
1  Corresponding author: Satyendra Nath Chakrabartty 

 Email: Snc12@rediffmail.com 311 

 
Vol. 02, No. 3 (2020) 311-322, doi: 10.24874/PES02.03.010 

 

Proceedings on Engineering  

Sciences 
 

www.pesjournal.net 

 

 

 

COMBINING LIKERT ITEMS WITH DIFFERENT 

NUMBER OF RESPONSE CATEGORIES 

 

 

Satyendra Nath Chakrabartty1  
 

Keywords: 

Likert items; Weighted sum;  

Equidistant scores; Z-scores; 

Coefficient of variation. 

A B S T R A C T 

Three assumption-free approaches are described to convert and combine 

scores of Likert items with different response categories to obtain comparable 

test scores for a single sample. Generated data were continuous, equidistant, 

normally distributed, avoiding tied scores and thus facilitate ranking the 

respondents and undertaking analysis under parametric set up. 

Empirical verification was undertaken involving 5 items in each of 3, 4, 5 and 

7-point scale to 100 subjects. Correlations at the level of 0.99 between a pair 

of approaches were observed with marginal difference in coefficient of 

variation (CV). Minimum CV and maximum alpha were found when test scores 

were obtained as sum of standardized equidistant item scores converted to [1, 

5]. Thus, the said Approach appears to have advantages. 

Use of such methods of combining scores of Likert items is recommended for 

clear theoretical advantages and easiness in calculations. Future studies are 

suggested. 
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1. INTRODUCTION 
 

Instruments used in survey, behavioral research often 

contain Likert items with different number of response 

categories and ordered numerical values attached to these 

categories. Scores of respondents as discrete summative 

scores of all such items reduce comparability and even 

lack meaningfulness. Likert data with different scale 

format i.e. 4-point, 5-point or 7-point scale differ in 

mean, standard deviation (SD) and shape. For 3-, 5-, 7- 

and 9-point rating scales, Finn (1972), reported means as 

1.6, 2.2, 4.1 and 4.9 and variances as 0.32, 0.60, 1.32 and 

4.0 respectively, implying that mean and variance tended 

to increase with increase in number of points in rating 

scales. Test variance and test reliability can be increased 

by increasing the number of response alternatives (Cook, 

et al. 2001). Preston and Colman (2000) found that 2-

point, 3-point, and 4-point scales performed poorly on 

reliability, validity, and discriminating power indices in 

comparison to scales with more levels. Thus, the 

estimated mean is more influenced by number of 

response categories, than the underlying variable (Lim, 

2008). Dawes, (2007) opined that results of satisfaction 

surveys – may dependent partially on the choice of scale 

format. These calls for appropriate methods to transform 

responses of different scale formats in meaningful 

fashions attain comparable results.   

 

Collapsing of response categories, say from 7 categories 

to 5 may arbitrarily treats 1 and 2 on the 7-point item as 

equivalent and thus ignore the distinction made by the 

respondents between answers 1 and 2.  In addition, 

consideration of anchor value of zero also distorts mean, 

SD, skewness, kurtosis of scales (Dawes, 2002; Johnson, 

Smith, & Tucker, 1982).  Too many zero responses to an 

item artificially lower mean, variance of the item and 
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covariance and correlation with that item. Techniques 

like confirmatory factor analysis (CFA), structural 

equation modeling (SEM), etc. are sensitive to the 

characteristics of the data (Bentler, 1995). Effect of 

numerical value attached to various response categories 

have been investigated (Schwarz et al. 1991; Sangster et 

al. 2001; Mazaheri and Theuns, 2009). For various types 

of survey questions and response scales, see Saris and 

Gallhofer (2007). 

 

Colman, Norris & Preston (1997) compared 5-point and 

7-point scales using regression and suggested a pair of 

equations of the forms 𝑋7 =  𝛼1 + 𝛽1𝑋5 and  𝑋5 =  𝛼2 +
𝛽2𝑋7 for estimating scores in 7-point from 5-point and 

vice versa. However, equating is different from 

forecasting (Livingston, 2004). Moreover, two 

regression equations viz. 𝑋5 on 𝑋7 and 𝑋7 on 𝑋5 violates 

the axiom that equated scores are interchangeable. Lim, 

(2008) used estimated transition probabilities (ETP) to 

compare means of 7-point and 11-point scales. However, 

ETP based on ordered probit models and a set of 

assumptions are extremely sensitive to the 

heterogeneities of sample. Model driven IRT does not 

work well to detect individual changes for tests with less 

than 20 items (Jabrayilov, Emons and Sijtsma,2016)  The 

basic idea of probability of a correct response to an item 

as a function of examinee and item parameters in IRT 

may not be well applicable for Likert items. 

 

Basic question in this context: “What would have been 

the pattern of responses if the respondents were asked to 

response to a 5-ponit item (say) instead of a 3-point or 4-

point items and how best to combine those responses to 

get test score of each respondent”? 

 

Attempts have been made to use linear transformation of 

levels (ordered numerical values attached to the response 

categories) where the extreme numbers of an item with 

lesser number of points say 1 and 5 of a 5-point item are 

fixed to the extreme numbers of an item with higher 

number of points say 1 and 7 for a 7-point item and all 

the intermediate options are given equally distanced 

numbers in between. Other simple approach to convert a 

k-point scale to (k+∆)- point scale (where k, ∆ are 

positive integers) by multiplying each k-point score by 
(𝐾+∆)

𝑘
 i.e. proportional transformation. Major 

disadvantages of such methods are: 

 If a 3-point item is converted to 5-point, the converted 

scale has only three values attached to response 

categories and strictly speaking cannot be taken as a 

5-point scale. 

 Number of ties remains unchanged for the converted 

scores also and thus fails to distinguish the 

respondents with same score. Occurrences of tied 

score in Likert items are common as different 

responses to different items can generate the same 

aggregate scores for more than one respondent. 

 Mean and variance of raw scores of the test and also 

items get changed in the converted scale and shape of 

the original data gets distorted.  

