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INTRODUCTION

Hydroformylation of olefins is an important commercial
process for the production of aldehydes and alcohols for which
homogeneous Rh and Co catalysts are widely used in commercial
production depending on the olefin types [1,2]. A major draw-
back of this process is the difficulty in separating the products
(being non-volatile) from the catalyst by conventional methods.
Therefore, the use of a heterogeneous catalyst would be most
desirable way to overcome this limitation. Different attempts
were made to heterogenize the homogeneous catalysts to achieve
catalytic activity and selectivity similar to the homogeneous
ones and also achieve easy catalyst-product separation [3,4].
Two approaches have been mainly used, biphasic catalysis
wherein water soluble catalyst is used as an immiscible liquid
phase to that of reactants and products and solid state supported
or anchored catalysts. The aqueous biphasic catalysis is commer-
cially implemented [5-9], while the heterogenized solid state
catalysts have not yet found major commercial applications
due to the problem of lower activity, catalyst leaching and
deactivation [10,11].

Even though biphasic catalysis is a commercial success
for propylene hydroformylation to butyraldehyde [5] (300 000
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TPA), the wider application of these catalysts for higher olefins
has been limited. One of the major limitations of the aqueous
biphasic catalysis is their lower reaction rate for the hydrofor-
mylation of higher olefins like hexene, octene, decene, etc.
due to their poor solubility in the aqueous (catalyst) phase [12].
Attempts to increase the solubility of higher olefins in water
(catalyst phase) by incorporation of various additives such as
co-solvents [13-19], surfactants [20,21], phase transfer agents
[22-26] and promoter ligands [27,28] to the reaction mixture
resulted in significant improvements in the rates; however it
also led to other issues like lower regio-selectivity, separation
of the catalyst, formation of side products, etc.

Van Leeween and coworkers [29] have shown that hydro-
formylation of propylene and hexene using Rh-sulfoxantphos
catalyst in aqueous biphasic system gives a high n/i ratio of
30-35. However, only attempt made on further improvement
of the rates for the hydroformylation of higher olefins like 1-
octene and 1-decene was by addition of randomly methylated
α- or β-cyclodextrin (Rame α- or β-CD) as an inverse phase
transfer catalyst [30]. They observed around 60-70% olefin
conversion in 24 h (TOF = 15 h-1), which is rather poor for
practical applications. In this article, we further investigated
the effect of co-solvent on aqueous biphasic hydroformylation
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of higher olefins to show that with a few combinations of co-
solvents and reaction conditions, a significant rate enhance-
ment can be achieved with improved selectivity towards n-
aldehyde.

EXPERIMENTAL

Rhodium trichloride (RhCl3·3H2O) (Arora Matthey, India),
xantphos (1) (4,5-bis(diphenylphosphino)-9,9-dimethyl xanth-
ene), triisooctylamine (Aldrich, USA) were used as received
without further purification. Sulphuric acid, acetyl acetonate,
dimethyl formamide and sodium hydroxide (Loba Chemie,
India) were used as received. Oleum of 25% (w/w of SO3 in
H2SO4) strength was prepared. The solvents, toluene, N-methyl
2-pyrrolidone (NMP), ethanol, methanol, 1,4-dioxane and
methyl ethyl ketone (MEK) were freshly distilled and degassed
prior to use. Distilled degassed water was used in all operations.
Carbon monoxide (> 99.8 % pure) from Matheson Gas Co.,
U.S.A. and hydrogen and nitrogen supplied by Indian Oxygen
Ltd. Mumbai, were used directly from cylinders. The syn gas
with 1:1 ratio of H2:CO was prepared by mixing H2 and CO in
a reservoir. All operations were performed under argon atmos-
phere. Rh(CO)2(acac) was prepared according to reported
procedure [31]. Sulfoxantphos (2,7-bis(SO3Na)-xantphos) (2)
was synthe-sized by the procedure described by van Leeuwen
et al. [29] (Scheme-I). The purity of the ligand was checked
by 31P NMR (Fig. 1) and elemental analysis, which was consis-
tent with the literature. [31P {1H} NMR (CD3OD; ppm): δ 14.69.
Elemental analysis calcd. (found) %: C 59.8 (58.8); H 3.9 (4.2);
S 8.1 (8.2).
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Fig. 1: 31P NMR spectrum of sulfoxantphos ligand

Procedure: All the hydroformylation experiments were
carried out in a 50 mL (50 × 10-5 m3) micro reactor, made of
stainless steel (maximum pressure capacity of 20.7 MPa at
548 K), supplied by Amar Instruments India Pvt. Ltd. The
reactor is fitted with provisions for sampling of liquid and gaseous

contents, automated temperature control and variable agitation
speed. The reactor was designed for a working pressure of
20.4 MPa and temperature up to 523 K. Consumption of CO
and H2 at a constant pressure was controlled as a function of
time by measuring the decrease in pressure in the gas reservoir.
A schematic diagram of the experimental setup is identical to
that of reported earlier [32].

