
INTRODUCTION

Silver nanoparticles (AgNPs) have potential applications
in various medical fields and could, in theory, serve as anti-
microbials [1-4], anti-inflammatories [5,6] and even in drug
delivery systems [6,7]. In addition, they can be used as photo-
sensitive components, optical receptors for bio-labeling and
spectrally selective coatings for solar cells [8-11]. The diameter
(1-100 nm) and shape (rods, cubes, and spheres) of AgNPs
can be controlled by adjusting the reaction conditions such as
temperature and reagents proportion [12]. Moreover, the types
of reducing reagents and reaction time can have significant
effects on the size of AgNPs [13].

Various synthesis methods (e.g. chemical, physical,
photochemical and biological) are known for the production
of AgNPs. The chemical approach is the most common process
for the AgNPs formation. Such approach involves the use of
various reducing agents (organic and inorganic), physico-
chemical reduction, electrochemical processes and radiolysis.
The chemical synthesis of AgNPs usually involves a metal
precursor (e.g. silver nitrate), a reducing reagent (e.g. sodium
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borohydride) and a stabilizing/capping reagent (e.g. sodium
oleate) [14-18]. However, there are several problems (e.g.
stability and aggregation of nanoparticles) associated with the
methods used for the production of nanoparticles. Therefore,
the current methods used for the production of nanoparticles
require further development and optimization.

The emerged resistances of pathogenic bacteria for conven-
tional antibiotic encourage researchers from industry and/or
academia to devise effective new antibacterial agents. Silver
nanoparticles are an effective inhibitor and showed various
antibacterial activities [19-21]. Based on the values of  minimum
bactericidal concentration (MBC) and the minimal inhibitory
concentration (MIC), AgNPs present a potential alternative
for the treatment of bacterial infections [22,23]. In the current
work, AgNPs were synthesized using a simple chemical method
in which citrate ions have been used as a reducing and stabil-
izing reagent. The resultant nanoparticles were analyzed and
characterized using various spectroscopic techniques including
UV, FTIR, XRD, SEM and EDX. The antimicrobial activity
of silver nanoparticles against Streptococcus aureus and Staphylo-
coccus aureus (Gram-positive bacteria) and Escherichia coli,
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Salmonella typhi, Acinetobacter spp., Vibrio cholera and
Yersinia spp. (Gram-negative bacteria) has been investigated.
The results showed that the synthesized silver nanoparticles
are effective against the tested microorganisms.

EXPERIMENTAL

The synthesized silver nanoparticles were characterized
by various standard spectroscopic techniques such as FTIR and
UV-visible spectroscopy. The FTIR spectra (4000-400 cm-1)
were recorded on a Bruker tensor 27 FTIR spectrometer with
RTDLATGS detector using KBr pellet method at room temp-
erature. The UV spectra (190-1100 nm) were detected on Shimadzu
UV-Visible spectrophotometer, Model 1800 in which distilled
water was used as a blank. The SEM and EDX analysis were
measured on Hitachi S-340N. A small quantity of AgNPs sample
was allowed to dry on an aluminum plate under a mercury
lamp for 5 min to produce a thin film.

Synthesis of silver nanoparticles: Silver nitrate (16 mg)
was dissolved in distilled water (100 mL) to produce 1 mM solution.
Similarly, sodium borohydride (37.8 mg) was dissolved in distilled
water (500 mL) to produce 1 mM solution. Colloidal silver
was made by the addition of an excess of sodium borohydride
(reducing and stabilizer reagent) to silver nitrate as shown in
eqn. 1:

3 4 2 2 6 3AgNO NaBH Ag 0.5 H 0.5 B H NaNO+ → + + +  (1)

The chilled sodium borohydride (at about 0 ºC) and silver
nitrate solution (1 mM, 10 mL) was added in a dropwise
manner to a stirred solution of NaBH4 (1 mM, 30 mL) using a
dropper (one drop/sec).

