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INTRODUCTION

Biocatalysis can be defined as use of whole cells or enzymes
in organic synthesis [1-3]. This use of enzymes in synthesis of
organic compounds has led to the development of Green Chemistry.
Green chemistry or sustainable technology has large potential
and can applied in various sectors of chemical industries such
as pharmaceutical industry, agrochemical industry and many
more [4-11]. Biocatalysis provide various advantages such as
reduction in the use of toxic chemicals, saving of energy and
minimum production of waste [12]. One of the major challenges
faced by synthetic chemists nowadays is the fact that different
enantiomers of the same compound are usually produced during
synthesis and these may have different interactions in biolo-
gical systems. Consequently, the production of single enant-
iomers with specific activity, instead of racemic mixtures
becomes an important issue in chemical industries e.g. pharma-
ceutical and agrochemical industries. In addition, chemical
synthesis demands expensive equipments due to their high temp-
erature and pressure. Enzymes show activity towards a range
of compounds and forms different kinds of structurally related
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products. Chiral compounds can also be formed because of high
efficiency, regio and stereo-selectivity of enzymes [13-15]. Micro-
organisms are becoming a favoured source of industrial enzymes
since the number of enzymes which can be recovered econo-
mically from plants and animals are limited. There are two
types of microbial enzymes which are extracellular and intra-
cellular enzymes. Extracellular enzymes secrets out from cell
and intracellular enzymes remain within cell thus whole cell
are used as catalyst. Both bacteria and fungi are great source
of various types of enzymes. With the help of recombinant DNA
technology large number of recombinant or mutant enzymes
was isolated from microbes [16-19]. Microbial enzymes have
various advantages over other plants and animals like microbes
can grow in extreme environmental conditions and have short
generation time. In general, enzymes act as a machinery of
nature to synthesize new organic compounds, already discussed
by various researchers [20-35]. This review shows some exam-
ples of biocatalysts (enzymes) used for the production of various
organic compounds and heterocycles. In this review, reactions
are categorized according to the class of enzymes used in prod-
uction which are oxidoreductase, transferase, hydrolase, lyase,
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transferase and ligase. In addition, enzymatic engineering
allows for the production of enzymes effective in a non-aqueous
environment [36]. This kind of environment is used in biocat-
alysis due to its interesting properties such as increased solub-
ility of the substrate or hydrolytic reaction reversibility.

Classification of enzymes (biocatalysts)

There is a great need of more frequent integration of enzy-
matic steps in organic synthesis routes for better ecofriendly
development [37-40]. Thus, with the help of high through put
methods, enzymatic metagenomic libraries and chip techno-
logies, the fourth wave of biocatalysis is approaching day by
day [34,41-43]. The summary of classification, types, reaction
catalyzed and examples of enzymes are shown in Table-1. About
60 % of biocatalysts used are hydrolases, 20 % oxidoreductases
and rest 20 % is for other four classes of enzyme [36].

Oxidoreductases: Oxidoreductase catalyzes the transfer
of electron from one molecule to other. Oxidoreductases
catalyze reactions similar to the following, A− + B → A + B−

where A is the oxidant and B is the reductant. Oxidoreductase
includes oxidases or dehydrogenases. Oxidases are used when
molecular oxygen acts as hydrogen or electrons acceptor. Like-
wise dehydrogenase by transferring hydrogen oxidizes a
substrate that is NAD+/NADP+ or a flavin enzyme. Oxido-
reductases enzymes are second most used forms of enzymes
in synthesis of organic compounds. This class of enzyme includes
various examples like hydroxylases, peroxidases, reductases
and oxygenases. Oxidoreductase enzymes also plays very
important role in both anaerobic and aerobic metabolism.

