

Synthesis and Electrochemical Performance of α-Fe₂O₃ Nano Ellipse as Anode for Lithium-Ion Batteries

Lukman Noerochim^{1,*}, Eriek Aristya P. Putra¹, Diah Susanti¹, Firman Mangasa Simanjuntak¹, Tubagus Noor Rohmannudin¹ and Achmad Subhan²

¹Department of Materials Engineering, Sepuluh Nopember Institute of Technology, Surabaya 60111, Indonesia ²Research Center of Physics, Indonesian Institute of Science, Serpong, Indonesia

*Corresponding author: E-mail: lukman@mat-eng.its.ac.id

Received: 2 August 2018;	Accepted: 18 November 2018;	Published online: 31 December 2018;	AJC-19233

 α -Fe₂O₃ with nano ellipse structure was successfully synthesized by one-step hydrothermal method with adding 3, 6, and 9 mmol glycine at 160 °C for 10 h. FE-SEM images present that the shape and size of α -Fe₂O₃ is nano ellipse with dimensions in the range length of 130–200 nm and in the range diameter of 77–120 nm. The as-prepared α -Fe₂O₃ nano ellipse with the addition of glycine by 6 mmol exhibited excellent cycling performance and rate capability when used as anode for lithium ion batteries, obtaining reversible discharge capacity of 206.75 mAh g⁻¹ at 0.3 C. This is attributed to the nano ellipse structure delivering a large particle surface area thus increasing the electric and ionic conductivity of the α -Fe₂O₃ particles as anode. This result demonstrates that α -Fe₂O₃ nano ellipse could be a good candidate as anode material for lithium-ion battery.

Keywords: Glycine, α-Fe₂O₃, Nano ellipse, Hydrothermal, Lithium-ion battery.

INTRODUCTION

In this present era, the demand for lithium-ion battery is increasing rapidly due to the need of various mobile electronic devices such as mobile phones and laptops [1-3]. Even lately, the automotive world has shifted from gasoline car to an electric vehicle that uses lithium-ion battery as a source of their energy [4-6]. This is because the various advantages of lithium batteries such as high capacity, no memory effect, light weight, and more environmentally friendly [7,8]. One component of commercial lithium-ion battery is the anode that is usually fabricated from carbon. Unfortunately, carbon has several disadvantages, namely low theoretical discharge capacity (372 mAh g⁻¹) and the formation of Li dendritic that can cause the long-term of safety [9-11]. In addition, the higher irreversible capacity of carbon that typically appears at the beginning of the charge-discharge profile can cause energy losses. For that it is necessary to obtain electrode material that has a high capacity, durable, higher rate capability, non-toxic, low cost and widespread availability [12,13]. One of the strongest candidates as an anode material is metal oxide because of its

high theoretical capacity, abundant availability, and in terms of safety, it does not give rise to formation of lithium dendrite [14,15].

Various types of metal oxides have been widely investigated for use as anode for lithium-ion batteries such as SnO₂ [16], MoO₃ [17], Mn₃O₄ [18], TiO₂ [19], Fe₃O₄ [20] and α -Fe₂O₃[21]. α -Fe₂O₃ as the anode is one the promising candidate which there are several advantages such as high theoretical capacity (1007 mAh g⁻¹), low cost, easy fabrication, wide availability and environmental friendly [22,23]. However, there are still some challenges for the practical application as anode materials for α-Fe₂O₃, such as low electronic conductivity and large volume expansion during charge-discharge process which effects on fast capacity fading and poor rate capability. Several strategies are employed to improve the electronic conductivity of α -Fe₂O₃ adding conductive agents such as carbon [24], CNT [25], graphene [26], polyaniline [27] and polypyrrole [28]. However, there are still problems with cycling stability especially in high current densities. To improve the performances of the anode α -Fe₂O₃ especially in terms of stable discharge cycling stability, another of the strategy is by synthesizing

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License, which allows others to copy and redistribute the material in any medium or format, remix, transform, and build upon the material, as long as appropriate credit is given and the new creations are licensed under the identical terms.

various nano structure of α -Fe₂O₃, such as nano rod [29], nano tube [30] and nano sphere [31]. In an effort to synthesize α -Fe₂O₃ nano structure material several techniques are carried out such as ionic liquid-assisted synthesis [32], single-spinneret electrospinning method [33] and reactive spray deposition technology (RSDT) [34]. The previous α -Fe₂O₃ nanostructure synthesis process is usually a costly procedure and with sacrificial template however severe capacity loss still occurs. Therefore, a feasible and low cost α -Fe₂O₃ synthesis technique is still required and remained the main target at the moment without sacrificing of the excellent performance of the α -Fe₂O₃ anode material with a higher specific discharge capacity and enhanced cycling stability.

