

# Infrared Spectroscopy and Elastic Properties of Copper Substituted Nickel Zinc Ferrite

U.M. MANDLE<sup>1</sup>, L.A. DHALE<sup>2</sup>, KETAN A. GANURE<sup>2</sup>, B.L. SHINDE<sup>3</sup> and K.S. LOHAR<sup>2,\*</sup>

<sup>1</sup>Department of Chemistry, Sangmeshwar College, Solapur-413 001, India <sup>2</sup>Department of Chemistry, Shrikrishna Mahavidyalaya, Gunjoti-413 606, India <sup>3</sup>Department of Chemistry, Waghire College, Saswad-412 301, India

\*Corresponding author: E-mail: kslohar@rediffmail.com

| Received: 3 September 2018; Accepted: 30 September 2018; | Published online: 31 December 2018; | AJC-19210 |
|----------------------------------------------------------|-------------------------------------|-----------|
|----------------------------------------------------------|-------------------------------------|-----------|

Nanocrystalline copper substituted nickel zinc ferrites with composition,  $Ni_{0.5}Cu_xZn_{0.5-x}Fe_2O_4$  (x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) synthesized by sol-gel auto combustion technique. All the precursors sintered at 400 °C for 4 h. The stoichiometry and single phase cubic spinel structure confirmed from EDAX and XRD patterns, respectively. Morphology studied by SEM technique. Infrared spectrum of prepared samples investigated at room temperature in the range of 800-300 cm<sup>-1</sup>. Three major IR absorption bands of tetrahedral frequency in the range of 578-551 cm<sup>-1</sup>, octahedral frequency in the range of 422-406 cm<sup>-1</sup> and  $v_3$  in the range of 352.08 to 325.01 cm<sup>-1</sup> observed. The stiffness constant ( $C_{11}$  and  $C_{12}$ ), elastic moduli, such as Young's modulus, rigidity modulus, Poisson's ratio and Debye temperature were determined from IR and structural data. The stiffness constant ( $C_{11}$  and  $C_{12}$ ) and elastic moduli decreases while Debye temperature increases with copper substitution.

Keywords: Sol-gel method, Ferrite, Infrared spectroscopy, Elastic property.

## INTRODUCTION

Spinel ferrite's structural and magnetic properties are usually modified by altering the compositions of dopants or also by modifying the shape and size of the particles [1]. Copper ferrite has a fundamental application in the nanoscience and technology field such as radio frequency circuits, transformer cores, antennas and read-write heads for high speed digital tape and in high quality filters [2]. Multi-layered chip inductors (MLCI) formation better result obtained due to the copper substituted Ni-Zn ferrites [3]. The nanocrystalline ferrite materials synthesis was day by day increasing due to its desired properties such as geometry, size and stoichiometry better than the bulk material. Structural and magnetic properties depend upon the composition, cation distribution, size and shape of the material [4]. Ni-Zn ferrite is mixed spinel in which tetrahedral (A) sites are occupied by  $Zn^{2+}$  and  $Fe^{3+}$  ions and octahedral sites (B). This distribution of cations depend on synthesis temperature [5].

Copper shows the coordination geometries such as octahedral, pyramidal, tetrahedral square planar [6].  $Cu^{2+}(d^9)$  ions show the strong John-Teller effect, its substitution in the ferrite

system it preferred to the octahedral (B) sites and it cause the tetrahedral structure distortion [7-9]. In the spinel ferrite lattice, different cations occupied in A and B sites and the force constant determined by using infrared spectroscopy [10,11]. Many researchers have studied the IR spectra for several ferrites. Waldron [12] has also reported the presence of low as well as high-frequency shoulders in his observations. Srinivasan et al. [13] investigated the infrared absorption in spinel ferrite. while Zaki and Dawoud [14] studies the far infrared spectra for copper-zinc mixed ferrite used to cation distribution. The elastic properties of its technologically and basic research important for the ferrite. The studies of elastic behaviour to understand the nature of interatomic forces and interionic forces [15]. Herein we report the synthesis of  $Ni_{0.5}Cu_xZn_{0.5-x}Fe_2O_4$  (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5) by sol-gel auto-combustion method and also examined the effect of Cu2+ substituted in Ni-Zn ferrites on the elastic properties.

