
145

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

JIOS, VOL. 43, NO. 2 (2019) SUBMITTED 07/18; ACCEPTED 04/19

Abstract-Syntax-Driven Development of Oberon-0
Using YAJCo

Sergej Chodarev sergej.chodarev@tuke.sk
Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice, Košice, Slovakia

Michaela Bačíková michaela.bacikova@tuke.sk
Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice, Košice, Slovakia

Abstract
YAJCo is a tool for the development of software languages based on an anno-
tated language model. The model is represented by Java classes with annotations
defining their mapping to concrete syntax. This approach to language definition
enables the abstract syntax to be the central point of the development process,
instead of concrete syntax. In this paper, a case study of Oberon-0 program-
ming language development is presented. The study is based on the LTDA Tool
Challenge and showcases details of abstract and concrete syntax definition us-
ing YAJCo, as well as the implementation of name resolution, type checking,
model transformation, and code generation. The language was implemented in
a modular fashion to demonstrate language extension mechanisms supported by
YAJCo.
Keywords: abstract syntax, experience report, language development, language
extension, Oberon-0, parser generator, YAJCo

1. Introduction

The development of computer languages, especially domain-specific languages
(DSL), is an active research topic [1, 2]. Several tools have been developed that
aim to support the implementation of language processors and their components
including parsers, type checkers, code generators and also editing tools [3]. To
compare different language development tools and formalisms, the Language De-

UDC 004.4’2 
Original Scientific Paper

DOI: https://doi.org/ 10.31341/jios.43.2.2
     Open Access



146

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

CHODAREV AND BAČÍKOVÁ ABSTRACT-SYNTAX-DRIVEN DEVELOPMENT OF . . .

scriptions, Tools and Applications (LTDA) community defined a tool challenge1.
Results of the challenge were later published in a special issue of the Science of
Computer Programming journal [4].

The challenge lied in the development of a compiler for the Oberon-0 language.
Oberon-0 is a very simple general-purpose programming language similar to Pascal.
It was defined by Niklaus Wirth in his Compiler Construction book [5] as a subset
of the Oberon programming language that is simple, but at the same time contains
most of the important features of general-purpose programming languages.

In this paper, a solution to the challenge implemented using the YAJCo language
processor generator [6] is presented. Main contributions of this case study are the
following:

1. Implementation of the LDTA Tool Challenge using YAJCo allows comparing
YAJCo with other language development tools using the already published
solutions of the same challenge [4].

2. The case study demonstrates the approach of language development based on
the abstract syntax definition using an object-oriented language and discusses
challenges connected with this approach.

3. The study demonstrates how usual techniques for object-oriented extensibil-
ity can be used for language extension.

This paper is an extended version of our conference paper published earlier [7].
The original paper presented the incomplete implementation of the Oberon-0 with-
out support for procedures and composed data types (arrays and records). For this
paper, these missing language features were implemented as extensions to the orig-
inal language definition. This allowed us to provide a more complete description
of the language implementation and also to explain language extension support in
greater detail.

2. YAJCo

YAJCo2 (Yet Another Java Compiler Compiler) is an annotation based parser
generator [6] — it allows to specify language syntax using annotated Java classes
and generate a parser that would create instances of these classes based on the
parsed sentence.

The definition of the language is derived from the classes that correspond to
the abstract syntax of the language. Each class represents a language concept
and corresponds to a non-terminal symbol in the grammar definition. Relations
between classes (inheritance and composition) are used to construct the right-hand

1. The LTDA’2011 Tool Challenge is described at http://ldta.info/tool.html
2. Available at https://github.com/kpi-tuke/yajco



147

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

side of the grammar rules. Information that cannot be extracted from the classes,
for example, details of concrete syntax, is provided in the form of Java annotations.

The generated parser is able to process text according to the language definition
and create interconnected instances of the language concept classes. The composi-
tion relations between instances define a tree corresponding to the abstract syntax
tree (AST). YAJCo can also automatically resolve references turning the tree into
a graph.

In addition to the parser, YAJCo can generate a visitor — an abstract class
implementing depth-first tree traversal according to the visitor design pattern [8].
Based on the visitor, YAJCo generates a pretty-printer, which transforms the object
graph back into the textual form.