Alan et al. [44] stated the conversion of 2-oxobutanoic
acid (1) with the use of L and D form of lactase dehydrogenase
to stereospecific isomers of type α-hydroxybutanoic acid (2)
and (3) (Scheme-I). L-Lactate dehydrogenase in comparison
with D-lactate dehydrogenase has narrower substrate speci-
ficity. Both isomers of lactate dehydrogenase use NADH as a
catalyst for production of isomers of α-hydroxybutanoic acid.
Alan et al. [44] also stated that 2,4-diaminopentanoic acid (4)
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Scheme-I: (i) Action of L-lactate dehydrogenase (ii) Action of D-lactate
dehydrogenase

can be reduced to 2,4-amino-4-oxopentanoic acid (5) with the
help of 2,4-diaminopentanoate dehydrogenase (Scheme-II).
This enzyme acts on CH-NH2 group of donor and NAD, NADP
act as electron acceptor. These enzymes act on various meta-
bolic pathways like arginine and proline metabolism, lysine
degradation etc.
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Scheme-II: Reduction of 2,4-diaminopentanoic acid using 2,4-diamino-
pentanoate dehydrogenase

DeSantis et al. [45] also observed that some reactions
catalyzed by oxidoreductase which are epoxidation of alkenes
through epoxidase isolated from Pseudomonas oleovorans,
lactonization of cyclohexane by monooxygenase isolated from
Baker’s yeast and hydroxylation of benzene by hydoxylase
isolated from Aspergillus niger (Scheme-III).
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Scheme-III: Epoxidation by epoxidase, hydroxylation by dioxygenase and
lactonization by monooxygenase

Peterson  et al. [46,47] found a commercially viable route
of synthesizing cortisol that took over the 31-steps chemical
synthesis of cortisol from a bile acid and this showed the way
for the subsequent commercial success of the steroid hormones.
The corticosteriod, 11-hydroxycortisol can be produced from
the cheap precursor 11-deoxycortisolusing 11β-monooxygenase.
A fungus with genus Rhizopus was found which easily add in
a single step 11α-hydroxyl group directly on to steroid hormone
progesterone (Scheme-IV).

TABLE-1 
CLASSIFICATION OF ENZYME ACCORDING TO THEIR REACTION 

Classes of 
enzyme 

Types of 
enzyme 

Reactions catalyzed by enzymes Examples 

EC 1 Oxidoreductase Oxidation and Reduction Dehydrogenase, oxygenase, catalase, oxidase, peroxidase 
EC 2 Transferase Transfer of a group from one molecule to another Transaminase, transaldolase, glycosyltransferase 
EC 3 Hydrolase Hydrolysis of a chemical bond Lipase, protease, esterase, hydratase, phosphatase, 

glycosidase, nitrilase 
EC 4 Lyase Non hydrolytic cleavage of a bond Dehydratase, decarboxylase, deoxyribosephosphate, aldolase 
EC 5 Isomerase Rearrange the existing atoms of a molecule Racemase, mutase, epimerase 
EC 6 Ligase Synthesis of a bond with the use of ATP DNA ligase 
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Scheme-IV: Single step hydroxylation using monooxygenase

Epoxides are usually formed by epoxidation of alkenes
or by halohydrins. For epoxidation three classes of enzymes
were used which are (i) enzymes (heme dependent) using molecular
H2O2 like chloroperoxidase and unspecific peroxidase, (ii) enzy-
mes requiring molecular oxygen like xylene monooxygenase
and (iii) enzymes using FAD like styrene monooxygenase or
a Baeyer-villiger monooxygenase. Cytochrome P450 enzyme
having heme iron centre causes epoxidation. Groves et al. [48]
stated the mechanism of epoxidation as shown in Scheme-V,
which was later investigated by Hrycay and Bandiera [49].
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Scheme-V: Epoxidation using cytochrome P450 enzyme

Wang et al. [50] reported the cyclopropanation of acryl-
amides with the use of different of P450BM3-Hstar, in which
the heme iron’s ligand got changed to histidine from cysteine.
P450BM3-Hstar helps in enantioselective transformation of lots
of acrylamide to their corresponding cyclopropanes such as
in synthesis of levomilnacipran, an antidepressant [51]
(Scheme-VI). Dietrich et al. [52] reported the advantage of a
recombinant P450BM-3 G-4 variant in the semi-synthetic
development of anti-malarial drug, e.g. artemisinin. E. coli
expressing P450BM-3 G-4 variant epoxidizes amorphia-4,11-
diene (18) into artemisnic-11S,12-epoxide (19).This epoxide
is further helps in the production of drug artemisinin (20)
(Scheme-VII).