#### **EXPERIMENTAL**

Nanocrystalline copper substituted nickel zinc ferrites, with composition  $Ni_{0.5}Cu_xZn_{0.5-x}Fe_2O_4$  synthesized by sol-gel

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License, which allows others to copy and redistribute the material in any medium or format, remix, transform, and build upon the material, as long as appropriate credit is given and the new creations are licensed under the identical terms.



Fig. 1. Energy-dispersive X-ray spectroscopy (EDAX) Patterns, x = 0.0, 0.2 and x = 0.5

auto-combustion method [16]. All the precursors sintered at 400 °C for 4 h. The elemental stoichiometry was determined by energy dispersive X-ray analysis (EDAX, Inca Oxford). The X-ray powder diffraction patterns were recorded on Philips X-ray diffractometer (Model PW3710) at room temperature by using CuK $\alpha$  radiation. The XRD patterns were recorded at room temperature in 2 $\theta$  range of 20°-80° with scanning rate 1°/min. The microstructure and morphology of the prepared samples were studied by scanning electron microscopy (SEM) (model JEOL JSM 840). The infrared spectra of all the samples were recorded at room temperature in the range 200 to 800 cm<sup>-1</sup> using Perkin Elmer infrared spectrophotometer.

## **RESULTS AND DISCUSSION**

**Energy dispersive X-ray analysis (EDAX):** EDAX patterns of copper substituted nickel zinc nano-spinel ferrites with chemical composition of  $Ni_{0.5}Cu_xZn_{0.5-x}Fe_2O_4$  (x = 0.0, 0.3 and 0.5) is shown in Fig. 1. The observed percentage of elements are in close agreement with the composition of theoretical values as listed in Table-1.

**SEM analysis:** SEM micrographs of sintered copper substituted nickel zinc nano-spinel ferrites (x = 0.2 and 0.5) are shown in Fig. 2, illustrates the fine crystallite structure with weak agglomeration due to high reactivity.

**X-ray diffraction:** X-ray diffraction (XRD) patterns of  $Ni_{0.5}Cu_xZn_{0.5-x}Fe_2O_4$  spinel ferrite system with x = 0.0 to 0.5, in the steps of 0.1 are shown in Fig. 3. The XRD patterns confirmed the formation of single phase cubic spinel structure of ferrites (JCPDS No. 48-0492) [17] without additional peaks consequent to any other phases. The crystal structures of copper substituted nickel zinc ferrite are identified as cubic spinel (space group: fd<sup>3</sup>m) with the matching (220), (311), (222), (400), (422), (333) and (440) planes.

The results revealed that after the addition of small amount of Cu<sup>2+</sup> ions, the lattice constant decreases. The values of lattice parameter 'a' listed in Table-2. The calculated value of lattice



Fig. 2. Scanning electron microscopy (SEM) images, x = 0.2 and 0.5

parameter shows that the samples are to be cubic spinel structure. The lattice constant decreases with  $Cu^{2+}$  concentration. The decrease in the lattice constant is related to the difference in ionic radii of  $Zn^{2+}$  and  $Cu^{2+}$ . In the present ferrite system,

| TABLE-1<br>THEORETICAL AND OBSERVED ELEMENTAL ANALYSIS FROM EDAX OF Ni <sub>0.5</sub> Cu <sub>x</sub> Zn <sub>0.5-x</sub> Fe <sub>2</sub> O <sub>4</sub> |                       |       |       |       |       |                    |       |       |       |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|-------|-------|-------|--------------------|-------|-------|-------|-------|
| Х                                                                                                                                                        | Theoretical value (%) |       |       |       |       | Observed value (%) |       |       |       |       |
|                                                                                                                                                          | Ni                    | Cu    | Zn    | Fe    | 0     | Ni                 | Cu    | Zn    | Fe    | 0     |
| 0.0                                                                                                                                                      | 12.34                 | 0.00  | 13.75 | 46.98 | 26.93 | 12.29              | 0.00  | 13.98 | 46.97 | 26.76 |
| 0.1                                                                                                                                                      | 12.35                 | 2.68  | 11.01 | 47.02 | 26.94 | 12.44              | 2.61  | 11.12 | 47.02 | 26.81 |
| 0.2                                                                                                                                                      | 12.36                 | 5.35  | 8.26  | 47.06 | 26.97 | 12.47              | 5.27  | 8.37  | 47.06 | 26.83 |
| 0.3                                                                                                                                                      | 12.37                 | 8.04  | 5.52  | 47.09 | 26.98 | 12.49              | 8.02  | 5.45  | 47.11 | 26.93 |
| 0.4                                                                                                                                                      | 12.38                 | 10.73 | 2.76  | 47.13 | 27.00 | 12.51              | 10.62 | 2.72  | 47.08 | 27.07 |
| 0.5                                                                                                                                                      | 12.39                 | 13.42 | 0.00  | 47.17 | 27.02 | 12.53              | 13.11 | 0.00  | 47.15 | 27.21 |

