

Molecular Geometry, NLO, MEP, HOMO-LUMO and Mulliken Charges of Substituted Piperidine Phenyl Hydrazines by Using Density Functional Theory

M. DINESH KUMAR^{1,*}, P. RAJESH², R. PRIYA DHARSINI² and M. EZHIL INBAN³

¹Department of chemistry, Dr. N.G.P Arts and Science College (Autonomous), Coimbatore-641048, India ²Department of Chemistry, Government Arts College (Autonomous), Coimbatore-641018, India ³Department of Physics, Government Arts College (Autonomous), Coimbatore-641018, India

*Corresponding author: E-mail: dineshkumarm@drngpasc.ac.in

Received: 13 September 2019;	Accepted: 29 October 2019;	Published online: 30 December 2019;	AJC-19734
------------------------------	----------------------------	-------------------------------------	-----------

The quantum chemical calculations of organic compounds *viz*. (*E*)-1-(2,6-*bis*(4-chlorophenyl)-3-ethylpiperidine-4-ylidene)-2-phenylhydrazine (3ECl), (*E*)-1-(2,6-*bis*(4-chlorophenyl)-3-methylpiperidine-4-ylidene)-2-phenylhydrazine (3MCl) and (*E*)-1-(2,6-*bis*(4-chlorophenyl)-3,5-dimethylpiperidine-4-ylidene)-2-phenylhydrazine (3,5-DMCl) have been performed by density functional theory (DFT) using B3LYP method with 6-311G (d,p) basis set. The electronic properties such as Frontier orbital and band gap energies have been calculated using DFT. Global reactivity descriptor has been computed to predict chemical stability and reactivity of the molecule. The chemical reactivity sites of compounds were predicted by mapping molecular electrostatic potential (MEP) surface over optimized geometries and comparing these with MEP map generated over crystal structures. The charge distribution of molecules predict by using Mulliken atomic charges. The non-linear optical property was predicted and interpreted the dipole moment (μ), polarizability (α) and hyperpolarizability (β) by using density functional theory.

Keywords: Mulliken charges, Molecular electrostatic potential, Non-linear optical property, Molecular geometry, Piperidin-4-ones.

INTRODUCTION

To analyze the biological activity of a molecule is a risk task today. Every molecule possesses some hidden properties based upon their electronic interactions with neighboring atoms and their biological activities are based on these interactions. Molecular docking is such type of a technique gives a basic idea of binding potency of a ligand with different selective proteins in a 3D arrangement [1]. It is an attractive platform to prospect rational drug design and discovery [2]. Another important emerging technique is computational quantum mechanical modeling [3]. ab initio DFT calculations are the most important method to determine the behaviour of a molecule on the basis of quantum chemical considerations [4]. From these calculations, several bond parameters like bond angle, bond length, and torsion angle can be calculated and also able to explore the activities of the selected molecules. Once we got an idea about the molecule then there is no hesitation to explain the nature of binding aspects.

Advances in organic chemistry were generally measured by the availability of simple and highly functionalized building blocks. It could be used in synthesizing larger molecules with tuning properties and its applications. Piperidine ring system plays a wide role in innumerable natural compounds and drugs. This variety of compounds manifests countless pharmacological properties [5]. Generally, substituted 4-piperidones are the modules of a many alkaloids which holds broad-ranging of biological activity [6]. Piperidine-4-one compound has been attained much attention in recent years due to their biological activities and their molecular structures in various drugs [5]. Piperidones are a class of organic compounds consist of piperidine skeleton, that mimic the naturally occurring alkaloids and steroids which have been synthesized in order to study their biological activity and compare with naturally occurring compounds. It has been reported as antimicrobial, antiviral, analgesic, antioxidant and anticancer activities [6-10].

Previously, we reported the bond topological and electrostatic properties of piperidine-4-one compounds by using DFT

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

method [11]. In continuation of our earlier work, herein we report the DFT calculations to study about the molecular structure of 3ECl, 3MCl and 3,5-DMCl using mulliken atomic population, molecular electrostatic potential, frontier molecular orbital, non-linear optical property. Molecular geometries were calculated by density functional theory (DFT) using B3LYP/6-311G (d,p) basis set [12,13]. Adopting the above techniques, the molecular structure, chemical bonding and the reaction mechanisms of three compounds *viz*. (*E*)-1-(2,6-*bis*(4-chlorophenyl)-3-ethylpiperidine-4-ylidene)-2-phenylhydrazine (3ECl), (*E*)-1-(2,6*bis*(4-chlorophenyl)-3-methylpiperidine-4-ylidene)-2phenylhydrazine (3MCl), (*E*)-1-(2,6-*bis*(4-chlorophenyl)-3,5dimethylpiperidine-4-ylidene)-2-phenylhydrazine (3,5-DMCl), using computational DFT method were investigated.