This work presented the synthesis process of α -Fe₂O₃ nano ellipse by addition of 3, 6 and 9 mol glycine during hydrothermal process at 160 °C for several hours. Glycine is one type of amino acid which is expected to control hydrolysis process for synthesizing nano structure of α -Fe₂O₃. The physical characteristic of α -Fe₂O₃ nano ellipse and electrochemical performance of α -Fe₂O₃ nano ellipse are presented and studied systematically.

EXPERIMENTAL

 α -Fe₂O₃ with nano ellipse structure was synthesized by hydrothermal method with various content of glycine. Iron(III) chloride hexahydrate (FeCl₃·6H₂O, Merck, 99.99 %), glycine (Merck, 99.8 %) and ammonia (NH₄OH, Merck, 99.99 %) are used as reagent in the synthesizing process of α -Fe₂O₃ with nano ellipse structure. The experiment is started by dissolving glycine with a size of 3, 6 and 9 mmol mixed with 6 mmol FeCl₃·6H₂O in 50 mL of deionized water and then stir the mixture with a magnetic stirring until it is completely homogeneous. Each samples were designated as G3, G6 and G9 for 3, 6 and 9 mmol glycine, respectively. Then, 15 mL NH₄OH was added to the above solution in a continuously stirred condition. After stirring for 0.5 h, the total solution was transferred into a Teflon-lined stainless steel autoclave and heated at 160 °C for 15 h. Then it is cooled to room temperature, after that the precipitate of the hydrothermal product is washed several times with deionized water and ethanol by centrifugation and after that it was dried in the oven at 100 °C for 24 h. The α-Fe₂O₃ powder is then characterized by XRD (PANalytical, CuK_{α} radiation) to analyze the crystal structure and phase, while the particle shape and size are analyzed by FE-SEM (FEI Inspect 250). For electrochemical testing is analyzed by first fabrication of coin cell type CR2032. The α -Fe₂O₃ nano ellipse is fabricated with in coin cell as a working electrode, lithium metal as a counter and also a reference electrode, for its electrolyte using 1 mol of LiPF6 in diethyl carbonate/ethylene carbonate mixture (1:1 in volume) solution, and Celgard membrane as separator. The fabrication process is carried out in the glove box system (Vigor) under the argon gas with

adjustable levels. The α -Fe₂O₃ powder is pasted to copper foil by mixing α -Fe₂O₃ powder by 85 % by weight as the active material, 10 % by weight of acetylene black carbon as additive and 5% by weight of polyvinylidene fluoride (PVDF) as a binder and N-methylpyrrolidone (NMP) as a solvent which all of the materials are mixed homogeneously with agate mortar. The cyclic voltammetry test was performed with an electrochemical work station (WonATech WBCS 2000) with a 0.1 mV/s sweep rate and a potential range of 0.1-3 V. The chargedischarge test coin cells were tested with a recycling battery system (WonATeCH WBCS 2000) with various C - rates from 0.3C to 3C with 5 cycles for each different level. The coin cell impedance is measured with an electrochemical impedance spectroscopy (AutoLab) using frequency of 0.1 - 20,000 Hz and 3V potential.

RESULTS AND DISCUSSION

XRD pattern of the α -Fe₂O₃ nano ellipse sample in the presence of glycine 3, 6 and 9 mmol at 160 °C for 10 h is shown in Fig. 1. From Fig. 1, it is observed that all samples of α -Fe₂O₃ synthesized by hydrothermal method indicate as pure hematite (JCPDS card no. 33-0664) [35]. The G9 sample is clearly observed with higher intensity than other samples. This indicates that the G9 sample has a high degree of crysta-linity. All the samples that were successful indexed did not show any impurities, which means that all samples have a high degree of purity. To observe the effect of adding glycine to α -Fe₂O₃ crystal structure, the size of crytallite size on all samples is calculated at the highest of 2θ on hkl plane (1 0 4) by Debye Scherrer formula as shown at Table-1. It can be seen in Table-1 that the addition of glycine decreases crystallite size with optimum conditions achieved in the addition of 6 mmol glycine with a crystallite size of 41.32 nm. The smaller size of crystallite could induce the grain size of materials that it is very