TABLE-2 LATTICE CONSTANT (a), X-RAY DENSITY (d<sub>x</sub>), BAND POSITION (v<sub>1</sub>, v<sub>2</sub> AND v<sub>3</sub>), FORCE CONSTANT (K. AND K.) OF Nig Cu Zng FegO

| x   |         | 'd <sub>x</sub> ' (g/cm <sup>3</sup> ) |                  |                 | Force constant  |                |                |                                    |                                |
|-----|---------|----------------------------------------|------------------|-----------------|-----------------|----------------|----------------|------------------------------------|--------------------------------|
|     | 'a' (Å) |                                        | $v_1  (cm^{-1})$ | $v_2 (cm^{-1})$ | $v_3 (cm^{-1})$ | R <sub>A</sub> | R <sub>B</sub> | $K_{o} \times 10^{5}$<br>(dyne/cm) | $K_t \times 10^5$<br>(dyne/cm) |
| 0.0 | 8.394   | 5.34                                   | 578.231          | 422.834         | 335.390         | 0.3563         | 0.2959         | 1.108                              | 1.544                          |
| 0.1 | 8.345   | 5.429                                  | 576.231          | 417.769         | 325.966         | 0.3562         | 0.2958         | 1.089                              | 1.510                          |
| 0.2 | 8.334   | 5.446                                  | 569.702          | 416.764         | 358.063         | 0.3561         | 0.2958         | 1.091                              | 1.452                          |
| 0.3 | 8.328   | 5.454                                  | 566.503          | 412.705         | 361.528         | 0.3561         | 0.2957         | 1.077                              | 1.412                          |
| 0.4 | 8.311   | 5.463                                  | 563.038          | 411.170         | 346.068         | 0.3560         | 0.2957         | 1.076                              | 1.372                          |
| 0.5 | 8.310   | 5.484                                  | 551.043          | 406.694         | 352.998         | 0.3559         | 0.2957         | 1.060                              | 1.301                          |



Fig. 3. XRD patterns of  $Ni_{0.5}Cu_xZn_{0.5-x}Fe_2O_4$ , x = 0.0 to 0.5

 $Zn^{2+}$  ions (0.74 Å) ions are replaced by the relatively smaller  $Cu^{2+}$ ions (0.72 Å) [18]. Here  $Cu^{2+}$  is substituted for  $Zn^{2+}$ . In addition, the existence of Cu and Fe in B-site can result in the John Teller distortion of the octahedral symmetry of B-sites which might lead to a crystal lattice distortion in the ferrites that causes the value of 'a' to decrease [19]. The values of lattice parameter revealed an almost linear dependence, thus obeying Vegard's law [20]. The values of X-ray density are shown in Table-2. The X-ray density also increased with increasing Cu<sup>2+</sup> content x. The increased in X-ray density is attributed to decrease in lattice constant. It is observed that X-ray density increase for x = 0.5. This may be related to the molecular weight of sample overtakes the volume  $(a^3)$ . The atomic weight of Cu<sup>2+</sup> ion (63.55 amu) is higher than  $Zn^{2+}$  ions (55.84 amu) due to this increases in the X-ray density 5.340 to 5.484g/cm<sup>3</sup> [18].

Infrared analysis: The infrared analysis provides the crystal information such as vibration modes and ions occupied in the lattice sites. The ferrite substitution due to metal ions resulted to changes in the unit cell while the whole crystal is not affected. This structural change strongly affected the vibrations modes within the crystal [12]. The IR spectra of copper substituted nickel zinc nano-spinel ferrites are shown in Fig. 4 were recorded at room temperature in the frequency range 800-200 cm<sup>-1</sup>. The IR spectra illustrated the three major absorption bands as listed in Table-2. The highest  $v_1$ , is observed in the range 600-500 cm<sup>-1</sup>, and it corresponds to stretching vibrations of the metal at the tetrahedral site M-O, while  $v_2$ lowest band is usually observed in the range 450-385 cm<sup>-1</sup>, is assigned to octahedral-metal stretching (M-O) [21].