In a typical experiment, sulfoxantphos and Rh (CO)2(acac)
were mixed in the desired ratio, in 10 mL degassed water under
argon atmosphere. The resulting yellowish solution was trans-
ferred to the autoclave. The autoclave was then flushed three
times with nitrogen and syngas, respectively. The autoclave
was pressurized to 1.38 MPa with CO/H2 and heated to 393 K.
The solution was stirred for 12 h at 393 K, then cooled to 25
ºC and depressurized. Then the reactor was charged with the
olefin and toluene (15 × 10-6 m3), which comprises the organic
phase for the reaction. In the experimental work, co-solvent was
added before the addition of organic phase. The contents were
flushed with nitrogen and then with a mixture of CO and H2.
The autoclave was heated to reach the necessary temperature,
then a mixture of CO and H2 (in an appropriate ratio, 1:1) was
introduced into the autoclave to the desired pressure (4.14
MPa). A sample of the liquid mixture was withdrawn and the
reaction began by switching the stirrer on. The reaction was
then continued by supply of syngas from the reservoir vessel
through a constant pressure regulator at a constant pressure of
CO + H2 (1:1). Since the major product produced in this study
was an aldehyde, the supply of CO + H2 at a ratio of 1:1 (as per
stoichiometry) was sufficient to maintain a constant composition
of H2 and CO in the reactor as initially introduced. The reactor
was cooled after completion of the reaction and the final sample
was taken for analysis. The aqueous phase was found to contain
negligible quantity of the reactant and products.

Analytical methods: The reaction products were identified
using GC-MS, (Agilent GC 6890N with 5973 mass selective
detector instrument). Rhodium leaching analysis to the organic
phase was analyzed using inductively coupled plasma with
atomic emission spectra (ICP-AES), Perkin-Elmer 1200 instru-
ment. The quantitative analysis of the reactant and hydroform-
ylation products was performed using a gas chromatographic
technique using external standard method. For this reason, a
HP-5 capillary column (30 M × 320 µm × 0.25 µm film thick-
ness with a stationary phase of 5% diphenyl 95% dimethyl
polysiloxane) fitted to HP 6890 gas chromatograph operated
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Scheme-I: Synthesis of sulfonated xantphos (sulfoxantphos); Reagents and conditions: (i) 25% SO3/H2SO4, 5 °C to room temperature; (ii)

triisooctylamine, toluene; (iii) NaOH; (iv) neutralization, MeOH-extraction, EtOH
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by the HP Chemstation program and equipped with an auto-
motive sampler device was used.

RESULTS AND DISCUSSION

Hydroformylation of higher olefins using biphasic Rh-
sulfoxantphos catalyst: Hydroformylation of 1-hexene, 1-
octene, 1-decene and 1-dodecene using Rh(CO)2(acac)/sulfo-
xantphos catalyst in toluene-water biphasic system was studied
at 393 K (Table-1). Under identical conditions the olefin conversion
and activity was found to decrease drastically with increasing
chain length of the olefin. This observation is expected as a result
of the poor solubility of the substrates in the aqueous phase
[33,34]. Besides, it is also known that hydroformylation activity
decreases with increasing chain length even with homogeneous
rhodium complex catalysts [35,36]. The major products formed
were the corresponding linear aldehydes. The influence of
bidentate phosphines on the regioselectivity in the Rh-catalyzed
hydroformylation of olefins has been reported earlier [35-38].
A little amount of corresponding 2-methyl substituted aldehyde
and isomerized olefin (1-5%) were also observed. No other
aldehyde products were formed due hydroformylation of the
isomerized olefin. An interesting observation was the increase
in the n/i ratio with increase in chain length of olefin, which is
similar to that reported for Rh-TPPTS system [34].

Effect of co-solvent: The addition of a co-solvent to the
biphasic system improves the solubility of the higher olefins
in the aqueous phase, while retaining the biphasic nature of the
system [13-19,39-41]. In present study, the role of several co-
solvents such as ethanol, 1,4-dioxane, methyl ethyl ketone and
N-methyl 2-pyrrolidone was investigated for the hydrofor-
mylation of 1-decene (Scheme-II) and the results are shown
in Fig. 2. Several fold rate enhancement was observed in the
presence of these co-solvents. The rates were improved marginally
in 1,4-dioxane and MEK, whereas significant enhancement
of rates were observed when ethanol (13 times) and NMP (38
times) were used as co-solvents. The highest activity without
any side products formation was observed using NMP as the