3. Implementation of Oberon-0

The Tool Challenge defines several problems to solve that can be combined in
different ways. There are five compiler development tasks: (T1) parsing and
pretty printing, (T2) name binding, (T3) type checking, (T4) source-to-source
transformation and (T5) code generation. These tasks can be solved for five
language levels. The basic level L1 defines a subset of the Oberon-0 without
procedures and with only primitive types, L2 adds for loop and case statement, L3
adds procedures, L4 adds composite data types, and L5 adds pointers.

Our first paper on this topic [7] covered the implementation of the tasks for only
the first two language levels. For this paper, all tasks (T1–5) were implemented for
the first four language levels (L1–4). The implementation of the language3 consists
of the following components:

1. Metamodel — language abstract syntax definition in the form of annotated
Java classes.

2. Model analysis and transformation modules: name resolver, type checker,
transformer and code generator.

YAJCo is used to generate parser, pretty-printer, and visitor from the meta-
model. The visitor is then extended by all components that implement the model
analysis and transformation because they need to traverse the AST for their func-
tionality.

The development process was based on test-driven development [9]. The
metamodel was defined incrementally by adding more language constructs in each
step and immediately testing the generated parser. Small Oberon-0 programs were
defined as test cases to ensure correct processing of the language constructs. The

3. Source code of the implementation can be downloaded at https://git.kpi.fei.tuke.
sk/sergej.chodarev/yajco-oberon0



148

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

CHODAREV AND BAČÍKOVÁ ABSTRACT-SYNTAX-DRIVEN DEVELOPMENT OF . . .

Boolean

TypeReference

PrimitiveType

Declarations

Type

Reference

Number

BinaryOperationUnaryOperation

Expression WhileStatement

IfStatementAssignment Statement

StatementSequence
Constant

Variable

TypeDeclaration

Declaration
name

Module
name

rhs

body
if branch
else branch

lhs

1..n

0..10..n

Figure 1: Metamodel representing the abstract syntax of the Oberon-0 L1 (concrete oper-
ators are omitted)

analysis and transformation modules were also implemented incrementally with
added language concepts.

4. Syntax Definition

You can see the diagram of classes that form the abstract syntax of the Oberon-0
in Figure 1. For simplicity, only classes that are part of the language level L1 are
displayed and operators are excluded.

The root of the language is the Module concept. The Module contains different
kinds of declarations and a sequence of statements. Declarations and statements
may contain expressions that include references to variables or constants and vari-
ous binary and unary operators, such as addition (+) or equality testing (=).

All concepts of the language are represented by Java classes. We recognize
three types of relations between concepts:

1. Inheritance (is-a) — relation between an abstract concept and more concrete
concepts. For example, Variable is a concrete type of Declaration.

2. Composition (has-a) — relation between a language concept and its parts.
For example, a Variable declaration contains its Type.

3. Reference — relation where a concept does not directly contain another
concept, but only a reference to it. For example, a TypeReference represents



149

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

cases, where a type is specified by name and not declared directly in-place.
Therefore, it contains a reference to the real Type defined elsewhere.

Most of the concepts defined in the abstract syntax correspond directly to non-
terminals in the grammar definition of the Oberon-0 [5]. Abstract syntax, however,
does not follow the concrete syntax definition in all details. First of all, abstract
syntax contains explicit references to other concepts, instead of referencing them
implicitly using identifiers. It also omits non-terminals that represent only detail
of concrete notation, for example, IdentList used to group identifiers with the same
type.

On the other hand, the abstract syntax contains concepts that are not directly
present in the grammar, like PrimitiveType or Boolean. Primitive type names
(BOOLEAN and INTEGER) and boolean values (TRUE and FALSE) are defined in
Oberon-0 as built-in identifiers instead of keywords, so they are not included in
the grammar. They are, however, concepts of the language, so they are part of the
abstract syntax definition.

Definition of the abstract syntax using Java classes corresponds to domain mod-
eling and it requires to identify language concepts and express relations between
them in the early stages of the language development.

4.1 Concrete Syntax Definition

Listing 1 provides an example of the language concept definition. It defines
the Module concept with two allowed concrete syntax forms: with statements
and without them (a corresponding grammar fragment in the extended BNF is
provided in Listing 2). Each syntax form is defined using a constructor of the class.
Composition relations between classes are derived from the types of constructor
parameters.

Keywords that are used in the language concept concrete syntax are defined
using @Before and @After annotations. Notice that additional syntax constraints
can be checked inside the constructor body, for example, Oberon-0 requires module
name to be repeated at the end of the definition after the END keyword.