 Formula for conversion is not unique. Preston and 

Colman (2000) used the formula 
(𝑆𝑐𝑜𝑟𝑒−1)

(𝑁𝑜.𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑐𝑎𝑡𝑒𝑔𝑝𝑟𝑖𝑒𝑠−1)
× 100  to rescale to scores 

out of 100. Multiplication by 10 instead of 100 

rescales all scale formats to a score out of 10.  

Cummins (1997, 2003) used linear transformation in 

the percentage of scale maximum. 

 There could be other linear transformations based on 

frequencies of response categories of items being 

converted for transferring the levels to a new scale. 

 The converted scores and raw scores will have equal 

mean and SD, if Z-scores are used. However, Z-scores 

involving mean and SD for Likert items are not 

meaningful since (i) mean and SD presume interval 

measurement which is not the case for Likert items. 

Thus,  𝑋̅ > 𝑌̅  is meaningless since the arithmetic 

mean is not defined for ordinal scales (Hand, 1996).  

(ii) distance between levels is unequal and unknown 

(Wu, 2007; Ferrando, 2003; Munshi, 1990) (iii) 

subjects do perceive Likert-type scales as non-

equidistant,(Bendixen and Sandler,1995) (iv) 

addition of item scores assuming equal weight to 

items may not be right as factor analysis (FA), 

Principal Component Analysis (PCA) often comes 

out with different factor loadings for the items 

comprising that scale and thus reflect lack of 

justification of equal weights. 

 Standardized scores making implicit assumptions about 

psychological equivalences between scales of different 

lengths cannot compare meaningfully rating scales of 

unequal lengths, (Colman, Norris and Preston, 1997).  

 

Instead of mapping the numerical values attached to the end 

points, attempts can be made to map or equate raw scores of 

k-point item to say (k±∆)-point item where 𝑘 ≥ 3 and ∆≥
1 are positive integers, ensuring similarity in distributions of 

scores. However, initial transformations of raw scores of all 

k-point items are required since often skewed ordinal Likert 

data assumes wrongly equal importance to items, equal 

distance between two successive levels and often results in 

large number of tied scores. Moreover, assumptions of 

statistical techniques used in the parametric set up are not 

satisfied by ordinal Likert data. Thus, the Basic question is 

modified as follows: 

 

Modified Basic Question: “If the raw scores of a k-point 

scale and a (k±∆)-point scale are transformed to 

continuous, equidistant scores with zero ties, normally 

distributed and are denoted by 𝒳(𝑘) 𝑎𝑛𝑑 𝒳(𝑘±∆), how to 

link a value of 𝒳0
(𝑘)

 to a value 𝒳0
(𝑘±∆)

 and facilitate 

meaningful combination of the responses to get test score 

of each respondent”? 

 

Equivalent scores: A score 𝑋0  in k-point scale is 

equivalent to 𝑌0 in  (k±1) -point scale if 

 

                      ∫ 𝑓(𝑋)𝑑𝑥 =  ∫ 𝑔(𝑌)𝑑𝑦
𝑌0

−∞

𝑋0

−∞
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The score combinations (𝑋0, 𝑌0) to be found for each pair 

of sub-tests and clubbed together to generate 

test/questionnaire scores. However, it may be difficult to 

approximate scores by integrable continuous function 

𝑓(𝑋) or 𝑔(𝑌) addressing the issue of goodness of fit. 

 

A simpler and approximate way to find various 

combination of (𝑋0, 𝑌0) could be to consider equal 

percentile scores (Equipercentile equating). Alternately, 

if each 𝑓(𝑋) and 𝑔(𝑌) is the density function of Normal 

distribution with mean 𝑋̅ and variance 𝑆𝑋
2 , 𝑋0 will be 

equivalent to 𝑌0 ⟺ 𝑋0 = 𝑌0. In other words, finding of 

the equivalent combinations (𝑋0, 𝑌0) or linking of a score 

in k-point scale with a score in (k±1)-point scale is 

obvious. Normal Curve Equivalent (NCE) score by 

Mertler, (2002) considered 𝑁(50, 21.062). Purpose of 

linking is to compare the respondents who have taken 

different versions of a scale or different subtests of a 

questionnaire, where the subtests may differ in length or 

content. Other methods can be worked out for linking test 

scores to make the distribution of test scores equivalent 

to make the distribution of test scores equivalent in terms 

of normality with equal mean and SD for all the k-point 

scales, using further transformation to achieve proposed 

mean and SD with positive scores. 

 

Studies in equating scores involving several samples 

usually consider smoothing of raw data to avoid 

irregularities and equating design for data collection. 

Both can result into systematic errors. There are a number 

of smoothing methods and a number of equating designs, 

each having its advantages and disadvantages. However, 

in the present set up where all respondents responded to 

a number of k-point and (k±∆)-point Likert items (k is a 

positive  integer≥ 3 and 𝑘 − ∆≥ 3) of  a questionnaire, 

issues relating to meaningful test scores as sum of item 

scores need to be answered realistically for one sample 

and may not deal with issues relating to smoothing or 

equating design. 

 

Attempt to find meaningful test scores of respondents as 

sum of item scores or sum of sub-test scores where each 

sub-test contains a fixed value of k-point Likert items, 

may be undertaken keeping in mind the limitations of 

ordinal Likert data, non-availability of reference scores 

and following major observations regarding score 

equating by Livingston, (2004) and associated 

comments: 

1. Equating is not Forecasting. Hence, equating method 

must be different from any forecasting    methods 

including regression analysis. 

2. Equating is symmetric i.e. interchangeable. 

3. Equating demands deciding the range of scaled 

scores. However, if the observed scores are 

transformed to (𝜇𝑋, 𝜎𝑋
2),  −∞ <

transformed score < ∞.   

4. Equating may not consider similarity of 

dimensions/factors of raw scores and transformed 

scores. 

5. Score X is equivalent to a score Y for a sample of 

respondents if X and Y represent the same relative 

position in the group (Equipercentile equating). 

However, equipercentile equating scores are not 

equal-interval and strictly speaking, not additive. 

Score linking by other methods like percentage of 

scores under Normal curve or NCE score may be 

explored. 