Fig. 1. X-ray diffraction pattern of the α -Fe₂O₃ sample with the addition of glycine 3 (G3), 6 (G6) and 9 mmol (G9)

TABLE-1							
CRYSTALLITE SIZE OF α-Fe ₂ O ₃ SAMPLE WITH THE ADDITION OF GLYCINE 3 (G3), 6 (G6) AND 9 mmol (G9)							
Sample	λ	В	20	FWHM	cos θ	D (Å)	D (nm)
G3	1.54056	0.001752	33.345	0.1004	0.958	826.175	82.617
G6	1.54056	0.003502	33.298	0.2007	0.958	413.216	41.322
G9	1 54056	0.002919	33 379	0 1673	0.958	495 819	49 582

influential on the conductivity of the sample [36,37]. Therefore, the effect of glycine on this conductivity will be evaluated by further measurement with electrochemical impedance spectroscopy (EIS).

Field-emission scanning electron microscopy (FE-SEM) images present clearly the microstructure and morphology of the α -Fe₂O₃ nano ellipse sample (Fig. 2). Fig. 2 displays FE-SEM images that the morphology of α -Fe₂O₃ is an ellipse with almost homogeneous size and uniform distribution. Fig. 2(ac) reveals that the size of α -Fe₂O₃ nanoellipses is in the range

SU8000 20.0kV 8.3mm x100k SE(U)

SU8000 20.0kV 8.1mm x100k SE(U)

Fig. 2. FE-SEM images of α-Fe₂O₃ show elliptical morphology (a) 3 mmol, (b) 6 mmol and (c) 9 mmol of glycine

length of 130–200 nm and in the range diameter of 77–120 nm. Fig. 2c shows that the increasing content of glycine increased the length of α -Fe₂O₃ grain. The mechanism of the formation of α-Fe₂O₃ nano ellipses might be attributed to the hydrolysis process of FeCl₃ connecting to the glycine molecule. Prior to the hydrothermal process, the all precursors of FeCl₃·6H₂O, glycine and NH₄OH are mixed well in which several reactions could have occurred, such as decomposition, hydrolysis and metal ion complexation [38]. When FeCl₃·6H₂O is dissolved in deionized water, it will form a transparent yellow solution. And when glycine is added to the previous solution, then the color turns into a purple black. Most likely this is due to the process of forming compounds between Fe³⁺ ion and glycine. At the beginning of the hydrothermal process, NH₄OH decomposes into NH₃ and H₂O which contribute to the basic condition in the hydrolysis process of Fe³⁺ ion which eventually forms the iron oxide nanocrystals. The -COO⁻ terminal of glycine is connected with iron oxide nanocrystal. The more glycine are added the more -COO⁻ terminal of glycine linked to the iron nanocrystal oxide in the nano ellipse formation process. Coupled with the conditions under high temperature and pressure in the autoclave, it further enhances the formation process. It can be concluded here that the glycine is an important factor in the process of nano ellipse formation.

Fig. 3 shows the cyclic voltammograms (CVs) of the α -Fe₂O₃ nano ellipse electrode between 0.1 V and 3 V at a scan rate of 0.5 mV s⁻¹. It can be clearly observed from the first curve of CV that the pair of redox peak is characteristic of α -Fe₂O₃ as reported by previous study [11]. A sharp peak profile of cathodic scan at a potential of 0.5 V attributes to the Li intercalation into α -Fe₂O₃ and the formation of Li₂O. While on the following peak of anodic scan at a potential of 1.7 V is observed the fall in intensity and tend to broaden indicating the irreversible phase transformation in the lithium extraction process in the first cycle. The oxidation peak at a potential of 1.7 V when an anodic scan is a process of change from Fe^{0} to Fe^{3+} . In the following cycle after the first cycle, the cathodic peak shows a significant change. The cathodic peak shifted at 1.0 V while the anodic peak remain not change. This might be due to changes in α -Fe₂O₃ nano ellipse after the first reduction reaction process of crystallinity of α-Fe₂O₃ destroyed and cannot survive to continue the subsequent charge-discharge process therefore the α -Fe₂O₃ electrode undergoes changes in electrochemical behavior such as amorphous α -Fe₂O₃ as reported by Liu et al. [39]. In the subsequent cycles after first cycle, the peaks exhibit little change, suggesting good stability during Li-ion insertion and extraction process.