Fig. 4. Infrared spectra of  $Ni_{0.5}Cu_xZn_{0.5-x}Fe_2O_4$ , x = 0.0 to 0.5

The absorption band frequency  $v_1$  decreases with an increase in copper concentration (x). This variation in the band positions may be due to the variation in the cation-oxygen bond length [14], which results in a decrease in the frequency of  $v_1$  band. The octahedral band has a constant value of around 395 cm<sup>-1</sup> and this may be due to the neutralization effect for the migration of both Cu<sup>2+</sup> and Fe<sup>2+</sup> ions to this site. The octahedral vibration frequency  $(v_2)$  can attributed due to to John-Teller effect in the octahedral site of Cu2+ ions, cause to crystal lattice distortion [22]. The ligand lying in z-axis is due to the shortening of band. The lower band  $v_3$  observed in the range of 352.08 to 325.01  $cm^{-1}$  is related to divalent  $Cu^{2+}-O^{2-}$  bond in the complex [23].

The bond lengths  $R_A$  and  $R_B$  have been calculated using the formula given by Gorter [12,24] as follows:

$$\mathbf{R}_{\mathrm{A}} = \left(\mathbf{u} - \frac{1}{4}\right) \mathbf{a}_{\mathrm{th}} \sqrt{3} - \mathbf{R}_{\mathrm{o}} \tag{1}$$

$$R_{\rm B} = \left(\frac{5}{8} - u\right) a_{\rm th} - R_{\rm o} \tag{2}$$

The values of bond lengths for tetrahedral A-site  $(R_A)$  and octahedral B-site  $(R_B)$  were calculated and shown in Table-2. The bond lengths RA and RB decrease with increase in the composition of Cu<sup>2+</sup> ion content. Decrease in the lattice constant by the increasing value of x; this is in coherence with the bigger ionic radii of Zn ions, which has been replaced by a smaller one for the copper ions [14].

The force constants corresponding to tetrahedral and octahedral complexes are calculated by using the standard formulae [12] as given below:

$$K_{t} = 7.62 \times M_{1} \times v_{1}^{2} \times 10^{-2}$$
 (3)

$$K_{o} = 10.62 \times \frac{M_{2}}{2} \times v_{2}^{2} \times 10^{-2}$$
 (4)

where  $K_o$  is the force constant on octahedral site,  $K_t$  is the force constant on tetrahedral site,  $M_1$  is the molecular weight of tetrahedral site,  $M_2$  is the molecular weight of octahedral site,  $v_1$  is the corresponding centre frequency on tetrahedral site and  $v_2$  is the corresponding center frequency on octahedral site.

The molecular weights  $M_1$  and  $M_2$  for each sample were determined from the cation distribution. The force constant is the second derivative of the potential energy with respect to the site radius with the other independent parameters kept constant. The force constants values ( $K_t$  and  $K_o$ ) are listed in Table-3. The force constant  $K_t$  increases with the increasing  $Cu^{2+}$  content whereas  $K_o$  decreases with the increasing in  $Cu^{2+}$ content. This variation can be related with the difference in ionic radii of  $Zn^{2+}$  and  $Cu^{2+}$  ions and their occupancy at A and B sites [14]. Analysis of IR spectra with crystallographic knowledge helps us to determine the Debye temperature and elastic properties. The Debye temperature ( $v_1$ ) of all samples was determined [25] using the wave numbers of IR bands:

$$\theta l = \frac{\hbar C v_{ac}}{\kappa} \tag{5}$$

where  $\hbar = h/2p$ ,  $\kappa$  is Boltzmann constant, C is velocity of light (C = 3 × 10<sup>8</sup> cm/s) and  $v_{av}$  is average wave number of bands. Variation of Debye temperature with Cu<sup>2+</sup> content is shown in Fig. 5.