Peter et al. [53] reported that an aromatic peroxygenase,
isolated from Agrocybe aegerita (AaeUPO) which oxidizes
alkenes (linear, branched and cyclic) through hydroxylation
or epoxidation using hydrogen peroxide. This peroxygenase
works by the same mechanism as the P450 enzyme except
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Scheme-VI: Cyclopropanation of acrylamides using P450 BM3-Hstar

that it uses hydrogen peroxide for epoxidation rather than
NAD(P)H and molecular oxygen (Scheme-VIII).
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Scheme-VIII: Epoxidation with the help of hydrogen peroxide using
peroxygenase

Transferase: Transferases (EC: 2) catalyzes the transfer
of groups such as sugar, phosphoryl, aldehyde or ketone and
acyl from one molecule to another. Transferases are multi-
faceted catalysts for synthesis of different types of organic
compounds such as transaminases used for the synthesis of
amines and amino acids. Rottig and Steinbuchel [54] stated
that chloramphenicol acetyltransferases (CAT) catalyzes the
acylation of chloramphenicol (23) to form 3-acetylchloramph-
enicol (25) by transferring the acetyl group from acetyl-
coenzyme A (acetyl CoA) (24) to the hydroxyl group of chlor-
amphenicol (Scheme-IX). CATs were responsible for bacterial
resistance to the antibiotic chloramphenicol, which inhibits
the activity of ribosomal peptidyl-transferase.
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Scheme-IX: Transfer of acetyl group using chloramphenicol acetyl-
transferases

Horbal et al. [55] reported that transaminase catalyzes
the transfer of an amino group. This process was used for the
preparation and resolution of amino acids and their analogues.
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Scheme-VII: Epoxidation using recombinant P450 BM-3 G-4 variant in the development of artemisinin
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The transaminases can be applied either in the kinetic resolution
of racemic β-amino acids or in asymmetric synthesis of amino
acids, starting from the corresponding prochiral β-keto-substrate
(Scheme-X). Transaminase belong to the large and diverse group
of pyridoxal phosphate (PLP)-dependent enzymes and are
ubiquitous in living organisms playing an important role in
amino acid metabolism.
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Scheme-X: Transfer of an amino group using transaminase

Some researchers [56,57] reported the preparation of nucleo-
sides analogues (antiviral precursors) can be catalyzed by glycosyl
transferase (deoxyribosyltranferase). This reaction involves the
transfer of a sugar group from a compound (31) to another (32)
to form a nucleoside (33) (Scheme-XI). Transaldolase enzyme
extracted from E. coli catalyzes the transfer of dihydroxy-
acetone moiety from one donor substrate (35) to other acceptor
substrate (36) (Scheme-XII) [55].
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Scheme-XII: Transfer of dihydroxyacetone using transaldolase

Hydrolases: Hydrolases (EC: 3) catalyze the hydrolytic
cleavage of glycosides, anhydrides, esters, amides, peptides,
and other C-N moieties. These reactions are referred to as hydro-
lysis. Tyler et al. [13] reported that proteases like papain,
α-chymotrypsin and subtilisin were useful biocatalysts for
regioselective or stereoselective hydrolytic biotransformations.
For example, dibenzylester of glutamic acid and aspartic acid
(39) at position-1 give their derivatives (40) by Subtilis in cata-
lyzed hydrolysis (Scheme-XIII).
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Scheme-XIII: Hydrolytic biotransformation

Nitrilases also play an important function in the prepa-
ration, resolution and the conversion of nitrile groups (41) to
acid groups (42). Tyler et al. [13] also demonstrated that Rhodo-
coccus sp. AJ270 containing a nitrilase was able to catalyzed
the stereoselsctive conversion of α-substituted phenylacetonitriles
(43) under mild conditions into amides (45) and carboxylic
acids (46) (Scheme-XIV).