YAJCo also provides special support for most common syntactic patterns like
sequences with separator symbols or infix operators. For example, the StatementSe-
quence definition in Listing 3 uses the @Separator and @Range annotations to
specify that there must be at least one statement and they must be separated by a
semicolon.

Using the @Operator annotation it is possible to define the priority level and
associativity of the operator as shown in Listing 4. To support enclosing operators in
parentheses, the base class Expression is marked with the @Parentheses annotation.
YAJCo uses this information to automatically generate the corresponding grammar
rules without the need to modify the metamodel structure to support these concrete
syntax features.



150

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

CHODAREV AND BAČÍKOVÁ ABSTRACT-SYNTAX-DRIVEN DEVELOPMENT OF . . .

public class Module {
private String name;
private Declarations declarations;
private StatementSequence statements;

@Before(”MODULE”) @After(”.”)
public Module(

@After(”;”) String name,
Declarations declarations,
@Token(”name”) @Before(”END”) String nameRepeated) {

if (!name.equals(nameRepeated))
throw new RuntimeException(”...”);

this.name = name;
this.declarations = declarations;

}

@Before(”MODULE”) @After(”.”)
public Module(

@After(”;”) String name,
Declarations declarations,
@Before(”BEGIN”) StatementSequence statements,
@Token(”name”) @Before(”END”) String nameRepeated) {

this(name, declarations, nameRepeated);
this.statements = statements;

}
...

Listing 1: Definition of the Module concept

module = ”MODULE” ident ”;” declarations
[”BEGIN” StatementSequence] ”END” ident ”.” .

Listing 2: Definition of the module in the EBNF form

public class StatementSequence extends ArrayList<Statement> {
public StatementSequence(

@Separator(”;”) @Range(minOccurs = 1)
List<Statement> statements) {

addAll(statements);
}
...

Listing 3: Definition of the addition operator



151

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

public class Add extends BinaryOperation {
@Operator(priority = 2, associativity = LEFT)
public Add(Expression left, @Before(”+”) Expression right) {

super(left, right);
}

@Override
public Type getType() { return INTEGER; }

}

Listing 4: Definition of the addition operator

public class IfStatement extends Statement {
...
@Before(”IF”) @After(”END”)
public IfStatement(

Expression condition,
@Before(”THEN”) StatementSequence thenBranch,
ElsifFragment elsif) {

this.condition = condition;
this.thenBranch = thenBranch;
this.elseBranch = StatementSequence.of(

elsif.getIfStatement());
}
...

}

Listing 5: One of constructors of the IfStatemetns class

4.2 Helper Classes for Concrete Syntax Mapping

In some cases, the relation between the abstract and concrete syntax is more
complex and cannot be expressed using constructor parameters and annotations.
For example, Oberon-0 grammar defines an ELSIF keyword used as a part of the
if statement. It is actually a shortcut that allows a more convenient nesting of the
if statement inside the else branch of the previous statement. As this construct is
just “syntactic sugar” it is not required to represent it in the abstract syntax graph
using a special kind of object.

In such cases, special classes need to be introduced to represent concrete syntax
features instead of abstract syntax concepts. In the case of the ELSIF keyword,
an ElsifFragment class was defined with the syntax definition of this element. In
the corresponding constructor of the IfStatement class, the nested if statement is
extracted and stored as a single statement of the else branch (see Listing 5). The
ElsifFragment class, therefore, influences the grammar and parser of the language,
but its instances are not stored in the abstract syntax graph.



152

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

CHODAREV AND BAČÍKOVÁ ABSTRACT-SYNTAX-DRIVEN DEVELOPMENT OF . . .

declarations = [”CONST” {ident ”=” expression ”;”}]
[”TYPE” {ident ”=” type ”;”}]
[”VAR” {IdentList ”:” type ”;”}].

Listing 6: Concrete syntax of Oberon-0 declarations (without procedures)

public class ConstantDeclarations extends ArrayList<Constant> {
public ConstantDeclarations() {}

@Before(”CONST”)
public ConstantDeclarations(

@Range(minOccurs = 1) List<Constant> declarations) {
addAll(declarations);

}

public List<Constant> getDeclarations() {
return this;

}
}

Listing 7: Definition of constant declarations section

Another example of classes specific to concrete syntax is provided by the
declarations section of the module definition. From the point of view of the
abstract syntax model, Declarations class is a simple collection of Declaration
objects, where Declaration is an abstract base class for all kinds of declarations
(see class diagram in Fig. 1). In the concrete syntax, however, declarations contain
separate lists of constants, types, and variables that cannot be intermixed (see
grammar rule in Listing 6). In addition, multiple variables can be grouped together
into a single declaration if they are of the same type.