6. Item response theory (IRT) equating (Lord, 1980) 

involving abstract definition of equated scores, strong 

assumptions about person’s estimate (θ), item 

difficulty parameters (a), etc. may not fit well the 

reality of testing with Likert items. 

 

The above motivates need to transfer first the raw scores 

of the Likert items with different number of response 

categories ensuring satisfaction of equidistant property 

along with other desirable properties like continuous data 

which is monotonic, etc. followed by normalizing the 

item scores and further rescaling to a desired range say 

[1, 5] and suggesting better method of combining such 

scores to obtain test scores satisfying  the requirements 

from the angle of measurement theories, without making 

assumptions of distribution of observed/underlying 

variables, person’s estimate, item parameters, etc.  

 

Rest of the paper is organized as follows. Methodology 

of the proposed method and properties are described in 

the following section. Section 3 deals with empirical 

verifications to the suggested methods. The paper is 

rounded up in Section 4 by recalling the salient outcomes 

and emerging suggestions. 

 

2. METHODOLOGY 

 
Consider a Likert questionnaire with m- number of items, 

administered among n-number of respondents where 

𝑚3, 𝑚4, 𝑚5, 𝑚6, 𝑎𝑛𝑑 𝑚7  are the number of items with3, 

4, 5, 6 and 7   response categories(levels) respectively and 

∑ 𝑚𝑗
7
𝑗=3 = 𝑚. Without loss of generality, assume that 

response categories of each item is ordered from low to 

high where the lowest level is marked as 1.   

 

2.1 Proposed method 
 

A multi-staged method is used to transfer raw scores to 

comparable test scores as shown in figure 1. 
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Figure 1. The Method 

 

Stage 1: Sub-tests: 

 

Consider all 3-point items in sub-test 1. Similarly, 

constitute sub-tests 2, 3, 4 and 5 by considering 

respectively all 4-point, 5-point, 6-point and 7-point 

items. 

 

Stage 2: Equidistant scores by assigning different 

weights to response categories of different items: 

 

This is described for 5-point items. However, it can be 

used for any k-point items, where 𝑘 ≠ 5. Let 𝑋𝑖𝑗 

represents discrete raw score of the i-th respondent in the 

j-th response category, for 𝑖 = 1,2, … . , 𝑛 and j=1 to 5. 

Problem is to find 𝑊𝑖𝑗 ′𝑠 such that 𝑊𝑖𝑗 > 0, ∑ 𝑊𝑖𝑗
5
j=1 =

1 and 𝑊1, 2𝑊2, 3𝑊3, 4𝑊4, 5𝑊5 forms an AP. 

Such weights can be found using frequency of each level 

by following steps: 

1. Find from the data, frequency of i-th item for the j-th 

level (𝑓𝑖𝑗). For each item, find maximum         

(𝑓𝑚𝑎𝑥) and minimum frequency (𝑓𝑚𝑖𝑛).  

2. Find proportions 𝜔𝑖𝑗 =
𝑓𝑖𝑗

𝑛
. Clearly, 𝜔𝑖𝑗  >

0 and ∑ 𝜔𝑖𝑗
5
𝑗=1 =

∑ 𝑓𝑖𝑗
5
𝑗=1

𝑛
 = 1.  

3. Put initial weights 𝑊𝑖1 =  𝜔𝑖1  =  
𝑓𝑚𝑖𝑛

𝑛
 

4. Find the common difference 𝛼 so that 𝑊𝑖1 +  4𝛼 =

5𝑊𝑖5 ⟹ 𝛼 =   
5𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛

4𝑛
                        

5. Define  𝑊𝑖2 =
𝜔𝑖1+ 𝛼 

2
, 𝑊𝑖3 =

𝜔𝑖1+ 2𝛼

3
;𝑊𝑖4 =

𝜔𝑖1+ 3𝛼

4
; 

and 𝑊𝑖5 =  
𝜔𝑖1+ 4𝛼

5
 

6. Here, 𝑊𝑖𝑗 > 0 and ∑ 𝑊𝑗
5
𝑗=1  ≠ 1. 

7. 4: Get final weights 𝑊𝑖𝑗(𝐹𝑖𝑛𝑎𝑙) = 
𝑊𝑖𝑗

∑ 𝑊𝑗
5
𝑗=1

  so that 

∑ 𝑊𝑖𝑗(𝐹𝑖𝑛𝑎𝑙) = 1         

8. Here, 0 < 𝑊𝑗(𝐹𝑖𝑛𝑎𝑙) < 1 and  

9. 𝑗. 𝑊𝑗(𝐹𝑖𝑛𝑎𝑙) − (𝑗 − 1). 𝑊(𝑗−1)(𝐹𝑖𝑛𝑎𝑙)=   
𝛼

∑ 𝑊𝑗
5
𝑗=1

 ∀ 𝑗 =

2,3,4,5 (Equidistant scores) 

Observations: 

 

i) 𝑊𝑗(𝐹𝑖𝑛𝑎𝑙) are based on empirical probabilities obtained 

from the basic Item score matrix.  

ii)  If 𝑓𝑖𝑗 = 0  for a particular j-th level of an item, the 

method fails and can be taken as zero value for scoring 

Likert items as weighted sum  

iii) Mean, variance and range of weighted test scores and 

also weighted item scores will get reduced in comparison 

to the same from usual summative scores. 

v) Different weights to different levels of different items 

may break ties of subject scores in usual summative 

scores and thus distinguish the same summative score on 

the basis of how the score was obtained. 

vi) Generated scores are continuous.  

 

Stage 3: Normalize scores: 

 

From weighted scores described at Stage 2, take Z- scores 

for each item. For the i-th item, 𝑍𝑖𝑗 =
𝑋𝑖𝑗− 𝑋𝑖̅̅ ̅

𝑆𝐷(𝑋𝑖)
   

~ 𝑁(0, 1)  where −∞ < 𝑍𝑖𝑗 < ∞.  But sub-test score as 

a sum of item scores will also be normal with mean zero 

and SD =√∑ 𝑍𝑖
2 +  2 ∑ 𝐶𝑜𝑣(𝑍𝑖 , 𝑍𝑗𝑖≠𝑗 ). 