Leonte et al. [58] described the biocatalytic synthesis of
new Mannich bases containing various heterocyclic rings
(thiazole, furane, thiophene, pyridine) by applying the lipase
catalyzed trimolecular condensation of the corresponding hetero-
cyclic aldehydes (50) with acetone (52) and primary aromatic
amines (51) in mild and eco-friendly reaction conditions
(Scheme-XV). Penicillin acylase isolated from E. coli hydro-
lyzes the different forms of penicillin such as penicillin G (58)
into 6-aminopenicillinic acid (6-APA) (59) [59,60] (Scheme-
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Scheme-XIV: Conversion of nitrile to acid and amid using nitrilase
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XVI). The enzyme catalyzes the hydrolysis of amide bond in
side chain of penicillin to give amine. This 6-aminopenicillinic
acid product was then converted into different types of new
penicillin derivatives.
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Scheme-XVI: Conversion of penicillin G to 6-aminopenicillinic acid using

penicillin acylase

Amidase enzyme extracted from Aspergillus oryzae was
used for the hydrolysis of acetyl group in N-acetylmethionine
[61,62]. However, only one of the enantiomer of acetyl meth-
ionine was the substrate for amidase. Thus, L-methionine (63)
was the product of the reaction and D-enantiomer of acetylated
methionine (64) remains unreacted as like substrate (Scheme-
XVII) [61].
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Scheme-XVII: Hydrolysis of acetyl group using amidase

Shadpour et al. [62] reported that methyl ester of aspartic
acid will hydrolyze under severe conditions. There are two
reactive groups in aspartic acid and enzyme needs only of
them to take part in condensation reaction. Thermolysin was
able to work under extreme conditions such as high temperature,
in presence of organic solvents, etc. Thermolysin forms the
amide bond between two substrates to form product (68)
(Scheme-XVIII). The enzyme esterase selectively hydrolyzes
the substrate containing esters to their corresponding acids
via specific stereoselectivity. Esterase was capable of differen-
tiating between different isomers of substrate esters. This acid
was then further elaborated under mild conditions for the
innovative synthesis of final calcium-antagonist drug diltiazem
(71) (Scheme-XIX) [63].
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Scheme-XIX: Conversion of esters to acids using esterase

Isopropyl myristate (74) was obtained by condensation
of myristic acid (72) with isopropyl alcohol (IPA) (73) (Scheme-
XX). Isopropyl myristate was an emollient used in skin care
products to give a smooth feel to the skin. Lipase used in the
condensation, was obtained from a yeast Candida. This reaction
operates at 60 °C to remove water produced during reaction
[64].

Lyases: Lyases (EC: 4) are the enzymes which are respon-
sible to catalyze addition and elimination reactions means it
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Scheme-XV: Application of lipase in synthesis of Mannich bases
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Scheme-XVIII: Formation of amide bond using thermolysin
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Scheme-XX: Condensation of two substrates using lipase

catalyzes reactions involving the breaking of a bond between
a carbon atom and another atoms such as oxygen, sulfur or
another carbon atom. This class of enzyme has great applica-
tions in cellular processes such as citric acid cycle and in organic
synthesis, such as in the production of cyanohydrins. DeSantis
[45] reported the biotransformation of phenylethanone (75)
to 2-hydroxyl-2-phenylnitrile (77) through the catalytic activity
of s-oxynitrilase from Sorghum bicolor (Scheme-XXI). Brovetto
et al. [65] also reported on the use of benzaldehyde lyase (BAL)
to catalyze the transformation of rac-benzion (78) to R-2 hydroxyl-
phenylpropanone (79) as well as its resolution to S-benzion (80)
(Scheme-XXII). Furthermore, Brovetto et al. [65] also reported
the use of ammonia lyases as efficient biocatalysts for biotrans-
formation by describing the action of phenylalanine lyase and
phenylalanine aminomutase in the synthesis of amino acids
(82,84,85) (Scheme-XXIII).