| TABLE-3<br>MEAN FORCE CONSTANT (K), PORE FRACTION, STIFFNESS<br>CONSTANT (C <sub>11</sub> AND C <sub>12</sub> ) OF Ni <sub>0.5</sub> Cu <sub>x</sub> Zn <sub>0.5.x</sub> Fe <sub>2</sub> O <sub>4</sub> |                     |          |                |          |          |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|----------------|----------|----------|--|--|--|
| х                                                                                                                                                                                                       | Mean force constant | Pore     | Passion's      | C        | C        |  |  |  |
|                                                                                                                                                                                                         | $(K) (K_t + K_o)$   | fraction | ratio $\sigma$ | $C_{11}$ | $C_{12}$ |  |  |  |
| 0.0                                                                                                                                                                                                     | 1.326               | 0.142    | 0.276          | 158.01   | 60.24    |  |  |  |
| 0.1                                                                                                                                                                                                     | 1.299               | 0.138    | 0.277          | 155.71   | 59.77    |  |  |  |
| 0.2                                                                                                                                                                                                     | 1.272               | 0.132    | 0.279          | 152.59   | 59.16    |  |  |  |
| 0.3                                                                                                                                                                                                     | 1.245               | 0.128    | 0.281          | 149.48   | 58.35    |  |  |  |
| 0.4                                                                                                                                                                                                     | 1.224               | 0.125    | 0.282          | 147.31   | 57.79    |  |  |  |
| 0.5                                                                                                                                                                                                     | 1.181               | 0.111    | 0.286          | 142.07   | 57.05    |  |  |  |



Fig. 5. Variation of Debye temperature determined from infrared ( $\theta l$ ) and elastic ( $\theta E$ ) data with Cu<sup>2+</sup> content

**Elastic properties:** The elastic properties were determined using infrared spectroscopy [26,27]. The elastic modules and Debye temperature were determined by using the IR and structural data [28]. These elastic moduli were determined using the lattice constant 'a', X-ray density 'dx' pore fraction 'f' and force constant 'k'. The average force constant (K) was calculated using following relation:

$$K = \frac{K_t + K_o}{2} \tag{6}$$

The stiffness constant  $(C_{11})$  and  $(C_{12})$  were calculated using the following relation [28] and the results are shown in Table-3.

$$C_{11} = \frac{K}{a}$$
(7)

where K is average force constant and a is lattice constant.

Stiffness constant (C<sub>12</sub>) = 
$$\frac{\sigma C_{11}}{(1-\sigma)}$$
 (8)

where  $\sigma$  is Poisson ratio.

The Poisson ratio is function of pore fraction ( $\sigma = 0.324 \times 1-1.043$  f). Using eqns 7 and 8, the stiffness constant is calculated and the variation is tabulated in Table-3. It is observed from Fig. 6, both stiffness constants were decrease with increase in Cu<sup>2+</sup> substitution. The values of Poisson's ratio were determined using the relation discussed elsewhere [29] and the values are presented in Table-3.



Fig. 6. Variation of stiffness constants (C11 and C12) with Cu2+ content

The Poisson ratio is lies in between 0.276 and 0.266. These values are lie in the range of 1 to 0.5, which is in agreement with the theory of isotropic elasticity [30]. The other elastic moduli for cubic structure are calculated using following relation [31]:

Rigidity modulus(G) = 
$$\frac{E}{2(\sigma+1)}$$
 (9)

The rigidity modulus (G) is calculated using eqn. 9 and the variation are presented in Fig. 7. Bulk modulus (B), rigidity modulus (G), young modulus (E) decreases with increase in  $Cu^{2+}$  content, it indicates that deformation of the solid is easy and the solid has less tendency to spring back to its equilibrium position [27]. According to Wooster [32], the decrease in the modulus attributed inter-atomic bonding between Cu, Zn, Ni, Fe ions in present ferrite system.



Fig. 7. Variation of Young's modulus (E), bulk modulus (K) and modulus of rigidity (G) with Cu<sup>2+</sup> content

The interatomic bonding between the various ions weaken continuously with the addition of  $Cu^{2+}$  ions therefore decreases in modulus with increasing  $Cu^{2+}$  content. The longitudinal elastic wave velocity (V<sub>L</sub>) and transverse (shear) wave velocity (V<sub>s</sub>) were calculated using following equations:

Longitudinal velocity 
$$(V_L) = \left(\frac{C_{11}}{\rho}\right)^{1/2}$$
 (10)

Transverse (Shear) velocity 
$$(V_s) = \left(\frac{G}{\rho}\right)^{1/2}$$
 (11)

where G is rigidity modulus with correct zero pore fraction. The values of  $V_L$  and  $V_S$  used to calculate the mean wave velocity  $(V_m)$  which is further used to calculate Debye temperature using following formula:

Debye temperature 
$$(\theta_{\rm E}) = \frac{h}{k} \left(\frac{3\rho q N_{\rm A}}{4\pi M}\right)^{1/3} \times V_{\rm m}$$
 (12)

where h is Plank's constant, k is Boltzmann's constant, M is molecular weight, q is number if atom in the unit formula and  $V_m$  mean wave velocity.

$$\frac{3}{V_{\rm m}^3} = \frac{1}{V_{\rm L}^3} + \frac{2}{V_{\rm S}^3} \tag{13}$$

The values of longitudinal wave, shearing wave and mean wave velocity were calculated using eqns. 10, 11 and 13 respectively.

The longitudinal elastic wave velocity is decreases whereas transverse (shear) wave velocity increased with Cu<sup>2+</sup> substitution [27]. The variation of Debye temperature ( $\theta_E$ ) is given Fig. 5. The Debye temperature increased with Cu<sup>2+</sup> substitution. It suggested that lattice vibrations are hindered due to Cu<sup>2+</sup> substitution. This may be due to the fact that strength of interatomic bonding increases with concentration (*x* and *y*) as supported by present results on the variation of elastic moduli [25].

### Conclusion

The copper substituted  $Ni_{0.5}Cu_xZn_{0.5-x}Fe_2O_4$  (x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) ferrite nanoparticles were prepared by sol-gel auto-combustion technique. All the precursors sintered

at 400 °C for 4 h. The stoichiometry and single phase cubic spinel structure confirmed from EDAX and XRD patterns, respectively. The infrared spectroscopy technique was used to locate the band position of the vibration. The band frequency  $v_1$  and  $v_2$  slightly decreased to increases the Cu<sup>2+</sup> ion doped contents. These variations in band frequency is due to the distributions of Cu<sup>2+</sup>, Zn<sup>2+</sup>, Fe<sup>3+</sup> ions in A and B sites. The elastic properties such as elastic wave velocity, elastic constant and Debye temperature determined using structural and IR data. The stiffness constants (C<sub>11</sub> and C<sub>12</sub>) and elastic moduli decreases while Debye temperature increases with copper substitution.

### **CONFLICT OF INTEREST**

The authors declare that there is no conflict of interests regarding the publication of this article.

#### REFERENCES

- K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain and M. Shongwe, *Physica B*, 407, 795 (2012); <u>https://doi.org/10.1016/j.physb.2011.12.097</u>.
- Y. Li, Q. Li, M. Wen, Y. Zhang, Y. Zhai, Z. Xie, F. Xu and S. Wei, J. Electron Spectrosc. Rel. Phenom., 160, 1 (2007); https://doi.org/10.1016/j.elspec.2007.04.003.
- P.Y. Lee, K. Ishizaka, H. Suematsu, W. Jiang and K. Yatsui, *J. Nanopart. Res.*, 8, 29 (2006); https://doi.org/10.1007/s11051-005-5427-z.
- Y. Zhihao and Z. Lide, *Mater. Res. Bull.*, 33, 1587 (1998); https://doi.org/10.1016/S0025-5408(98)00164-0.
- G.R. Dube and V.S. Darshane, J. Mol. Catal., 79, 285 (1993); https://doi.org/10.1016/0304-5102(93)85108-6.
- T.K. Kundu and S. Mishra, Bull. Mater. Sci., 31, 507 (2008); https://doi.org/10.1007/s12034-008-0079-0.
- 7. A. Pavlovitch, J. Phys. IV FRANCE, 7, C1 (1997); https://doi.org/10.1051/jp1:1997124.
- M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M.A. Muhammad and A. Khan, *Curr. Appl. Phys.*, 14, 716 (2014); <u>https://doi.org/10.1016/j.cap.2014.02.021</u>.
- 9. R.N. Panda, J.C. Shih and T.S. Chin, J. Magn. Magn. Mater., 257, 79 (2003);

https://doi.org/10.1016/S0304-8853(02)01036-3.