Fig. 4 shows the high rate discharge-charge curve of the α -Fe₂O₃ nanoellipse electrode with 3, 6 and 9 mmol glycine, respectively. All discharge-charge curves have the same features as α -Fe₂O₃ reported by Wang *et al.* [31]. For the case of α -Fe₂O₃ with 6 mmol (Fig. 4b), it can be clearly observed that around 1.0 V the first profile of the discharge curve is inclining with a long slope, in good agreement with the CV curves profile. While the charge curve shows a sloping plateau at ~1.7 V due to the Li extraction process. The first reaction process contributes a specific discharge capacity of 206.75 mAh g⁻¹ for α -Fe₂O₃ with 6 mmol electrode. The later process

Fig. 3. Cyclic voltammograms (CVs) of the elliptical α -Fe₂O₃ electrode between 0.1 V and 3 V at a scan rate of 0.5 mV s⁻¹ (a) 3 mmol, (b) 6 mmol and (c) 9 mmol of glycine

deliveries a reversible charge capacity of 161.23 mAh g⁻¹, so the value of capacity loss is found about 21 %. The specific discharge capacities of the elliptical α -Fe₂O₃ electrode at about 206.75 mAh g⁻¹ when cycled at 0.3C, 138.32 mAh g⁻¹ at 1C and finally at the last rate giving capacity 65.66 mAh g⁻¹ at 3C, all of which are higher than other samples as shown in Fig. 4(b). The detail discharge capacity at high rate for all α -Fe₂O₃

Fig. 4. High rate discharge/charge curve of α-Fe₂O₃ nanoellipse electrode (a) 3 mmol, (b) 6 mmol and (c) 9 mmol of glycine

samples is presented in Table-2. It reveals that G6 sample has a good redox reaction process involving lithium ion diffusion into the particle.

Fig. 5 shows the elctrochemical impedance spectroscopy (EIS) of the α -Fe₂O₃ nanoellipse electrode in order to further analyze the bulk resistance and Li-ion diffusion. The equivalent circuit for the modeling of the Nyquist plot is shown in insert Fig. 5 as reported by Liu *et al.* [40]. R_e is the internal resistance of the battery cell, R_{et} represents the charge-transfer resistance

TABLE-2
SELECTED SPECIFIC DISCHARGE CAPACITY OF ALL α-Fe ₂ O ₃ SAMPLES AT DIFFERENT C-RATE

Sample –	Specific discharge capacity (mAh/g)						
	0.3C	0.5C	1.0C	1.5C	2.0C	2.5C	3.0C
G3	129.32	130.11	79.23	49.35	40.21	31.54	26.12
G6	206.75	179.56	138.32	110.76	89.43	78.23	65.66
G9	163.23	140.16	117.56	101.27	84.36	74.17	63.33

Fig. 5. Nyquist plot of α -Fe₂O₃ nano ellipse electrode for 3 mmol, 6 mmol and 9 mmol of glycine, respectively

and CPE is associated with and constant phase element of the electrode/electrolyte interface. While Z_w is chosen to represent the bulk diffusion of lithium ions. It can be seen that the charge-transfer resistance R_{ct} of the α -Fe₂O₃ nano ellipse electrode with the 6 mmol glycine is 177 Ω , that are significantly lower than the α -Fe₂O₃ nano ellipses with 3 and 9 mmol glycine (215 and 212 Ω). This fact shows that after the cycling process, the electrons move more easily in the α -Fe₂O₃ nano ellipses with 6 mmol glycine. This demonstrates that adding glycine at the accurate amount enhances the surface area of the α -Fe₂O₃ nano ellipse which is increasing ionic conductivity of the active materials and decreasing the resistance. Finally, α -Fe₂O₃ nano ellipse electrode with 6 mmol glycine posses high reversible capacity and high-rate capability, would be a material alternative for anode materials of lithium batteries.

Conclusion

The elliptical grains of α -Fe₂O₃ were successfully synthesized by a simple hydrothermal method in the presence of glycine. FE-SEM images show that the concentration of glycine increases the length of the grain. The as-prepared α -Fe₂O₃ nanoellipse has dimensions in the range length of 130–200 nm and in the range diameter of 77–120 nm. When evaluated as an anode material in the high rate cycles, the α -Fe₂O₃ nanoellipse anode material with 6 mmol glycine shows the highest discharge capacity of about 206.75 mAh g⁻¹ at 0.3C and 65.66 mAh g⁻¹ at 3C. This work demonstrates that adding glycine at the accurate amount enhances the surface area of the α -Fe₂O₃ nanoellipse anode material with 6 mmol glycine has good lithium storage performance as potential anode for lithium-ion battery.