Pelt [66] reported that a lyase known as nitrile hydratase
(NHase) was used in the production process of nicotinamide
(niacinamide, vitamin B3). The process involves four highly
selective, continuous catalytic reaction steps namely (i) cycli-
zation, (ii) dehydrogenation (iii) ammoxidation and (iv) enzymatic

O

+ HCN
Sorghum bicolor

oxynitrilase
(75) (77)

(76)

CN

OH

Scheme-XXI: Biotransformation of ketone to nitrile using oxynitrilase

hydration using NHase. The starting material was 2-methyl
pentanediamine (86), which was a by-product obtained from
nylon-66 production. In the last step, hydration of 3-cyano-
pyridine (88) to nicotinamide (89) was carried out by using R.
rhodochrous J1 whole cells (containing NHase) immobilized
in polyacrylamide gel particles (Scheme-XXIV).

Isomerases: Isomerases are a class of enzyme which cata-
lyzes the structural rearrangement within one molecule. It facil-
itates intramolecular rearrangements in which bonds are broken
and formed. Researches on glucose isomerases are reported and
covers the mathematical simulation as well as the establishment
of whole-cell processes [65,66]. Epimerase and racemase are
the two most commonly used form of enzymes from class iso-
merase.

Epimerase (EC 5.1.3.8) isolated from Escherichia coli
facilitates the epimerization of glucosamine. For the synthesis
of N-acetylneuraminic acid, N-acetyl-D-mannosamine serves
as an in situ generated substrate. Since N-acetyl-D-manno-
samine (91) was quite expensive, therefore, it was synthesized
by epimerization at C2 of N-acetyl-D-glucosamine (90)
(Scheme-XXV). By application of N-acylglucosamine (GlcNAc)
2-epimerase, it was possible to start with inexpensive N-acetyl-
D-glucosamine instead of N-acetyl-D-mannosamine [67-70].

Production of 100 % desired enantiomer in single pot from
a given substrate was possible by dynamic kinetic resolution.
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Scheme-XXIII: Use of phenylalanine lyase and phenylalanine aminomutase in the synthesis of amino acids
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Scheme-XXV: Application of N-acylglucosamine (GlcNAc) 2-epimerase

Aminolactamhydrolase (EC 3.5.2.11) and racemase (EC
5.1.1.15) was used for dynamic resolution of α-amino-ε-capro-
lactam (92) (Scheme-XXVI). The racemase enzyme for
racemization was isolated from Achromobacter obae [71,72].
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Palatinose, a reducing disaccharide, occurs naturally in
low amount in sugarcane extract and honey. Palatinose and its
hydrogenated products are used as sweetener with same taste
as sucrose, with only half of calorific value and 42 % of sweetness
as of sucrose. Thus because of low insulin simulation and lower
acid and glucan production, it was used as substitute of sucrose
in various food industries. A-Glucosyltransferase (EC 5.4. 99.

11) continuously produces palatinose (96) with small amount
of trehalulose from sucrose (95) (Scheme-XXVII) [38].
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Scheme-XXVII: Production of palatinose using A-glucosyltransferase

Ligases: Ligases (EC: 6) catalyze the formation of C-O,
C-S, C-N, C-C and phosphate ester bonds [25-27]. These
enzymes are also known as synthetases. Enzymes from class
EC 1 to EC 5 are widely used as catalyst in organic synthesis
but application range of EC 6 (ligases) is still not explored
yet. This class of enzyme requires ATP as a cofactor, which is
easily regenerated in living cell processes, however, in vitro
reaction is still a challenge [74].