 

Stage 4: Covert the Z-scores to have a fixed range:  

 

Find minimum and maximum values of Z obtained for 

each item. Convert the Z-score of an item to say [1, 5], as 

follows: 

           𝑌 =  
(5−1)∗(𝑍𝑖𝑗− 𝑀𝑖𝑛(𝑍𝑖𝑗))

𝑀𝑎𝑥 (𝑍𝑖𝑗)− 𝑀𝑖𝑛(𝑍𝑖𝑗)
 + 1  (1.1) 

 

Linear transformation (1.1) will change range of Item 

score in the interval [1, 5]. Distributions of item scores 

for each k-point scale will be normal with similar values 

of means and variances. However, item scores will not 

satisfy definition of Equating Scores. 
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Range of sub-test scores as sum of converted item scores 

may vary. Variance of sub-test scores will also vary 

depending on correlations between pair of items. 

 

Stage 5: Combining scores of items or subtests to 

obtain test scores: 

 

NCE scores are equal interval scores following normal 

distribution with mean = 50 and SD = 21.06. NCE scores 

are additive. It need not assume that the scales have similar 

measurement errors, (Mâsse, et al., 2006). 

 

For equipercentile scores, the converted scores on Form-X 

have the same distribution as scores on Form-Y implying 

that the cumulative distribution of equated scores on Form-

X is equal to the cumulative distribution of scores on Form-

Y.  A percentile rank indicates the percentage of respondents 

below a certain score. Distance between say 10th and 20th 

percentile is different from the distance between say 40th and 

50th percentile, Percentile scores range from 1 to 99 and are 

not additive. Percentile scores could be tied if such scores 

are not strictly increasing. If 𝑃𝑖  is the i-th percentile score, 

then  𝑃𝑖  ≯ 𝑃(𝑖−1) if the frequency in the interval containing 

the percentile point is zero. In other words, a particular  𝑃𝑖  

for a sub-test could be same for say 14% to 25% of scores 

with similar phenomenon in other sub-tests for say 20% to 

30%. Thus, it is problematic to find equated score in (k+1)-

point and (K+2)-point scales for a particular 𝑃𝑖  in k-point 

scale. Hence, percentile scores may not be very suitable to 

equate individual scores of subtests with different number of 

response categories. However, scores of NCE’s and 

percentiles are identical at 1, 50, and 99. Thus, NCE appears 

to have advantageous in comparison to Equipercentile 

scores at least for converting responses on different subtests 

with different response categories to attain comparable test 

scores. 

 

Two disadvantages of NCE scores are as follows: 

i) ForZ < (−)2.3738, NCE score is negative.  

ii) If Z-scores of five items of a subtest are 

𝑍𝑖1, 𝑍𝑖2, … . . , 𝑍𝑖5 such that ∑ 𝑍𝑖𝑗
5
𝑗=1 = 𝑍𝑆𝑢𝑏𝑡𝑒𝑠𝑡 then 

∑ 𝑣𝑎𝑟(𝑁𝐶𝐸𝑖𝑗)5
𝑗=1 > 𝑣𝑎𝑟(𝑁𝐶𝐸𝑆𝑢𝑏𝑡𝑒𝑠𝑡). Similarly, sum of 

variance of NCE scores of the subtests may exceed the 

variance of NCE score of the test, if Z-value of test is 

taken as sum of Z-values of the subtests. This may make 

Cronbach alpha of NCE test score greater than unity. 

Cronbach alpha > 1 may occur even if 
𝑆𝑢𝑚 𝑜𝑓 𝑣𝑎𝑟𝑁𝐶𝐸𝑆𝑢𝑏𝑡𝑒𝑠𝑡𝑠

𝑣𝑎𝑟(𝑁𝐶𝐸𝑇𝑒𝑠𝑡)
 ≈ 1 say 0.99 

 

To avoid the disadvantages of equipercentile scores and 

NCE scores and to make the distribution of different sub-

test scores similar ensuring equality of mean, variance, 

further transformation may be used as follows: 

 

Modified (𝑌𝑘−𝑝𝑜𝑖𝑛𝑡) =
(𝑋𝑘−𝑝𝑜𝑖𝑛𝑡−𝑀𝑒𝑎𝑛𝑘−𝑝𝑜𝑖𝑛𝑡)

𝑆𝐷𝑘−𝑝𝑜𝑖𝑛𝑡
 ×

𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑(𝑆𝐷) +  𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑(𝑀𝑒𝑎𝑛) (1.2) 

For example, proposed SD could be taken as ≥10 to 

increase variance of the distribution and the proposed 

mean could be taken to ensure all positive values of  

Modified (𝑌𝑘−𝑝𝑜𝑖𝑛𝑡) 

 

Distribution of modified test scores for each k-point scale 

will be 𝑁( 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑(𝑀𝑒𝑎𝑛),  [𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑(𝑆𝐷)]2 . 

Thus, the k-point subtests for various values of k, could 

be considered as Equivalent Form having features of 

parallel tests.  

 

2.2 Approaches to get transformed scores 

following 𝑵(𝟎, 𝟏) 
  

To get test scores of the respondents, the following 

approaches are proposed based on Normalized item 

scores following 𝑁(0, 1) 

 

Approach 1.1 Test score as sum of Z-scores of all items 

will follow 𝑁(0, 𝜎2) where 𝜎2 ≠ 1.  

 

Approach 1.2 To avoid negative values and to have a 

desired score range of items, item scores may be 

converted to say [1, 5] by (1.1) and added so as to 

maintain normality and unique rank.  

 

Approach 1.3 To make the distribution of test scores 

equivalent in terms of normality with equal mean and 

variance for all the k-point scales, use transformation 

(1.2) with proposed mean and proposed SD and add the 

converted items scores to get test scores. Subtest scores 

obtained in this fashion will be equivalent. Finding 

equivalent scores will provide satisfactory answer to the 

Modified Basic Question ensuring similarity of mean, SD 

and shape of the subtest scores with added feature of high 

correlations between subtests. 