To map the abstract syntax to the concrete syntax, several helper classes were
used. Each list from the declarations section is represented using a class that is
actually a list with custom constructors (see Listing 7 for an example). Details of
the declaration syntax are specified in a class representing list item (e.g. Constant).

For variables grouped by their type, an additional helper class was defined —
VariablesGroup with a constructor that defines the concrete syntax of the grouping.
The constructor of the VariableDeclarations class then merges these groups into a
single list of Variable objects.

Finally, the constructor of the Declarations class merges all lists of declarations
into a single hash map, where they are accessible by name. Only this representation
is actually part of the abstract syntax. Instances of the helper classes are not needed
for further processing so they are not stored to avoid duplication.



153

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

4.3 Pretty-Printer

Pretty-printer generator uses the same grammar extracted from the class structure
and constructors. In addition, it requires get methods for all constructor parameters
to be implemented. This means that the objects must be able to return values for
these parameters even if they do not directly correspond to fields of the class. For
example, you can see such get method also in Listing 7, where it is needed only for
the pretty-printer.

The need to have these get methods requires some additional work in cases were
concrete syntax does not match directly to the abstract syntax and helper classes
are used. If their instances are not stored in the model, they should be recreated in
the get methods using an inverse transformation. For example, in the case of the
Declarations class, separate get methods do filtering of the declarations list based
on the declaration’s type.

5. Model Analysis and Transformation

Attaching semantics to the language metamodel represented by Java classes can be
done in different ways. The most obvious way is to implement semantic actions as
methods of the metamodel classes. They can be separated from the metamodel def-
inition using aspect-oriented programming techniques [10] or can be implemented
using a visitor design pattern.

In our case, most of the model analysis and transformation operations were
implemented based on the Visitor class generated by YAJCo. The Visitor class
implements the visitor design pattern for the classes that are part of the syntax
definition and provides default implementations for all methods allowing full depth-
first traversal through the abstract syntax tree, so only methods that would do some
operations need to be overridden. In addition, all of the visit methods of the class
accept an additional parameter allowing to pass some context.

5.1 Name Analysis

YAJCo provides its own mechanism for automatic name resolution [11]. However,
because of the limitations of its current implementation (it does not support inheri-
tance hierarchy of referenced classes), it was required to implement a custom name
resolution module.

The NameResolver class extends the visitor and passes the SymbolTable object,
as a context between visit methods. As can be seen in Listing 8, referenced names
are first looked up in the list of built-in constants (like TRUE and FALSE) and then
in the symbol table. The found declaration is stored in the field of the corresponding
reference object. In a case where the declaration is missing, an error message is
added into a list of errors that would be reported to the user.



154

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

CHODAREV AND BAČÍKOVÁ ABSTRACT-SYNTAX-DRIVEN DEVELOPMENT OF . . .

public class NamesResolver extends Visitor<SymbolTable> {
@Override
protected void visitReference(Reference reference,

SymbolTable declarations) {
String name = reference.getName();
Constant constant = checkBuiltinConstants(name);
if (constant != null) {

reference.setDeclaration(constant);
return;

}
Declaration declaration = declarations.get(name);
if (declaration == null) {

errors.add(...);
}
reference.setDeclaration(declaration);

}
...

Listing 8: Fragment of the NameResolver class

The NameResolver also resolves built-in named constants (TRUE and FALSE),
type names, procedure names and parameters.

5.2 Type Checking

The type of expressions and declarations is defined as a part of the language model.
Therefore, each language concept with a type provides a getType() method (see
for example Listing 4). Oberon-0 does not have any polymorphic operations, so
definition of the getType() methods is straightforward — in case of operators they
just return a constant value based on the type of the operator, for a variable it
returns the declared type of the variable, and for a constant it returns the type of
the initialization expression bound to the constant.