- K.B. Modi, U.N. Trivedi, P.U. Shrama, V.K. Lakhani, M.C. Chhantbar, H.H. Joshi, *Indian J. Pure Appl. Phys.*, 44, 165 (2006).
- K.B. Modi, S.J. Shah, N.B. Pujara, T.K. Pathak, N.H. Vasoya and I.G. Jhala, *J. Mol. Struct.*, **1049**, 250 (2013); <u>https://doi.org/10.1016/j.molstruc.2013.06.051</u>.
- R.D. Waldron, *Phys. Rev.*, **99**, 1727 (1955); https://doi.org/10.1103/PhysRev.99.1727.
- T.T. Srinivasan, C.M. Srivastava, N. Venkataramani and M.J. Patni, Bull. Mater. Sci., 6, 1063 (1984); https://doi.org/10.1007/BF02743958.
- 14. H.M. Zaki and H.A. Dawoud, *Physica B*, **405**, 4476 (2010); https://doi.org/10.1016/j.physb.2010.08.018.
- S.M. Patange, S.E. Shirsath, S.P. Jadhav, V.S. Hogade, S.R. Kamble and K.M. Jadhav, *J. Mol. Struct.*, **1038**, 40 (2013); <u>https://doi.org/10.1016/j.molstruc.2012.12.053</u>.
- D.-H. Chen and X.-R. He, *Mater. Res. Bull.*, **36**, 1369 (2001); https://doi.org/10.1016/S0025-5408(01)00620-1.
- V.V. Awati, S.M. Rathod, S.E. Shirsath and M.L. Mane, J. Alloys Compd., 553, 157 (2013); https://doi.org/10.1016/j.jallcom.2012.11.045.
- S. Güner, S. Esir, A. Baykal, A. Demir and Y. Bakis, *Superlatt. Microstruct.*, 74, 184 (2014); https://doi.org/10.1016/j.spmi.2014.06.021.
- M.A. Rahman, M.A. Rahman and A.K.M.A. Hossain, J. Magn. Magn. Mater., 369, 168 (2014); https://doi.org/10.1016/j.jmmm.2014.06.033.

- 20. L. Vegard, Z. Physik, 5, 17 (1921); https://doi.org/10.1007/BF01349680.
- B.P. Ladgaonkar, P.N. Vasambekar and A.S. Vaingankar, J. Mater. Sci. Lett., 19, 1375 (2000); https://doi.org/10.1023/A:1006713518433.
- 22. H.A. Jahn and E. Teller, *Proc. R. Soc. Lond. A Math. Phys. Sci.*, **161**, 220 (1937);
- https://doi.org/10.1098/rspa.1937.0142.
- 23. M C Chhantbar, U N Trivedi, P V Tanna, H J Shah, R P Vara, H H Joshi and K B Mod, *Indian J. Phys.*, **78A**, 321 (2004).
- 24. E.W. Gorter, Philips Res. Rep., 9, 295 (1954).
- S.A. Mazen, T.A. Elmosalami, ISRN Condens. Matter Phys., Article ID 820726 (2011);
- https://doi.org/10.5402/2011/820726.
- 26. K.B. Modi, M.C. Chhantbar and H.H. Joshi, *Ceram. Int.*, **32**, 111 (2006); https://doi.org/10.1016/j.ceramint.2005.01.005.

- S.E. Shirsath, S.M. Patange, R.H. Kadam, M.L. Mane and K.M. Jadhav, J. Mol. Struct., 1024, 77 (2012); https://doi.org/10.1016/j.molstruc.2012.05.014.
- 28. V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shukla and K.M. Jadhav, *J. Alloys Compd.*, **488**, 199 (2009);
- https://doi.org/10.1016/j.jallcom.2009.08.078.
- S.S. Bhatu, V.K. Lakhani, A.R. Tanna, N.H. Varsoya, J.U. Buch, P.U. Sharma, U.N. Trivedi, H.H. Joshi and K.B. Modi, *Indian J. Pure Appl. Phy.*, 45, 596 (2007).
- P.B. Belavi, L.R. Naik and G.N. Chavan, J. Shivaji Univ. (Sci. Technol.), 41, 2 (2014-2015).
- V.G. Patil, S.E. Shirsath, S.D. More, S.J. Shukla and K.M. Jadhav, J. Alloys Compd., 488, 199 (2009);
- https://doi.org/10.1016/j.jallcom.2009.08.078. 32. W.A. Wooster, *Rep. Prog. Phys.*, **16**, 62 (1953); https://doi.org/10.1088/0034-4885/16/1/302.