TABLE-2 
SUMMARY OF THE ENZYMES USED AS A CATALYST IN VARIOUS REACTIONS 

Microbes used Enzyme Substrate Product Ref. 
Bacillus subtilis Subtilisin Glutamic acid Derivatives of glutamic acid [13] 
Rhodococcus species AJ270 Nitrilase Nitrile Carboxylic acid [13] 
Aspergillus niger Lactase dehydrogenase Oxobutanoic acid Isomers of α-hydroxybutanioc [44] 
Aspergillus niger Hydoxylase Benzene Catechol [45] 
Aspergillus niger Epoxide hydoxylase Benzene Glycol [45] 
Pseudomonas oleovorans Oxidoreductase Alkene Epoxide [45] 
Clostridium sticklandii Dehydrogenase  2,4-Diamino pentanoic acid 2,4-Amino-4-oxo-pentanoic acid [45] 
E. coli K2 Oxidoreductase 5,6-Dihydro Uracil Uracil  [45] 
Baker’s Yeast Monooxygenase Cyclohexane Lactone [45] 
Rhizopus nigricans 11-α-Hydroxylases Progesterone 11-α-Hydroxyprogesterone [46] 
Agrocybe aegerita Cytochrome P450 Alkene Epoxide  [49] 
Bacillus megaterium P450 BM-3- Hstar Cylcopropane Acrylamides [50] 
E. coli P450 BM-3 G-4 Amorphia-4,1-diene Artemisnic-11S,12-epoxide [52] 
Agrocybe aegerita Fungal peroxygenase 

(AaeUPO) 
Alkene Epoxide [53] 

E. coli Chloramphenicol 
acetyltransferases 

Chloramphenicol 3-Acetyl chloramphenicol [54] 

E. coli B Transaminase Prochiral β- keto amino acids Racemic β- amino acid [55] 
Lactobacillus helviticus Glycosyl transferase 2-Deoxy-D-ribosyl-base1 + base2 2-Deoxy-D-ribosyl-base2 + base1 [56] 
Candida rugosa Lipase Heterocyclic aldehyde and acetone Mannich base  [58] 
E. coli Penicillin acylase Penicillin 6-Aminopenicillanic acid [59,60] 
Aspergillus oryzae Amidase N-Acetyl L-Methionine L-Methionine [61] 
Bacillus sterarothermophillus Thermolysin Aspartic acid + methyl ester Aspartame [62] 
Bacillus cereus Lipase Myristic acid and isopropyl 

alcohol 
Isopropylmyristate [64] 

Pseudomonas fluorescence Benzaldehyde lyase Benzion  R-2-Hydroxylphenylpropanone [65] 
Pseudomonas fluorescence Phenylalanine lyase Cinnamic acid Amino acid [65] 
R. rhodochrous Nitrile hydratase 2-Methyl pentanediamine Nicotinamide  [66] 
Pseudomonas chlororaphis Nitrile hydrates  Isocyanide  5-Cyanovaleramide (5-CVAM) [66] 
E. coli Epimerase  N-Acetyl-D-mannosamine N-Acetylneuraminic acid [69,70] 
Achromobacter obae Aminolactum hydrolase D,L-a-amino-e-caprolactam D-Amino-e-caprolactam + L-lysine [71,72] 
Bacillus coagulans Glucose isomerase Glucose Fructose [73] 

 

[13]
[13]
[44]
[45]
[45]
[45]
[45]
[45]
[45]
[46]
[49]
[50]
[52]
[53]

[54]

[55]
[56]
[58]

[59,60]
[61]
[62]
[64]

[65]
[65]
[66]
[66]

[69,70]
[71,72]

[73]
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Conclusion

Biocatalysis has emerged as a significant resource for
chemical synthesis and it is on the path of exponential growth.
In several industries, during past several decades various types
of products have been produced by many biocatalytic processes
implementation. Among all classes, Class 6 (ligases), have
limited applications in organic syntheses. This is because in
situ regeneration of the cofactor ATP is a challenge. In contrast,
enzymes from enzyme classes EC 1-5 are highly efficient
catalysts for abroad range of organic synthetic transformations
as well as suitable for technical-scale applications Most of the
products are produced through the use of natural enzymes, whole
cells or microorganisms are summarized in Table-2. The cost
and the time for development of new enzymes can be minimized
drastically by advancement in protein engineering along with
metabolic engineering. These engineered enzymes are used
in various pharmaceutical and food industries due to their stereo-
selectivity. The advancements in proteomics, genomics and
bioinformatics will leads to the biocatalysis development which
acts as the integral part of various industrial catalysts.
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