The type checker, therefore, checks types of operands in expressions and control
structures (for example, the condition of the if statement must be of type boolean).
It also checks if the type of the expression matches the type of the variable in
variable assignments. Found type errors are collected into a list representing the
result of the type checking.

5.3 Source-to-Source Transformation

According to the definition of the challenge, a source-to-source transformation was
implemented for “de-sugaring” of the case and for statements added in the second
language level L2 (see section 6) and for “lifting” nested methods in the level L3.

In both cases, the transformation was done using the visitor pattern and the
abstract syntax graph was modified in-place.



155

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

De-sugaring case and for statements. During the processing, they were trans-
formed into the concepts of the base language level L1. In this case, the visitor
analyzes all instances of the StatementSequence class found in the abstract syntax
tree. If any of the transformed statement types were found, a transformation method
is applied to replace them with corresponding concepts from the L1 language level.
The transformation methods just create the instances of the replacement objects
and initialize them according to the translation schema.

Procedures lifting. In this case, all procedures were checked if they contain
nested procedure declarations. In such a case, the nested Procedure objects were
moved to the main Module declaration and their names are mangled to contain the
name of the parent procedures as a prefix. Procedure calls do not need modification,
because they contain a reference to the actual Procedure declaration with the
updated name.

5.4 Code Generation

The code generation module realizes the translation of the Oberon-0 into ANSI
C. The languages provide similar features, so the translation is implemented using
a simple visitor with a PrintWriter instance as a context object used to emit the
generated code.

6. Language Extension

As was mentioned earlier, we have implemented four language levels defined by
the Tool Challenge:

• L1 — base version of the language without procedures and with only simple
types,

• L2 — previous level extended with Pascal-like FOR and CASE statements,

• L3 — previous level extended with declarations and calls of procedures,

• L4 — previous level extended with ARRAY and RECORD types.

To showcase language extension support provided by YAJCo we have imple-
mented all relevant tasks for each language level separately. Therefore, in each
step, we have implemented a complete translator from Oberon-0 to C with type
checking, name resolution, and tree transformation. Therefore, we have extended
not only syntax definition but also the semantics of the language.

6.1 Syntax Extension

YAJCo has full support for language composition [12], so an extension can be
implemented straightforwardly by adding classes representing the new language



156

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

CHODAREV AND BAČÍKOVÁ ABSTRACT-SYNTAX-DRIVEN DEVELOPMENT OF . . .

Declaration
name

FieldSelector
fieldName

IndexSelector

FieldSelector
fieldName

IndexSelector

Level L4

ArrayType

RecordType
Type

Reference

Expression

Variable

basebase

index
size

1..*
fields

elementType

Figure 2: Classes representing the language extension L4 and related classes from the base
level

elements and extending class from the base language. This addition is automatically
detected by YAJCo and new concepts are incorporated into the language definition,
resulting in an extended parser and pretty-printer.

For example, new classes representing the FOR and CASE statements are de-
fined as subclasses of the Statement class and are automatically added to the
grammar, generated parser, and pretty-printer. The addition of the procedure call
statement in the level L3 was similar.

As you can see in Figure 2, declarations of array and record types in the level
L4 extended the Type class from the base language level. This means that they
can be used in all places, where a type is expected, including variable declaration
and declaration of a new type. Similarly, new subtypes of the Reference class was
defined to support array indexes and record field selectors after a variable name.
These types are recursive — they contain a base Reference and therefore can be
nested.

Declaration of procedures was less trivial. Since the original implementation
of the Declarations class explicitly listed each type of supported declarations
(types, constants, and variables) in its constructor, it was not enough to extend
the Declaration class. A new class was created — DeclarationsWithProcedures
extending Declarations and defining a constructor accepting procedures in addition
to previously supported concepts. This new class was automatically detected by
YAJCo and the grammar was extended with an alternative corresponding to it.



157

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

6.2 Semantics Extension

As was mentioned earlier, the semantics of a language can be implemented directly
in methods of the abstract syntax classes, or it can be separated into separate
classes usually extending the Visitor class generated by YAJCo. Extension of
the language is possible in both cases. In the first one, new language elements
are added with the corresponding semantic methods, or semantics of existing
elements is modified using aspect-oriented programming [12]. In the second
case, new processing classes are defined using the usual object-oriented extension
mechanism and overriding the necessary visit methods. The abstract Visitor class
is automatically updated by YAJCo to contain default implementations of visit
methods for all detected language elements that implement full traversal of the
tree.