Determination of silver nanoparticles concentration:
The concentration of silver nanoparticles was determined using
a reported procedure [24]. Eqn. 2 can be used to calculate the
number of atoms per nanoparticles (N).
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where π = 3.14, ρ is the density of silver in the face-centered
cubic unit cell (10.5 g/cm3), D is the average diameter of nano-
particles (70 nm), M is the atomic mass of silver (107.868 g/mol)
and NA is the number of atoms per mole (Avogadro's number;
6.023 × 1023). Based on the assumption that the reduction of
Ag+ to Ag0 was complete, ρ should be converted to g/nm3 unit
(i.e. 1.05 × 10-20 g/nm3). Therefore, N should be 10519567.58,
as shown in eqn 3:
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The total number of silver atoms added as AgNO3 (NT)
was calculated using eqn 4:
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= 1.20 × 1019 atm (4)

The molar concentration of nanoparticles (C) in solution
was calculated using eqn 4 and V is the volume of reaction
mixture in L.
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Determination of silver nanoparticles minimum inhibitory
concentration (MIC): The MIC dilution assay was carried
out as previously reported [25]. Seven pathologic isolates were
employed in the current assay and provided by Al-Sadar Medical
City, Al-Najaf province, Iraq. To prepare the inoculation solution,
a normal saline suspension of active cultures from the isolates
was made to be the same as the intensity of 0.5 McFarland
solutions. The suspension was diluted 1000 times by Molar-Hinton
broth (HiMedia Laboratories, India) to give about 105 CFU/
mL. Then inoculation solution (1 mL) was added to a test-tube
which contained Molar-Hinton broth (4 mL) and AgNPs. The
concentrations of AgNPs were 5, 1, 0.2, 0.04 and 0.008 µg/
mL. Positive and negative control tubes were included for each
isolate. The tubes were incubated at 37 ºC for 20 h. The lowest
concentration that prevents the visible growth of microorg-
anisms was considered as the MIC.

RESULTS AND DISCUSSION

Silver nanoparticles were synthesized from the reaction
of silver nitrate and sodium borohydride. A light yellow colour
slowly appeared as the silver nitrate was being added to sodium
borohydride aqueous solution. The appearance of light yellow
colour indicates the formation of AgNPs. However, the deve-
lopment of a greyish and turbid appearance could be due to
the mixing rate, duration and stirring. Such factors can affect
the stability and size distribution of the colloidal silver.

UV-visible absorbance analysis: The formation of AgNPs
was recognized when the colour changes from colourless to
yellowish as a result of excitation of surface plasmon resonance
bands (UV-visible region). The maximum absorption wavelength
(λmax) is generally associated with the average particles size.
While particle dispersion can be measured from the spectrum
full width at λmax/2 (FWHM). Silver nanoparticles showed
absorbance at 428 nm (Fig. 1), which is typical for silver
nanoparticles with FWHM of 140-150 nm.
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Fig. 1. UV-visible spectrum of AgNPs

The correlation between FWHM and particles diameter can
be used to characterize AgNPs [26,27]. The plasmon resonance
produces a peak near 430 nm with a peak width half maximum
(PWHM) of 144 nm. Evidently, synthesized silver nanoparticles
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are spherical and nanometer-sized [28]. However, the nano-
particle size affects the peak position. The optical absorption
spectrum with Mie theory showed that the spectrum maximum
position corresponds to particles between 50 and 80 nm sizes
which are in agreement with SEM. However, such calculations
can only be applied in case of the spherical particles. The absor-
bance spectrum shows one peak only in which shorter wave-
lengths peaks originated from the initial compounds were
ignored. Again, it has been concluded that synthesized AgNPs
are spherical. The change in absorbance led to a change of
absorbing species in solution [29].

FTIR analysis: The interpretation of infrared spectrum
involves the correlation of absorption bands in the spectrum
with that for the desired sample. The FTIR for silver nitrate
shows a strong symmetrical stretch band that resonates within
1400-1200 cm-1 region. The major peak resonates at 1390-
1380 cm-1 region can be assigned to the symmetrical stretching
vibration for O-N-O bond in nitrate radical [30].

Zeta potential measurement of silver nanoparticles: Zeta
potential value gives an indication for the nanoparticles stability.
The zeta potential value for the synthesized AgNPs was found
to be 35.6 mV (Fig. 2). Evidently, such zeta potential value indi-
cates that AgNPs is stable with a narrow size distribution. In
addition, zeta potential value provides satisfactory evidence that
AgNPs have little tendency towards aggregation [31].