 

Each of the above said approaches is likely to generate 

scores with zero ties, implying a unique rank for each 

respondent. Since the approaches are based on linear 

function of Z-scores of items, correlation between a pair of 

the Approaches will be ≈1.00. Such test scores will help in 

ranking or comparing or classifying the respondents, and 

also to undertake statistical analysis under parametric set up. 

 

2.3 Comparison of test scores  
 

Test scores obtained by each of the above said 

approaches are continuous, normally distributed with 

high correlations. Comparison of the approaches could be 

made considering advantages/limitations and statistics 

like Coefficient of variation (CV), reliability, etc. CV is 

a well known measure of relative precision which is 

independent of change of scale but not of origin. CV 

indicates the extent of variability in relation to the mean. 

Lower value of CV is desirable. It can be proved easily 

that square of CV of observed scores is equal to the ratio 

of square of CV of true scores and test reliability i.e.  

𝐶𝑉𝑋
2 =

𝐶𝑉𝑇
2

𝑟𝑡𝑡
. Thus, a negative relationship is there 

between test reliability and CV. In other words, lower the 

CV, higher is the reliability.  
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3. EMPIRICAL VERIFICATION 
 

The method of obtaining equidistant Likert scores by 

assigning weights to different response categories of 

different items and method of linking those scores are 

shown empirically using hypothetical data involving 5 items 

in each of k- point scale, for k= 3, 4, 5 and 7 to 100 subjects. 

3.1 Calculation of weights  
 

Equidistant scores: Calculation of different weights to 

different response categories of different items as per the 

Stage 2 above is shown in Table 1. 

 

Table 1. Calculation of weights to response categories of different Items 

Item Description RC-1 RC-2 RC-3 RC-4 RC-5 Total 

3-point items 

1  Frequency 15 45 40   100 

Proportions(𝜔1𝑗) 0. 15 0.45 0.40   1.00 

Intermediate weights  (𝑊1𝑗)   (𝛼 = 0.45) 0.15 0.30 0.35   0.80 

Final weights  (𝑊1𝑗(𝐹𝑖𝑛𝑎𝑙))  0.1875 0.375 0.4375   1.00 

2  Frequency 15 42 43   100 

Proportions(𝜔2𝑗) 0.15 0.42 0.43   1.00 

Intermediate weights(𝑊2𝑗)    (𝛼  =0.42) 0.15 0.285 0.33   0.765 

Final weights 

(𝑊2𝑗(𝐹𝑖𝑛𝑎𝑙)) 
0.19608 0.37255 0.43137   1.00 

3  Frequency 12 42 46   100 

Proportions(𝜔3𝑗) 0.12 0.43 0.46   1.00 

Intermediate weights(𝑊3𝑗)   (𝛼 =0.51) 
0.12 0.315 0.38   

0.815 

 

Final weights   (𝑊3𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.14724 0.38650 0.46626   1.00 

4  Frequency 9 35 56   100 

Proportions  (𝜔4𝑗) 0.09 0.35 0.56   1.00 

Intermediate weights  (𝑊4𝑗)   (𝛼 =0. 705) 0.09 0.3975 0.50   0.9875 

Final weights   (𝑊4𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.09114 0.40253 0.50633   1.00 

5  Frequency 8 48 44   100 

Proportions   (𝜔5𝑗) 0.08 0.48 0.44   1.00 

Intermediate weights   (𝑊5𝑗)   (𝛼 =0.60) 0.08 0. 34 0.42667   0.84667 

Final weights  (𝑊5𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.09449 0.40157 0.50394   1.00 

4-point items 

1  Frequency 9 25 32 34  100 

Proportions  (𝜔1𝑗) 0.09 0.25 0.32 0.34  1.00 

Intermediate weights  (𝑊1𝑗)  (𝛼 =0.33333) 0.09 0.21167 0.25222 0.2725   

Final weights  (𝑊1𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.10891 0.25613 0.30521 0.32975  1.00 

2  Frequency 8 23 33 36 --- 100 

Proportions   (𝜔2𝑗) 0.08 0.23 0.33 0.36 --- 1.00 

Intermediate weights  (𝑊2𝑗)   (𝛼=0.37333) 0.08 0.22667 0.27556 0.30 ---  

Final weights  (𝑊2𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.09068 0.25693 0.31234 0.34005 --- 1.00 

3  Frequency 9 21 34 36 --- 100 

 Proportions  (𝜔3𝑗) 0.09 0.21 0.34 0.36 --- 1.00 

 Intermediate weights  (𝑊3𝑗)  (𝛼 =0.36) 0.09 0.225 0.27 0.2925   

 Final weights  (𝑊3𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.10256 0.25641 0.30769 0.33333  1.00 

4  Frequency 8 20 33 39  100 

 Proportions  (𝜔4𝑗) 0.08 0.20 0.33 0.39  1.00 

 Intermediate weights  (𝑊4𝑗)  (𝛼 =0.41333) 0.08 0.24667 0.30222 0.33   

 Final weights  (𝑊4𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.08343 0.25724 0.31518 0.34415  1.00 

5  Frequency 7 29 26 38 --- 100 

 Proportions   (𝜔5𝑗) 0.07 0.29 0.26 0.38  1.00 

 Intermediate weights  (𝑊5𝑗)  (𝛼 =0.41333) 0.07 0.24167 0.29889 0.3275   

 Final weights (𝑊5𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.07462 0.25762 0.31863 0.34913  1.00 
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Table 1. Calculation of weights to response categories of different Items (Continued) 

Item Description RC-1 RC-2 RC-3 RC-4 RC-5 Total 

5-point items 

1  Frequency 3 9 21 28 39 100 

 Proportions  (𝜔1𝑗) 0.03 0.09 0.21 0.28 0.39 1.00 

 Intermediate weights  (𝑊1𝑗)  (𝛼 =0.45) 0.03 

 
0.24 0.31 0.345 0.366  

 Final weights  (𝑊1𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.02324 0.18590 0.24012 0.26724 0.28350 1.00 