We have used visitor classes to implement the semantics of the Oberon-0.
For example, the type checking system for the level L1 was implemented in the
TypeChecker class using the visitor design pattern. For each of the next levels, we
have implemented a new type checker that extends the previous one and override
needed methods. Name resolver, graph transformer, and code generator were also
extended where it was needed.

The most complex change was the extension of the names resolution system
to support the concept of nested namespaces in the level L3. The original names
resolver used the Declarations class directly to lookup objects for names. We
have refactored it by introducing a new SymbolTable interface implemented by
Declarations and using this interface in the NamesResolver. This allowed to simply
replace Declarations with StackedDeclarations for processing level L3. Because
of the common interface, the code inherited from the base class can work correctly
with nested namespaces.

The introduction of interfaces and changing the visibility of some methods
from private to protected was required in several other cases. This simplified the
extension of existing classes and allowed us to override and extend parts of their
functionality while reusing the rest. This illustrates that language extension in the
case of YAJCo is equivalent to the usual object-oriented extension. It uses the
same techniques, requires some adherence to object-oriented design best practices
and also benefits from upfront design with respect to future extensions.

7. Observations

YAJCo allows defining languages using usual object-oriented concepts of classes,
inheritance, compositions, and association. The classes are written directly by the
language developer and not generated from the grammar definition. This means
that the developer may choose the best representation of the abstract syntax for
further processing.



158

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

CHODAREV AND BAČÍKOVÁ ABSTRACT-SYNTAX-DRIVEN DEVELOPMENT OF . . .

The approach based on the abstract syntax also shifts the focus of language
development to the more abstract specification of the conceptual model of the
language instead of its concrete syntax. A language developer is required to
pay attention to conceptual relations between language elements before specifying
concrete syntax.

Implementation of model analysis and transformation using object-oriented
code allows applying usual code abstraction and modularization techniques, such
as the introduction of methods for repeating code and extension using inheritance.
Language implementation, therefore, benefits from the well-established object-
oriented design principles that simplify its extension and evolution.

The generated visitor allows implementing tree traversal in a very straightfor-
ward and concise way. It supports language extension because the addition or
modification of language concepts that are not directly processed by the visitor
subclasses would not alter their functionality — the processor would simply inherit
the default implementation of the corresponding visit methods from the base class.

Another important advantage of expressing language concepts directly using
Java classes lies in the native support of integrated development environments
(IDE). It is possible to use rich refactoring and code generation features provided
by modern IDEs to modify and extend the language definition and all processing
code.

This case study also exposed some deficiencies in the current implementation
of the YAJCo tool. For example, optional constructor arguments are not directly
supported. The same effect can be achieved using multiple constructors, however,
direct support of the Optional type from Java 8 would be useful.

As mentioned earlier, the built-in name resolution mechanism does not support
referencing different subclasses of a base class. An important missing feature is
the ability to map objects from the abstract syntax graph to source code positions
for better error reporting.

Helper classes used to represent complex relations between concrete and ab-
stract syntax can also complicate the language definition. In the future, it is
desirable to identify and support more common transformations similarly to the
currently supported sequences and operators.

8. Related Work

Domain-specific languages are successfully used in different areas, for example, ap-
plication logging [13], acceptance tests [14], graphic shape description [15], expert
systems [16], text analysis [17], or automatic assessment of students [18]. Source
code annotations can also be considered a DSLs [19]. It was shown that DSLs
improve program comprehension compared to general-purpose languages [20].
Therefore tools and methods for the development of DSLs are active research
topics.



159

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Several other language development tools were used to solve the tasks of the
LDTA Tool Challenge. Part of them uses attribute grammars as a formalism al-
lowing analysis and transformation of AST, including Silver [21] and CoCoCo [22]
that use a functional language for the definition of attributes.

JustAdd [23] uses object-oriented attribute grammars, where the abstract syntax
is represented by classes, but parser specification and its mapping to the abstract
syntax is defined separately using the Beaver parser generator. In our case, the
Beaver can also be used as an underlying parser generator, but the specification for
it is generated automatically.

Kiama [24] is another tool based on attributed grammars. It uses Scala type
classes for representing the abstract syntax and several DSLs embedded in Scala to
define other properties of a language.