ACKNOWLEDGEMENTS

This work was fully supported by ITS Local Grant Penelitian Unggulan ITS Surabaya (No. 694/PKS/ITS/2017).

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J.-M. Tarascon, *Nature*, 407, 496 (2000); https://doi.org/10.1038/35035045.
- Z. Li, L. Li, W. Zhong, A. Cheng, W. Fu, Z. Li and H. Zhang, J. Alloys Compd., 766, 253 (2018);
- https://doi.org/10.1016/j.jallcom.2018.06.316. 3. P. Roy and S.K. Srivastava, J. Mater. Chem. A Mater. Energy Sustain.,
- **3**, 2454 (2015); https://doi.org/10.1039/C4TA04980B.
- M.N. Obrovac and V.L. Chevrier, *Chem. Rev.*, **114**, 11444 (2014); https://doi.org/10.1021/cr500207g.
- W. Guanghui, L. Ruiyi, L. Zaijun, L. Junkang, G. Zhiguo and W. Guangli, *Electrochim. Acta*, **171**, 156 (2015); https://doi.org/10.1016/j.electacta.2015.05.016.
- S. Zhu, J. Li, X. Deng, C. He, E. Liu, F. He, C. Shi and N. Zhao, *Adv. Funct. Mater.*, 27, 1605017 (2017); https://doi.org/10.1002/adfm.201605017.
- Y. Gu, F. Wu and Y. Wang, Adv. Funct. Mater., 23, 893 (2013); https://doi.org/10.1002/adfm.201202136.
- Z. Wang, Z. Wang, W. Liu, W. Xiao and X.W.D. Lou, *Energy Environ. Sci.*, 6, 87 (2013);
- https://doi.org/10.1039/C2EE23330D.
- C. Li, Z. Li, X. Ye, X. Yang, G. Zhang and Z. Li, *Chem. Eng. J.*, 334, 1614 (2018); <u>https://doi.org/10.1016/j.cej.2017.11.142</u>.
- S. Xu, C.M. Hessel, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao and D. Wang, *Energy Environ. Sci.*, 7, 632 (2014); https://doi.org/10.1039/C3EE43319F.
- F. Zhou, S. Xin, H.-W. Liang, L.-T. Song and S.-H. Yu, Angew. Chem. Int. Ed., 53, 11552 (2014); https://doi.org/10.1002/anie.201407103.
- 12. X. Zhu, Y. Zhu, S. Murali, M.D. Stoller and R.S. Ruoff, *ACS Nano*, **5**, 3333 (2011);
- https://doi.org/10.1021/nn200493r. 13. Y. Sun, X. Hu, W. Luo and Y. Huang, ACS Nano, 5, 7100 (2011);
- https://doi.org/10.1021/nn201802c. 14. Z. Wang, S. Madhavi and X. Wen (David) Lou, J. Phys. Chem. C, **116**,
- Z. wang, S. Madnavi and X. wen (David) Lou, J. Phys. Chem. C, 110, 12508 (2012); <u>https://doi.org/10.1021/jp304216z</u>.
- H.B. Wu, J.S. Chen, H.H. Hng and X. Wen (David) Lou, *Nanoscale*, 4, 2526 (2012); https://doi.org/10.1039/c2nr11966h.
- K. Kravchyk, L. Protesescu, M.I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin and M.V. Kovalenko, J. Am. Chem. Soc., 135, 4199 (2013); https://doi.org/10.1021/ja312604r.
- T. Tao, A.M. Glushenkov, C. Zhang, H. Zhang, D. Zhou, Z. Guo, H.K. Liu, Q. Chen, H. Hu and Y. Chen, *J. Mater. Chem.*, **21**, 9350 (2011); <u>https://doi.org/10.1039/c1jm10220f</u>.