2  Frequency 6 14 13 29 38 100 

 Proportions  (𝜔2𝑗) 0.06 0.14 0.13 0.29 0.38 1.00 

 Intermediate weights (𝑊2𝑗)  (𝛼 =0.40) 0.06 0.23 0.28667 0.315 0.332  

 Final weights  (𝑊2𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.04903 0.18796 0.23427 0.25742 0.27132 1.00 

3  Frequency 7 10 14 29 40 100 

 Proportions  (𝜔3𝑗) 0.07 0.10 0.14 0.29 0.40 1.00 

 Intermediate weights  (𝑊3𝑗)  (𝛼 =0.4125) 0.07 0.24125 0.29833 0.32687 0.344  

 Final weights  (𝑊3𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.05467 0.18841 0.23299 0.25528 0.26865 1.00 

4  Frequency 8 8 16 30 38 100 

 Proportions  (𝜔4𝑗) 0.08 0.08 0.16 0.30 0.38  

 Intermediate weights  (𝑊4𝑗)  (𝛼 =0.375) 0.08 0.2275 0.27667 0.30125 0.316  

 Final weights  (𝑊4𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.06659 0.18936 0.23028 0.25075 0.26302 1.00 

5  Frequency 7 10 16 31 36 100 

 Proportions  (𝜔5𝑗) 0.07 0.10 0.16 0.31 0.36 1.00 

 Intermediate weights  (𝑊5𝑗)  (𝛼 =0.3625) 0.07 0.21625 0.265 0.28937 0.304  

 Final weights  (𝑊5𝑗(𝐹𝑖𝑛𝑎𝑙)) 0.06115 0.18893 0.23152 0.25281 0.26559 1.00 

7-point items 

 Description RC-1 RC-2 RC-3 RC-4 RC-5 RC-6 RC-7 

1  Frequency 5 6 7 17 18 22 25 

 Proportions  (𝜔1𝑗) 0.05 0.06 0.07 0.17 0.18 0.22 0.25 

 Intermediate weights  (𝑊1𝑗)  

(𝛼=0.23333) 
0.05 0.14167 0.17222 0.1875 0.19667 

0.20278 

 
0.20714 

 Final weights  (𝑊1𝑗(𝐹𝑖𝑛𝑎𝑙)) 
0.04318 0.12234 0.14873 0.16192 0.16984 

0.17511 

 
0.17888 

2  Frequency 
4 5 9 14 20 21 27 

 

5 9 14 20 21 27 

 Proportions  (𝜔2𝑗) 0.04 0.05 0.09 0.14 0.20 0.21 0.27 

 Intermediate weights  (𝑊2𝑗) 

(𝛼 =0.60) 
0.04 0.15417 0.19222 0.21125 0.22267 

0.23028 

 
0.23571 

 Final weights 

(𝑊2𝑗(𝐹𝑖𝑛𝑎𝑙)) 
0.03110 0.11985 0.14944 0.16423 0.17311 

0.17902 

 
0.18325 

3  Frequency 3 4 7 16 19 22 28 

 Proportions (𝜔3𝑗) 0.03 0.04 0.07 0.16 0.19 0.22 0.28 

 Intermediate weights(𝑊3𝑗) 

(𝛼 =0.60) 
0.03 0.16667 0.21222 0.235 0.24867 0.25778 0.26429 

 Final weights 

(𝑊3𝑗(𝐹𝑖𝑛𝑎𝑙)) 
0.02121 0.11782 0.15002 0.16612 0.17578 0.18222 0.18683 

4  Frequency 4 4 6 19 21 20 26 

 Proportions (𝜔4𝑗) 0.04 0.04 0.06 0.19 0.21 0.20 0.26 

 Intermediate weights(𝑊4𝑗) 

(𝛼 =0.60) 
0.04 0.14833 0.18444 0.2025 0.21333 

0.22056 

 
0.22571 

 Final weights 

(𝑊4𝑗(𝐹𝑖𝑛𝑎𝑙)) 
0.03239 0.12012 0.14936 0.16398 0.17276 0.17861 0.18278 

5  Frequency 5 3 7 30 20 13 22 

 Proportions (𝜔5𝑗) 0.05 0.03 0.07 0.30 0.20 0.13 0.22 

 Intermediate weights(𝑊5𝑗) 

(𝛼 =0.60) 
0.05 0.1825 0.22667 0.24875 0.262 

0.27083 

 
0.27714 

 Final weights 

(𝑊5𝑗(𝐹𝑖𝑛𝑎𝑙)) 
0.03294 0.12023 0.14933 0.16388 0.17261 0.17843 0.18258 

*Legend: RC- j ⟹ j-th Response category for j=1, 2, 3, 4,5,6,7 
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The transformed scores are continuous and equidistant. 

For example, finally selected weights for Item 3 of 5-

point scale were 0.05467, 0.18841, 0.23299, 0.25528 

and 0.26865 respectively for response category 1, 2, 3, 4 

and 5. Weighted scores of Item 3 of 5-point scale are 

equidistant, since  5𝑊35(𝐹𝑖𝑛𝑎𝑙) − 4𝑊34(𝐹𝑖𝑛𝑎𝑙)= 

4𝑊34(𝐹𝑖𝑛𝑎𝑙) − 3𝑊33(𝐹𝑖𝑛𝑎𝑙) = 3𝑊33(𝐹𝑖𝑛𝑎𝑙) − 2𝑊32(𝐹𝑖𝑛𝑎𝑙) 

=  2𝑊32(𝐹𝑖𝑛𝑎𝑙) − 𝑊31(𝐹𝑖𝑛𝑎𝑙)= 0.32215 

3.2 Breaking of ties 
 

Raw scores resulted in large number of ties of subject 

scores. For 5-point sub-test, 96 out of 100 respondents 

got tied scores at various scores and length of tie ranged 

between 2 to 15. Tied raw score of 20 with 15 ties in 5-

point sub-test and corresponding scores in equidistant 

scaling are shown in Table 2. 

 

Table 2. Scores in the equidistant scaling corresponding to score of 20 in 5-point sub-test 

Sl. no.  Corresponding score  

in equidistant scale  

Sl. 

no. 