Simpl DSL toolkit [25] is also based on Scala and uses the case classes.
They are, however, generated automatically based on the grammar specification.
Analysis and transformation of the AST are handled by a usual Scala code. In this
sense, this tool is similar to YAJCo with an important difference in the fact that
Simpl uses concrete syntax specification as the main artifact instead of the abstract
syntax.

Rascal [26] is a specialized language for meta-programming. It provides built-
in constructs for syntax definition, and strategic traversal and rewriting of trees. The
challenge was also solved using the Objective Caml programming language [27]
that by default provides tools sufficient for language processing, including parser
combinators and “type-driven” transformers.

9. Conclusion

The paper presents an experience report of implementing the Oberon-0 language
using the YAJCo parser generator. This tool supports the development driven
by the abstract syntax definition instead of the concrete syntax. Together with
the use of the usual object-oriented programming approach and Java language
it provides possibilities to utilize the well-known software engineering tools and
approaches also for language development and make this area more approachable
for developers.

We plan to use the experience from this experiment to eliminate the identified
deficiencies of the YAJCo tool. The design and implementation of additional
patterns for concrete syntax specification is the main goal of our future research in
this area. For example, support for the optional parts of a language concept could
be easily added. Grouping of elements with the same properties is also a common
pattern, that can be supported directly using a special annotation.

Another area of improvement is tool support. We plan to support the generation
of a complete developed environment from the language definition.



160

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

CHODAREV AND BAČÍKOVÁ ABSTRACT-SYNTAX-DRIVEN DEVELOPMENT OF . . .

Acknowledgment

This work was supported by projects VEGA No. 1/0762/19: “Interactive pattern-
driven language development” and FEI TUKE Grant no. FEI-2018-57 “Represen-
tation of object states in a program facilitating its comprehension”.

References

[1] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys, vol. 37, no. 4, pp.
316–344, dec 2005. doi: 10.1145/1118890.1118892

[2] T. Kosar, S. Bohra, and M. Mernik, “Domain-Specific Languages: A
Systematic Mapping Study,” Information and Software Technology, vol. 71,
pp. 77–91, mar 2016. doi: 10.1016/J.INFSOF.2015.11.001

[3] S. Erdweg, T. van der Storm, M. Völter, L. Tratt, R. Bosman, W. R. Cook,
A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. Konat, P. J. Molina,
M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi, V. Vergu,
E. Visser, K. van der Vlist, G. Wachsmuth, and J. van der Woning,
“Evaluating and comparing language workbenches,” Computer Languages,
Systems & Structures, vol. 44, pp. 24–47, dec 2015. doi:
10.1016/j.cl.2015.08.007

[4] M. van den Brand, “Introduction—the LDTA tool challenge,” Science of
Computer Programming, vol. 114, pp. 1–6, dec 2015. doi:
10.1016/j.scico.2015.10.015

[5] N. Wirth, Compiler construction. Addison-Wesley, 1996. ISBN ISBN
0-201-40353-6

[6] J. Porubän, M. Forgáč, M. Sabo, and M. Běhálek, “Annotation based parser
generator,” Computer Science and Information Systems (ComSIS), vol. 7,
no. 2, pp. 291–307, 2010. doi: 10.2298/CSIS1002291P

[7] S. Chodarev and M. Bacikova, “Development of Oberon-0 using YAJCo,” in
2017 IEEE 14th International Scientific Conference on Informatics. IEEE,
nov 2017. doi: 10.1109/INFORMATICS.2017.8327233. ISBN
978-1-5386-0888-3 pp. 122–127.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995. ISBN 0-201-63361-2

[9] K. Beck, Test-Driven Development: By Example. Addison-Wesley, 2003.

[10] J. Porubän, M. Sabo, J. Kollár, and M. Mernik, “Abstract syntax driven



161

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

language development,” in Proceedings of the International Workshop on
Formalization of Modeling Languages - FML ’10. ACM Press, 2010. doi:
10.1145/1943397.1943399. ISBN 9781450305327 pp. 1–5.

[11] D. Lakatoš, J. Porubän, and M. Bačíková, “Declarative specification of
references in DSLs,” in Federated Conference on Computer Science and
Information Systems (FedCSIS). IEEE, 2013. ISBN 9781467344715 pp.
1527–1534.

