) ( 11) ( 16)

3000 (125 105 160 )
( 8)

170

( 5) min,

3000 (125 105 160 )
50 40 40

170

55 1150.

f x x x

x x x

x

x x x
x x

x

= − + − +

− + +
− +

+ − →

− + +
+ + +

+ =

(20) 

The minimum of the objective function 𝑓(𝑥) is defined 

as: 𝑥̂1 = 7.588, 𝑥̂2 = 13.13, 𝑥̂4 = 0.633. 

The second derivatives of the objective function: 
𝜕2𝑓(𝑥1,𝑥2)

𝜕𝑥1
2 = 3.081, 

𝜕2𝑓(𝑥1,𝑥2)

𝜕𝑥2
2 = 2.763, 

𝜕2𝑓(𝑥1,𝑥2)

𝜕𝑥4
2 =

3.772. The partial derivatives of the constraint function: 
𝜕ℎ2

𝜕𝑥1
= 20.588, 

𝜕ℎ2

𝜕𝑥2
= 15.294, 

𝜕ℎ2

𝜕𝑥4
= 17.353. 

 

Then we obtain the following system of equations:  

1

2

1

2

1 2

1

2 4

4

3.081 20.588
;

2.763 15.294

3.081 20.588
;

3.772 17.353

50(7.588 ) 40(13.13 )

3000 (125(7.588 ) 105(13.13

) 160(0.633 ))
40

170

55(0.633 ) 1150.

x

x

x

x

x x

x

x x

x


=


 

=



+  + +  +

 − +  + +

 + + + 

+

+ +  =

  

 

The solution to the system: ∆𝑥1=1.682,  ∆𝑥2=1.393, 

∆𝑥4=1.158. Thus, the target values of the arguments are 

equal to: 𝑥1  = 9.27, 𝑥2 =14.527, 𝑥4 =1.791, 𝑥3 =0.172.  

The value of the objective function f is 76.731. When 

solving the optimization problem using the standard 

MathCad function, the value of the objective function is 

76.401. 

 

Table 3 presents the results obtained using the penalty 

method (quadratic penalty). 

 
Table 3. The results obtained using the penalty method 

(the problem with two constraints) 

Penalty 

parameter R 

Arguments of the function  𝑓(𝑥) 

𝑥1 𝑥2 𝑥3 𝑥4 

0 11 16 8 5 0 

100 8.391 14.209 -0.23 3.114 81.305 

1000 9.65 14.452 0.301 1.407 76.401 

10000 9.649 14.453 0.301 1.407 76.401 

For a variant of problem (18), the Lagrange function will 

have the form: 

2 2 2
1 2 3

2
4 1 1 2 3 4

2 1 2 3 4

( , ) ( 11) ( 16) ( 8)

( 5) (125 105 170 160

3000) (50 40 40 55 1150).

L x x x x

x x x x x

x x x x







= − + − + − +

+ − + + + + −

− + + + + −

    (21) 

To solve the problem, it is necessary to calculate the 

partial derivatives of the function with respect to the 

variables x:  

1 2 1
1

1 2 2
2

1 2 3
3

1 2 4
4

( , )
125 50 2 22,

( , )
105 40 2 32,

( , )
170 40 2 16,

( , )
160 55 2 10.

L x
x

x

L x
x

x

L x
x

x

L x
x

x


 


 


 


 


= + + −




= + + −




= + + −




= + + −



 

 

Then it is necessary to solve the system of equations: 

1 2 1

1 2 2

1 2 3

1 2 4

1 2 3 4

1 2 3 4

125 50 2 22 0,

105 40 2 32 0,

170 40 2 16 0,

160 55 2 10 0,

125 105 170 160 3000 0,

50 40 40 55 1150 0.

x

x

x

x

x x x x

x x x x

 

 

 

 

+ + − =


+ + − =
 + + − =


+ + − =
 + + + − =


+ + + − =

 

 

The solution to the system: 𝑥1=9.658, 𝑥2=14.454, 

𝑥3=0.305, 𝑥4=1.396, 𝜆1=0.189, 𝜆2= –0.419. The value of 

the objective function f is 76.401. 

 

As it can be seen, the solution to the problem obtained 

using the method based on inverse calculations is 

consistent with the solution arrived at by the penalty 

method. Furthermore, a combination of these methods 

can be used to increase their accuracy: the solution 

obtained using the method based on inverse calculations 

can be considered as a starting point for solving the 

problem by the penalty method. 

 

5.1 Solving the problem with a nonlinear 

constraint 
 

Let us consider the case where the dependence of the 

company’s contribution margin on the purchase volume 

of the 𝑖th product is expressed by a quadratic function: 

 
2

1 1

2
2 2

2
3 3

2
4 4

287.65 3.84( 9) ,

310.34 3.5( 10) ,

285.74 3.09( 10) ,

388.58 6.15( 8) .

c x

c x

c x

c x

= − −

= − −

= − −

= − −

 (22) 
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The profit value is limited to 1,000.  

Then the optimization problem is given by:  

2 2 2
1 2 3

2
4

1 2 3 4

2 2
1 2

2 2
3 4

( ) ( 11) ( 16) ( 8)

( 5) min,

125 105 170 160 3000;

287.65 3.84( 9) 310.34 3.5( 10)

285.74 3.09( 10) 388.58 6.15( 8)

1000.

f x x x x

x

x x x x

x x

x x

= − + − + − +

+ − →

+ + + =

− − + − − +

+ − − + − − =

=

(23) 

The solution to the unconstrained optimization problem 

has been obtained previously (when expressing 𝑥3 from 

the first equation): 𝑥̂1 = 7.588, 𝑥̂2 = 13.13, 𝑥̂4 = 0.633. 