Corresponding score  

in equidistant scale 

1 5.10773 9 5.16128 

2 5.11905 10 5.18149 

3 5.15566 11 5.14873 

4 5.15038 12 5.15875 

5 5.08043 13 5.12324 

6 5.13617 14 5.11686 

7 5.06094 15 5.09754 

8 5.15583   

 

Thus, the equidistant scores avoiding ties distinguish the same 

summative score on the basis of how the score was obtained. 

 

3.3 Descriptive statistics 
 

Raw scores of each item and sub-test were found to be 

negatively skewed.   

However, skewness of sub-tests ranged between -0.0026 (7-

point scale) to -0.3865 (3-point scale) implying almost 

symmetric distributions. Some of item skewness ranged 

between -1 to -0.5 implying moderately skewed 

distributions. Mean variance and ranges of raw scores and 

scaled scores are shown in Table 3. 

 

Table 3. Descriptive statistics 

 

Observations:  

 

1. Mean and variance of raw scores differed for k-point 

sub-tests for k = 3, 4, 5 and 7. Values of mean and 

also variance tended to increase with increasing value 

of k, despite same number of items for each sub-test. 

2. Distributions of raw scores for 3-point, 4-point, 5-

point and 7-point sub-tests were different. 

3. Equidistant scores reduced considerably mean and 

variance and made the data more homogeneous. 

Variance of sub-tests ranged between 0.57093 (for 7-

point scale) to 1.23911(for 3-point scale). Item scores 

and sub-test scores were positive and continuous. 

4. Standardized equidistant scores resulted in normality 

of scores of each item with zero mean and SD of one. 

Sub-test scores as sum of item scores also followed 

Description Sub-test scores Range of scores 

Mean Variance Item Sub-test 

A. Raw scores 

3-point scale 11.70 3.08082 1 to 3 7 to 15 

4-point scale 14.83 3.96071 1 to 4 10 to 19 

5-point scale 19.16 6.82263 1 to 5 13 to 25 

7-point scale 25.38 13.20768 1 to 7 14 to 34 

B. Equidistant scores  

3-point scale 4.97611 1.23910 0.14724 to 1.51898 1.90471  to 7.03618 

4-point scale 4.60777 0.70716 0.07462 to 1.39650 2.56414 to 6.34499 

5-point scale 4.862951 0.712497 0.02323 to 1.41750 2.90749 to 6.76041 

7-point scale 4.401098 0.57093 0.02121 to  1.30777 2.04788 to 6.19877 

C. Standardized equidistant scores 

3-point scale 0.01 6.81222 -2.22866 to 1.06878 -7.05372 to 4.86195 

4-point scale 0.0001 4.23828 -2.1184 to 1.11760 -4.99715 to 4.31887 

5-point scale 0.00 4.50750 -2.61934 to 0.98113 -4.83517 to 4.78790 

7-point scale -0.00053 4.75793 -2.63255 to 1.32412 -6.85314 to 5.20309 

D. Standardized equidistant scores  converted to [1, 5] 

3-point scale 18.40581 12.52909 1 to 5 9 to 25 

4-point scale 18.11001 7.052861 1 to 5 11.66668 to  23.66667 

5-point scale 19.16009 6.822733 1 to 5 13 to 25 

7-point scale 18.58606 5.866278 1 to 5 11 to 24.33333 
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normal distribution since it is well known that if X~ 

N(μ_X,σ_X^2 )  and Y ~ N(μ_Y,σ_Y^2 ) then (X + 

Y) ~ N(μ_X+ μ_Y,σ_X^2+σ_Y^2+2σ_(X,Y) ). 

Variance of sub-tests varied between 4.23828 (4-

point scale) to 6.81222 (3-point scale). However, 

items were not independent. Item scores and sub-test 

scores ranged from negative to positive. 

5. When the Standardized equidistant scores of items 

were converted to [1, 5] by (1.1), means were found 

to be close for subtests, max difference being 0.05. 

But, variance of subtest varied between 5.87 to 12.53, 

due to different correlations between pair of items.  

Distribution of item scores and also sub-test scores 

were normal. Item scores ranged between 1 to 5. But 

range of sub-test scores differed to some extent for 3-

point, 4-point, 5-point and 7-point scales. 

 

3.4 Test scores using converted standardized scores 

 

Test scores in each of the Approach 1.1, 1.2 and 1.3 for 

3-point, 4-point, 5-point and 7-point sub-tests resulted in 

continuous, equidistant, normally distributed scores 

avoiding ties. Each respondent got unique integer valued 

rank. A rank correlation was maximum for ρ_1.1,1.3= 

0.998 followed by ρ_1.1,1.2=0.997  and 

ρ_1.2,1.3=0.994. Test scores were all positive for 

Approach 1.2 and Approach 1.3. Mean, variance, CV and 

Score ranges of Test scores are shown in Table  4. 

 

Table 4. Mean, variance, CV and Score ranges of Test scores 

Description of Test scores  Mean Variance CV=
𝑺𝑫

𝑴𝒆𝒂𝒏
 Score range 

As sum of standardized equidistant scores i.e. Z- 

scores of all the items (Approach 1.1) 
≈0 34.6329 0.16992 

-14.6197 to 

11.15762 

As sum of standardized equidistant scores of items 

converted to [1,5] (Approach 1.2) 
74.26196 56.04761 0.13357 

55.66674 to 

88.33346 

As sum of Z- scores of all the items converted to 

𝑁(33,100) (Approach 1.3) 
132 678.5452 0.19734 

67.12237 to 

182.2059 

Lower value of CV in each of the approach and marginal 

difference in CV values indicate that number of response 

categories may not have much influence on variation 

about the mean.  Approach 1.2 resulted in minimum 

value of CV. 

 

Sum of variance of NCE scores of items was found to be 

higher than variance of NCE scores of the corresponding 

subtest. For example, ∑ 𝑣𝑎𝑟(𝑁𝐶𝐸3−𝑝𝑜𝑖𝑛𝑡,𝑗)5
𝑗=1  was 

2218.249 against 𝑣𝑎𝑟(𝑁𝐶𝐸3−𝑝𝑜𝑖𝑛𝑡 𝑠𝑢𝑏𝑡𝑒𝑠𝑡) = 443.65. CV 

of NCE test scores at the level of 0,273 was higher than 

CV of any of the approaches. 