co-solvent. One more interesting observation was that the selec-
tivity to undecanal was also improved in all the co-solvents as
compared to reactions in their absence (n/i increased from 31.2
to 40.3 using ethanol as a co-solvent). The results in Fig. 2
indicate that NMP is a better co-solvent (rate enhancement 38
times) as compared to ethanol (13 times) for the hydroformyl-
ation of 1-decene. The products formed were undecanal and
2-methyldecanal alongwith a little amount of isomerized (2-
decene and 3-decene)decene (1.5%). The ICP analysis showed
negligible leaching (0.056 ppm) of rhodium metal to the organic
phase. Further study was carried out using NMP as a co-
solvent, which gave highest rate enhancement (38 times) and
also retained the catalyst in the aqueous phase with negligible
leaching of rhodium to the organic phase.
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Fig. 2. Effect of co-solvent on rate and n/i ratio in aqueous biphasic hydro-
formylation of 1-decene; Reaction conditions: 1-decene: 1.07 kmol/
m3

(org.), [Rh(CO)2(acac)]: 3.85 × 10-3 kmol/m3
(aq.), sulfoxant-phos:

1.93 × 10-2 kmol/m3
(aq.)

 (Rh:L = 1:5), T: 393 K, PCO+H2: 4.14 MPa,
agitation speed: 20 Hz, solvent: toluene-water-co-solvent, time: 8 h,
total volume: 2.5 × 10-5 m3

TABLE-1 
HYDROFORMYLATION OF HIGHER OLEFINS IN AQUEOUS BIPHASIC SYSTEM USING Rh-SULFOXANTPHOS CATALYST 

Olefin Conversion (%) Aldehyde selectivity (%) Isomerized olefin (%) n/i TOF (h-1) 
1-Hexene 55.3 95.5 4.5 27.8 13.7 
1-Octene 13.4 98.1 1.9 28.3 2.8 
1-Decene 7.5 98.2 1.8 31.2 0.8 

1-Dodecene 2.9 98.4 1.6 34.8 0.2 
Reaction conditions: Olefin: 1.07 kmol/m3

(org.), [Rh(CO)2(acac)]: 3.85 × 10-3 kmol/m3
(aq.), Sulfoxantphos: 1.93 × 10-2 kmol/m3

(aq.)
 (Rh:L = 1:5), T: 

393 K, PCO+H2: 4.14 MPa, agitation speed: 20 Hz, solvent: toluene and water ε = 0.4, time: 24 h, total volume: 2.5 × 10-5 m3 

 

Catalyst

1-Decene

CH3 (CH2)7 CH CH2
CO + H2

Undecanal

CH3 (CH2)7 CH2 CH2 CHO

 2-Methyl decanal 

CH3 (CH2)7 CH CH3

CHO

Scheme-II: Hydroformylation of 1-decene
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Effect of NMP concentration: To achieve the optimum
ratio of the water to co-solvent, the effect of NMP content (0-
40% (v/v) as a co-solvent) in the aqueous medium was studied
for the hydroformylation of 1-decene using Rh(CO)2(acac)/
sulfoxantphos catalyst in the water-toluene biphasic medium
at 393 K. The rate was found to vary linearly with increasing
NMP content in the aqueous phase (Fig. 3). The maximum rates
were observed at a water-NMP composition of 60:40 but the
n/i ratio was found to reduce from 35.9 to 32.7. Therefore, the
optimum ratio of water-NMP of 70:30 was chosen for further
studies in order to maintain the advantage of high regioselec-
tivity for the linear aldehyde, and high activity.

Recycle study and rhodium leaching analysis: The activity
of Rh(CO)2(acac)/sulfoxantphos catalyst on recycle was investi-
gated in the presence of NMP co-solvent (30% v/v aqueous
phase) at 393 K. The recycle experiments were performed by
separating the aqueous catalyst phase from the organic phase
at the end of reaction followed by addition of fresh organic
phase along with 1-decene to the used aqueous catalyst phase.
The NMP content in both the phases was analyzed and madeup
as required with addition of fresh NMP to the aqueous phase.
The results are presented in Fig. 4. The aqueous catalytic phase
was recycled for four times without a drop in activity. The
selectivity to n-aldehyde was also retained on recycle. An inter-
esting observation was the improvement in the activity for the
first recycle over the virgin reaction. The enhancement of activity
compared to the virgin reaction is due to the fact that the
preformed active catalytic species is available for reaction on
recycle. This enhanced activity then remained constant for all
the subsequent recycles. The ICP analysis of the organic phase
from each recycle showed negligible leaching (0.06, 0.03, 0.05,
0.08, 0.04 ppm, respectively) of rhodium to the organic phase.
The recycle of organic phase with addition of fresh 1-decene
showed no hydroformylation activity, which further confirmed

0

0.5

1.0

1.5

2.0

2.5

Main
reaction

1 2 3 4

Recycle number

0

5

10

15

20

25

30

35

40Reaction rate n/i ratio

n/
i r

at
io

R
at

e 
of

 r
ea

ct
io

n
, R

 ×
 1

0
 k

m
o

l/m
/s

A

5
3

Fig. 4. Effect of catalyst phase recycles study on reaction rate and n/i ratio;
Reaction conditions: 1-decene: 1.07 kmol/m3

(org.), [Rh(CO)2(acac)]:
3.85 × 10-3 kmol/m3

(aq.), sulfoxantphos: 1.93 × 10-2 kmol/m3
(aq.)