Scanning electron microscope (SEM) and energy disper-
sive X-Ray (EDX) analysis: The morphology and size of
AgNPs were studied by SEM (Fig. 3). The synthesized silver
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Fig. 2. Zeta potential of AgNPs

nanoparticles after solvent evaporation, displayed a high degree
of nanoparticle aggregation with irregular and spherical shapes.
The SEM images show that the aggregated particle diameters
were in the range of 50 to 80 nm with an average diameter of 70
nm. Also, similar results for the size distribution measurements
are obtained (Fig. 4).

Furthermore, elemental composition of the samples was
also determined by EDX analysis. The EDX spectrum (Fig. 5)

Fig. 3. SEM images of AgNPs
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Fig. 4. Size distribution measurements
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Fig. 5. Energy dispersive spectroscopy spectrums of AgNPs
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shows a high intense signal at 3 kV which indicates that the
sample is pure and contains silver as the major element. The
EDX confirmed the existence of both silver and NaHB4 that
covers AgNPs. The EDX spectrum suggests the presence of
both O and Na. Moreover, it proves that silver nanoparticles
are in the metallic form with no Ag2O or other impurities.

Minimum inhibitory concentration (MIC) of silver nano-
particles: To determine the antibacterial activity of AgNPs,
the MIC was assayed against the pathogenic isolates of S. aureus
and Streptococcus pyogenes (Gram-positive), Escherichia coli,
Salmonella typhi, Yersinia spp., Acinetobacter spp. and Vibrio
cholera (Gram-negative). The results (Table-1) showed that
MIC for AgNPs against Staphylococcus aureus and Yersinia spp.
were observed at 5 µg/mL, while Vibrio cholera, Streptococcus
pyogenes, Salmonella typhi and Acinetobacter spp. were more
sensitive (MIC = 1 µg/mL) towards AgNPs. On the other hand,
Escherichia coli showed a visible inhibitory effect at 5 µg/mL
compared to the positive control. However, the highest concen-
tration used did not inhibit the growth of tested microorganism
completely. Table-1 clearly shows that the AgNPs which synthe-
sized by this method produced MIC values equal to or better
than the majority of other studies.

TABLE-1 
MIC VALUES (µg/mL) OF AgNPs FOR THE  

INVESTIGATED BACTERIAL ISOLATES OF  
THIS STUDY COMPARED TO OTHER STUDIED 

Reference 
Bacterial strain 

[32] [33] [34] [35] 
This 
study 

Acinetobacter spp. – – – 83.3 1 
Escherichia coli 3.12 3.3-6.6 12.5 – > 5 
Salmonella typhi 3.12 – – – 1 
Staphylococcus aureus – 33 12.5 83.3 5 
Streptococcus pyogenes – – – 29.2 1 
Vibrio cholerae 3.12 – – – 1 
Yersinia spp. – – – – 5 

 
Silver ion antimicrobial activity is well known and has

been employed to control the bacterial growth and infection
in clinical applications [36,37]. Silver ions inhibited the micro-
bial growth by interacting with specific targets such as thiol
groups and hydrogen bonding [38,39]. However, the antimicro-
bial activity of silver nanoparticles has not been revealed clearly.
Several studies suggested that AgNPs can cause a lethal morphol-
ogical change in the bacterial membrane which can lead to an
increase in membrane permeability and cause bacterial death
as a consequence [40]. The membrane morphological change
can be due to the direct anchoring of nanoparticles [40] or by
free radicals releasing [41,42]. Other studies proposed that
the antimicrobial activity of silver nanoparticles could be due
to the direct antimicrobial effect of silver ions which could be
released from the nanoparticles [43].

Conclusion

Silver nanoparticles were synthesized using the reduction
method from silver nitrate and sodium borohydride. Various
spectroscopic techniques have been used to characterize the
synthesized AgNPs also exhibited an excellent antibacterial
activity against Staphylococcus aureus, Yersinia spp., Acineto-
bacter spp., Streptococcus pyogenes, Salmonella typhi, Vibrio

cholera and Escherichia coli. The minimum inhibitory concen-
tration of AgNPs was achieved at 1-5 µg/mL.
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