[12] S. Chodarev, D. Lakatoš, J. Porubän, and J. Kollár, “Abstract syntax driven
approach for language composition,” Open Computer Science, vol. 4, no. 3,
p. 160, jan 2014. doi: 10.2478/s13537-014-0211-8

[13] S. Zawoad, M. Mernik, and R. Hasan, “Towards building a forensics aware
language for secure logging,” Computer Science and Information Systems
(ComSIS), vol. 11, no. 4, pp. 1291–1314, 2014. doi:
10.2298/CSIS131201051Z

[14] T. Straszak and M. Śmialek, “Model-driven acceptance test automation
based on use cases,” Computer Science and Information Systems (ComSIS),
vol. 12, no. 2, pp. 707–728, 2015. doi: 10.2298/CSIS141217033S

[15] J. Kollár and M. Spišiak, “Direction vector grammar,” in 2015 IEEE 13th
International Scientific Conference on Informatics. IEEE, nov 2015. doi:
10.1109/Informatics.2015.7377824. ISBN 978-1-4673-9867-1 pp. 151–155.

[16] M. Woźniak, D. Polap, C. Napoli, and E. Tramontana, “Graphic object
feature extraction system based on Cuckoo Search Algorithm,” Expert
Systems with Applications, vol. 66, pp. 20–31, dec 2016. doi:
10.1016/j.eswa.2016.08.068

[17] M. Sičák and J. Kollár, “Supercombinator set construction from a
context-free representation of text,” in Federated Conference on Computer
Science and Information Systems (FedCSIS 2016), oct 2016. doi:
10.15439/2016F334. ISBN 9788360810903 pp. 503–512.

[18] E. Pietriková, J. Juhár, and J. Šťastná, “Towards automated assessment in
game-creative programming courses,” in International Conference on
Emerging eLearning Technologies and Applications (ICETA 2015). IEEE,
nov 2015. doi: 10.1109/ICETA.2015.7558505. ISBN 978-1-4673-8534-3
pp. 1–6.

[19] M. Nosál’, M. Sulír, and J. Juhár, “Language composition using source code
annotations,” Computer Science and Information Systems (ComSIS), vol. 13,
no. 3, pp. 707–729, 2016. doi: 10.2298/CSIS160114024N

[20] T. Kosar, N. Oliveira, M. Mernik, V. J. M. Pereira, M. Črepinšek, D. Da



162

JIOS, VOL. 43. NO. 2 (2019), PP. 145-162

CHODAREV AND BAČÍKOVÁ ABSTRACT-SYNTAX-DRIVEN DEVELOPMENT OF . . .

Cruz, and R. P. Henriques, “Comparing general-purpose and
domain-specific languages: An empirical study,” Computer Science and
Information Systems (ComSIS), vol. 7, no. 2, pp. 247–264, 2010. doi:
10.2298/CSIS1002247K

[21] T. Kaminski and E. Van Wyk, “A modular specification of Oberon0 using
the Silver attribute grammar system,” Science of Computer Programming,
vol. 114, pp. 33–44, 2015. doi: 10.1016/j.scico.2015.10.009

[22] M. Viera and S. D. Swierstra, “Compositional compiler construction:
Oberon0,” Science of Computer Programming, vol. 114, pp. 45–56, 2015.
doi: 10.1016/j.scico.2015.10.008

[23] N. Fors and G. Hedin, “A JastAdd implementation of Oberon-0,” Science of
Computer Programming, vol. 114, pp. 74–84, 2015. doi:
10.1016/j.scico.2015.02.002

[24] A. M. Sloane and M. Roberts, “Oberon-0 in Kiama,” Science of Computer
Programming, vol. 114, pp. 20–32, 2015. doi: 10.1016/j.scico.2015.10.010

[25] M. Freudenthal, “Simpl DSL toolkit,” Science of Computer Programming,
vol. 114, pp. 85–91, dec 2015. doi: 10.1016/j.scico.2014.11.018

[26] B. Basten, J. Van Den Bos, M. Hills, P. Klint, A. Lankamp, B. Lisser, A. Van
Der Ploeg, T. Van Der Storm, and J. Vinju, “Modular language
implementation in Rascal - Experience report,” Science of Computer
Programming, vol. 114, pp. 7–19, 2015. doi: 10.1016/j.scico.2015.11.003

[27] D. Boulytchev, “Combinators and type-driven transformers in Objective
Caml,” Science of Computer Programming, vol. 114, no. 13, pp. 57–73,
2015. doi: 10.1016/j.scico.2015.07.008