However, in this case, the system of equations should be 

generated iteratively due to the fact that the partial 

derivatives of the constraint depend on the values of 𝑥. 

Graphically, such a problem-solving process can be 

represented as an approximation to a target value of the 

constraint function at a certain step. For example, Figure 

5 (the problem-solving process for a nonlinear 

relationship) presents the initial point Q. Its coordinates 

change with values of the partial derivatives of the 

constraint function and the second derivatives of the 

objective function. At a large step, the solution can 

significantly differ from the optimal one. At a small step, 

a large number of iterations will be required to achieve 

the target value of the constraint function.  

 

 
  Figure 5. The problem-solving process for a nonlinear 

relationship 

 

Then, at the first iteration, the values of the arguments 

change as follows (∝= 0.05, 𝑎 is some small number that 

enables a motion towards the target value of the 

constraint 𝐴 at a certain step):  

 

1

2

4

19.33
7.588 0.05 7.27,

3.08

46.4
13.13 0.05 12.294,

2.76

56.353
0.633 0.05 1.38.

3.77

x

x

x

−
= + =

−
= + =

= + =

)

)

)

 

 

Table 4 presents the results of further iterations.  

 

 

 

 

Table 4. The problem solution at  ∝= 0.05 

The number of 

iteration 

Arguments of the function  𝑓(𝑥) 

𝑥1 𝑥2 𝑥3 𝑥4 

1 7.274 12.294 3.406 1.380 61.823 

2 7.003 11.562 3.473 2.001 65.157 

3 6.771 10.925 3.549 2.520 69.602 

4 6.573 10.372 3.628 2.953 74.573 

5 6.406 9.894 3.704 3.317 79.683 

6 6.265 9.479 3.776 3.623 84.682 

 

Table 5 presents the results produced by the 

mathematical software package, the Lagrange multiplier 

method and the penalty method (the change in the penalty 

parameter = 500; accuracy = 10−4).  

 

Thus, the solution with the lowest value of the objective 

function was obtained using the Lagrange multiplier 

method. 
 

Table 5. Solutions of the problem using various 

methods 

The method 

Arguments of the  

function  
𝑓(𝑥) 

𝑥1 𝑥2 𝑥3 𝑥4 

Lagrange multiplier 

method 
6.35 9.676 3.606 3.608 82.859 

The penalty 

method 
5.913 9.822 3.817 3.63 83.424 

The standard 

MathCad function 
6.349 9.677 3.605 3.609 82.859 

 

6. DISCUSSION 
 

A method for solving the procurement optimization 

problem based on inverse calculations was proposed. A 

solution to the problem with one and two linear 

constraints, as well as with one linear and one nonlinear 

constraint, was considered. The constraints of the 

problem are given by an equation, which corresponds to 

a limit on the amount of available funds and the need to 

fully expend them, as well as to the achievement of the 

profit target. In the case of two constraints, the problem 

is reduced to a single-constraint problem using the 

variable replacement method. 

 

The method is developed on the basis of the previously 

proposed method for solving inverse problems while 

minimizing the sum of squares of argument increments. 

The difference is that the proposed method offers the 

possibility to solve optimization problems with several 

constraints. Its modification for solving a problem by 

successively changing the arguments can provide a 

solution even with a nonlinear constraint. The obtained 

results agree with the solutions produced by a 

mathematical software package and classical methods 

(penalties and Lagrange multipliers). 

 

The highest degree of agreement was achieved with a 

single linear constraint. When solving the problem with 

a single nonlinear constraint, the iterative procedure was 
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applied by successively changing values of the 

arguments, taking into account the partial derivatives of 

the constraint and the second partial derivatives of the 

objective function. 

 

In contrast to classical methods, the proposed method 

does not require multiple optimization of the modified 

function, including the objective function and the 

constraint. Also, this method does not require 

determining additional variables that increase the 

dimension of the problem. Thus, it is possible to solve the 

problem in a shorter time and simplify the computer 

implementation of the method.  

 

The disadvantage of this method is the need to calculate 

the second derivatives: in the case of two linear 

constraints, computational experiments produced a 

solution with a higher value of the objective function as 

compared to classical methods. This method can be used 

in combination with other methods, i.e. the solution 

provided by the method can be considered as a starting 

point for the further problem-solving process. 

The further research can be associated with a 

modification of the developed method for solving 

problems with inequality constraints, and application of 

this method to other fields of research. 

 

7. CONCLUSION  
 

The paper considers a solution to the procurement 

optimization problem using the proposed method based 

on inverse calculations. It should be noted that the 

discussed problem has a constraint on the cost of 

procurement and contribution margin. The method based 

on inverse calculations is easier to implement with 

computer software. It is founded on unconstrained 

optimization and a system of equations to be solved  (the 

penalty method requires multiple unconstrained 

optimizations by changing the penalty parameter, while 

in the Lagrangian method, it is necessary to determine the 

gradient of the Lagrange function, set up and solve the 

system of equations). Based on the data from the 

confectionery company, some computational 

experiments were conducted to solve the procurement 

optimization problem using the penalty method and the 

inverse calculation method. The obtained results are 

consistent with the solution produced by the standard 

function of the MathCad software package. The proposed 

method based on inverse calculations can be used by 

organizations in their decision support systems for 

procurement planning. This method is also applicable to 

other quadratic programming optimization problems of 

the kind presented in this paper. 
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