- H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui and H. Dai, *J. Am. Chem. Soc.*, **132**, 13978 (2010); <u>https://doi.org/10.1021/ja105296a</u>.
- J. Qu, Q.-D. Wu, Y.-R. Ren, Z. Su, C. Lai and J.-N. Ding, *Chem. Asian J.*, 7, 2516 (2012);
- https://doi.org/10.1002/asia.201200551. 20. Y. Chen, H. Xia, L. Lu and J. Xue, *J. Mater. Chem.*, **22**, 5006 (2012); https://doi.org/10.1039/c2jm15440d.
- X. Wang, Y. Xiao, C. Hu and M. Cao, *Mater. Res. Bull.*, **59**, 162 (2014); https://doi.org/10.1016/j.materresbull.2014.07.008.
- Z. Wang, D. Luan, S. Madhavi, Y. Hu and X. Wen (David) Lou, *Energy Environ. Sci.*, 5, 5252 (2012); <u>https://doi.org/10.1039/C1EE02831F.</u>
- X.-L. Wu, Y.-G. Guo, L.-J. Wan and C.-W. Hu, J. Phys. Chem. C, 112, 16824 (2008);
 - https://doi.org/10.1021/jp8058307.
- R. Liu, C. Zhang, Q. Wang, C. Shen, Y. Wang, Y. Dong, N. Zhang and M. Wu, *J. Alloys Compd.*, **742**, 490 (2018); https://doi.org/10.1016/j.jallcom.2018.01.262.
- M. Wu, J. Chen, C. Wang, F. Wang, B. Yi, W. Su, Z. Wei and S. Liu, *Electrochim. Acta*, **132**, 533 (2014); <u>https://doi.org/10.1016/j.electacta.2014.04.032</u>.
- J. Wang, L. Lin and D. He, *J. Alloys Compd.*, **750**, 871 (2018); https://doi.org/10.1016/j.jallcom.2018.04.079.
- 27. J. Guo, L. Chen, G. Wang, X. Zhang and F. Li, J. Power Sources, 246, 862 (2014);
- <u>https://doi.org/10.1016/j.jpowsour.2013.08.052</u>.
 28. J. Liu, W. Zhou, L. Lai, H. Yang, S. Hua Lim, Y. Zhen, T. Yu, Z. Shen and J. Lin, *Nano Energy*, **2**, 726 (2013); <u>https://doi.org/10.1016/j.nanoen.2012.12.008</u>.
- Y.-M. Lin, P.R. Abel, A. Heller and C.B. Mullins, J. Phys. Chem. Lett., 2, 2885 (2011); https://doi.org/10.1021/jz201363j.

- J. Chen, L. Xu, W. Li and X. Gou, *Adv. Mater.*, **17**, 582 (2005); <u>https://doi.org/10.1002/adma.200401101</u>.
- B. Wang, J.S. Chen, H.B. Wu, Z. Wang and X.W.D. Lou, *J. Am. Chem. Soc.*, **133**, 17146 (2011); https://doi.org/10.1021/ja208346s.
- J. Lian, X. Duan, J. Ma, P. Peng, T. Kim and W. Zheng, ACS Nano, 3, 3749 (2009); https://doi.org/10.1021/nn900941e.
- 33. H. Wang, Y. Zhou, Y. Shen, Y. Li, Q. Zuo and Q. Duan, *Electrochim. Acta*, **158**, 105 (2015);
- https://doi.org/10.1016/j.electacta.2015.01.149. 34. Y. Wang, J. Roller and R. Maric, *J. Power Sources*, **378**, 511 (2018);
- https://doi.org/10.1016/j.jpowsour.2017.12.047.
- 35. X. Hu, J.C. Yu, J. Gong, Q. Li and G. Li, *Adv. Mater.*, **19**, 2324 (2007); https://doi.org/10.1002/adma.200602176.
- S.F. Abbas, S.-J. Seo, K.-T. Park, B.-S. Kim and T.-S. Kim, J. Alloys Compd., 720, 8 (2017); <u>https://doi.org/10.1016/j.jallcom.2017.05.244</u>.
- A.I. Ioffe, M.V. Inozemtsev, A.S. Lipilin, M.V. Perfilev and S.V. Karpachov, *Phys. Status Solidi*, **30**, 87 (1975); <u>https://doi.org/10.1002/pssa.2210300109</u>.
- H. Chen, Y. Zhao, M. Yang, J. He, P.K. Chu, J. Zhang and S. Wu, *Anal. Chim. Acta*, **659**, 266 (2010); https://doi.org/10.1016/j.aca.2009.11.040.
- X. Liu, W. Si, J. Zhang, X. Sun, J. Deng, S. Baunack, S. Oswald, L. Liu, C. Yan and O.G. Schmidt, *Sci. Rep.*, 4, 7452 (2015); https://doi.org/10.1038/srep07452.
- H. Liu, G. Wang, J. Wang and D. Wexler, *Electrochem. Commun.*, 10, 1879 (2008); https://doi.org/10.1016/j.elecom.2008.09.036.