 (Rh:L
= 1:5), T: 393 K, PCO+H2: 4.14 MPa, agitation speed: 20 Hz, solvent:
toluene (1.2 × 10-5 m3), water (0.7 × 10-5 m3) and NMP (0.3 × 10-5

m3) time: 8 h, total volume: 2.5 × 10-5 m3

that rhodium leaching was negligible and that activity observed
was solely due to the aqueous phase catalyst.

Effect of temperature: The effect of temperature on hydro-
formylation of 1-decene has been investigated in a temperature
range of 383-403K at [Rh(CO)2(acac)]: 2.89 × 10-3 kmol/m3

(aq.), sulfoxantphos: 1.44 × 10-2 kmol/m3 (aq.), 1-decene: 1.07
kmol/m3 (org.) and PCO + H2 = 4.14 MPa. The results are shown
in Fig. 5. The rate varies linearly with temperature at the same
time aldehyde selectivity was also retained (> 97%). The n/i
ratio decreased marginally from 37.5 to 31.3 with increase in
temperature due to the increase in the formation of 2-methyl
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Fig. 3. Effect of % NMP co-solvent on rate and n/i ratio in aqueous biphasic hydroformylation of 1-decene; Reaction conditions: 1-decene:
1.07 kmol/m3

(org.), [Rh(CO)2(acac)]: 3.85 × 10-3 kmol/m3
(aq.), sulfoxantphos: 1.93 × 10-2 kmol/m3

(aq.)
 (Rh:L = 1:5), T: 393 K, PCO+H2: 4.14

MPa, agitation speed: 20 Hz, solvent: toluene (1.2 × 10-5 m3) water (0.7 × 10-5 m3) and NMP (0.3 × 10-5 m3), time: 8 h, total volume:
2.5 × 10-5 m3
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decanal at higher temperatures. It has been reported in the
literature [42-44] that in case of the some chelating (e.g. BISBI)
ligand, aldehyde selectivity decreases drastically as the temper-
ature increases. This is attributed due to the flexibility of BISBI
backbone, which may result in monodentate binding of ligand
by opening of chelate ring at elevated temperatures. But the
rigidity of the xantphos structure (originating from the rigid
xanthene backbone) results in stable chelated complex. It does
not allow monodentate binding to the metal center in the reaction
cycle and maintains its bidentate nature even at higher temper-
ature [42,43] and hence only a marginal drop in n/i ratio was
observed.

Hydroformylation of higher olefins in the presence of
NMP co-solvent: An influence of NMP co-solvent was studied

on the hydroformylation of different higher olefin substrates
using Rh-sulfoxantphos catalyst in aqueous biphasic medium.
The results in Fig. 6 show a several fold enhancement in the
rates for all the higher olefins studied. The rate improvement
for 1-hexene (4-fold), 1-octene (15-fold), 1-decene (38-fold)
and 1-dodecene (96-fold) shows that the magnitude of rate
enhancement is higher for the higher olefins like 1-decene and
dodecene where the development of biphasic catalysis always
remains a challenge. The presence of NMP enhances the solub-
ility of olefins in the aqueous phase leading to enhancement
of rate. Compared to the reaction in aqueous biphasic medium,
in absence of co-solvent, the n/i ratio also improved [for 1-
hexene (26 to 32.4), 1-octene (28.2 to 35.6), 1-decene (31.2 to
35.9) and 1-dodecene (32 to 36.8)]
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Conclusion

Hydroformylation of higher olefins using rhodium-sulfo-
xanthphos water soluble catalyst in a aqueous biphasic medium
has been studied to show that NMP as a co-solvent increases
the rates significantly. Importantly the high regioselectivity
towards linear aldehydes was retained with this unique complex
catalyst. The rate enhancement is more prominent for 1-decene
and 1-dodecene hydroformylation. The water:NMP ratio of
7:3 was found to be the optimum ratio to ensure high activity.
ICP analysis showed negligible leaching of rhodium to organic
phase indicates the true biphasic nature of the reactions. The
aqueous catalyst phase was recycled several times with an inter-
esting observation of increased activity during first recycle.
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