 

When test score as sum of standardized equidistant scores 

of items in [1,5] was further converted to equipercentile 

scores, large number of tied percentile scores emerged, 

which made it problematic to equate a particular 

percentile score in 3-point subtest with 4-point or 5-point 

or 7-point subtests. 

  

3.5 Correlations 
 

Correlations between subtests: When raw scores were 

considered, correlations between the subtests ranged 

between 0.0396 (4-point & 7-point) to 0.4797 (3-point & 

4-point). Linear transformation used for converting 

scores at various stages like Raw scores → Equidistant 

scores as weighted sum → Z-scores → Z-scores converted 

to [1,5] or 𝑁(33,100), did not change much the 

correlations between a pair of subtests. 

 

Correlations between test scores: Test scores obtained 

by Approach 1.1, 1.2 and 1.3, based on linear function of 

Z-scores were highly correlated. 𝑟(1.1,1.2) = 𝑟(1.1,1.3) = 

0.998 and 𝑟(1.2,1.3) =0.996.  

 

Correlations between subtest scores and Test scores: 

Correlation between subtest scores and Test scores are 

shown in Table 5. 

 

Table 5. Correlation between subtest scores and Test scores 

Subtests Test scores 

Approach 1.1 Approach 1.2 Approach 1.3 

Subtest-1(3-point) 0.81225 0.83318 0.78286 

Subtest-2(4-point) 0.63338 0.64887 0.64354 

Subtest-3(5-point) 0.62721 0.62850 0.64505 

Subtest-4(7-point) 0.51777 0.48407 0.53344 

 

Correlation between subtest scores and Test scores 

ranged between 0.4841 to 0.8122. Subtest-1 was found to 

have maximum correlation with test scores under each 

approach. For the raw data, subtest 1(3-point) had 

correlation of 0.68 with the corresponding test scores. 

Raw scores → Equidistant scores by weighted sum 

modified r_(3-point,Test)  to 0.88 followed by r_(4-

point,Test)=0.65,r_(5-point,Test)=0.63 and r_(7-

point,Test)=0.47. Similar trend was maintained in the 

three approaches because of use of linear transformation 

to obtain Z-scores from equidistant scores and 

subsequent stages.  
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3.6 Test reliability   

 

Test reliability in terms of Cronbach alpha (without 

verification of assumptions) for raw scores and the three 

approaches are shown in Table 6.  

 

For raw scores, α = 0.36. For Z-scores obtained after 

making the raw scores equidistant by assigning different 

weights to response categories of different items 

improved α to 0.44. Subsequent linear transformations to 

convert Z-scores to [1, 5] or to N(33,100) did not change 

much the Alpha. For NCE scores, α exceeded unity.  For 

the Equivalent Forms resulting after converting the 

standardized equidistant scores to N (33,100), reliability 

of the subtests were found as correlation between a pair 

of such subtests. However, r_(Subtest i,Subtest j)  

differed for different values of  i and  j as can be seen 

from the Table – 6. Subtest reliability was found to be 

maximum for 3-point scale in line with maximum 

correlation with test scores under each approach.

 

Table 6. Reliability of test scores 

Cronbach alpha (𝛼) 

Raw scores Standardized equidistant 

scores(Z-Scores) 

Standardized equidistant scores  

converted to [1, 5] 

Standardized equidistant scores  

converted to 𝑵(𝟑𝟑, 𝟏𝟎𝟎) 

0.36294 0.43515 0.44655 0.432106 

4. LIMITATIONS  

 
Each Approach assumed equal importance to all items to 

facilitate addition. 

 

5. CONCLUSIONS 
 

Three approaches are described to convert and combine 

scores of Likert items with different response categories 

to obtain comparable test scores using only the 

permissible operations for a Likert scale i.e. considering 

the cell frequencies or empirical probabilities of Item – 

Response categories without making any assumptions of 

continuous nature or linearity or normality for the 

observed variables or the underlying variable being 

measured. A multi-staged method was followed to 

transfer Raw scores → Equidistant scores by data driven 

weights to response categories of different items → Z-

scores → Z-scores converted to [1,5] or N(33,100) 

scores.  Thus, these are assumption-free simple method 

which can be applied to a single sample.  

 

Test scores generated by each of the three approaches are 

continuous, equidistant, normally distributed with zero 

ties. In case, frequency of a particular response category 

of an item = 0, it may be taken as zero value for scoring 

Likert items as weighted sum. Empirically, each 

respondent got a unique integer valued rank. Such test 

scores help in ranking or comparing or classifying the 

respondents, and also to undertake statistical analysis 

under parametric set up. The proposed approaches of 

combining Likert items of different response categories 

are critically relevant to practitioners and researchers in 

the social sciences in general and survey research in 

particular. Use of such methods of combining scores of 

Likert items is recommended for clear theoretical 

advantages and easiness in calculations. 

 

Correlation between a pair of the Approaches was >0.99. 

Empirical results show marginal difference of 

Coefficient of variation (CV), indicating the extent of 

variability in relation to the mean and test reliability, in 

terms of Cronbach alpha across the Approaches.  

However, minimum CV and maximum alpha were found 

for Approach 1.2 where test scores were obtained as sum 

of standardized equidistant item scores converted to 

[1,5].  Because of a negative relationship between test 

reliability and CV, a lower value of CV is associated with 

higher reliability. Thus, the Approach 1.2 appears to have 

slight advantages. 

 Future studies may be undertaken (i) to assign weights 

to items after obtaining equidistant scores by assigning 

weights to different  response categories of different 

items, so that item scores are equicorrelated with test 

scores i.e. equal importance to items – which may be 

followed by normalized scores (ii) to obtain  measures of  

discriminating value of Likert item and also for Likert 

Scale using only the frequencies  of Item – Response 

categories  and  simultaneously deal with reliability and 

discriminating value of combined scores of Likert items.
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