EXPERIMENTAL

The quantum chemical calculations of three compounds *viz*. (*E*)-1-(2,6-*bis*(4-chlorophenyl)-3-ethyl-piperidine-4-ylidene)-2-phenylhydrazine (3ECl), (*E*)-1-(2,6-*bis*(4-chlorophenyl)-3-methylpiperidine-4-ylidene)-2-phenylhydrazine (3MCl), (*E*)-1-(2,6-*bis*(4-chlorophenyl)-3,5-dimethylpiperidine-4-ylidene)-2-phenylhydrazine (3,5-DMCl) were executed by applying DFT method B3LYP with 6-311G (d,p) basis set using Gaussian 09 software.

Computational studies: The quantum chemical calculation has been performed in Gaussian 09 program package with help of density functional theory (DFT) [14,15]. The structure of molecule was optimized by the density functional theory using hybrid functional B3LYP (Becke's three-parameter exchange functional [16] combined with Lee-Yang-Parr correlation functional [17] with the 6-31G (d,p) basis set [16]. The optimized parameters performed as vibrational frequency calculation in the DFT to characterize all the stationary points as minima [18]. The functions of calculated frequencies are assisted by the animation option of chemcraft program [19]. The B3LYP method used to evaluate the molecular electrostatic potential of reactive sites of title compounds. The dipole moment (μ) , polarizability (α) and hyperpolarizability (β) are calculated by computed value. The HOMO-LUMO energies are predicted by using TD-DFT approach [14]. The Gauss view aid shows the molecular structure of compounds [20]. Mulliken atomic charges predict the charge distribution of each atom present in a molecular systems [21]. The molecular geometry is optimized without any restriction.

RESULTS AND DISCUSSION

Optimized geometry: The optimized molecular structure with the numbering of atoms of substituted piperidine phenyl hydrazine compounds (3ECl, 3MCl and 3,5-DMCl) are shown in Fig. 1. The predicted geometrical parameters such as bond length, bond angle and dihedral angle of 3ECl calculated at B3LYP/ 6-311G (d,p) level of theory are presented in Tables 1-3.

Mulliken atomic charges: Mulliken atomic charge calculation has an important role in the application of quantum chemical calculation to molecular system because of atomic charges affect dipole moment, molecular polarizability, electronic structure and a lot of properties of molecular systems. The charge distributions over the atoms suggest the formation of

TABLE-1 OPTIMIZED GEOMETRICAL PARAMETERS OF 3ECI				
Atoms	Bond	Atoms	Bond	
1101110	length (A)	T ROTTIS	length (A)	
C1-C6	1.513	C13-Cl31	1.829	
C5-C6	1.522	C13-C12	1.392	
C4-C5	1.573	C14-C13	1.399	
C1-C2	1.558	C12-H38	1.083	
C2-N3	1.47	C14-H39	1.082	
N3-C4	1.478	C18-Cl30	1.828	
N3-H10	1.017	C18-C19	1.393	
C1-H32	1.095	C17-C18	1.392	
C1-H33	1.097	C17-H42	1.083	
C6-N7	1.298	C19-H43	1.083	
N7-N21	1.365	C5-C28	1.541	
N21-H45	1.0365	C28-C29	1.538	
N21-C22	1.401	C28-H51	1.096	
C22-C23	1.408	C28-H52	1.096	
C22-C27	1.35	C29-H55	1.093	
C27-H50	1.115	C29-H54	1.098	
C23-H46	1.087	C29-H53	1.096	
C4-C8	1.52			
	D 1	Atoms	D I	
Atoms	Bond	Atoms	Bond	
Atoms	Bond angle (°)	Atoms	angle (°)	
Atoms C23-C22-C27	Bond angle (°) 119.56	Atoms C6-C5-C28	angle (°) 114.23	
Atoms C23-C22-C27 C22-N21-N7	Bond angle (°) 119.56 120.93	Atoms C6-C5-C28 C4-C5-C28	angle (°) 114.23 112.61	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6	Bond angle (°) 119.56 120.93 122.1	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15	angle (°) 114.23 112.61 118.66	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5	Bond angle (°) 119.56 120.93 122.1 114.46	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20	angle (°) 114.23 112.61 118.66 118.79	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4	Bond angle (°) 119.56 120.93 122.1 114.46 107.46	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14	angle (°) 114.23 112.61 118.66 118.79 121.87	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4-N3	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4 C5-C4-N3 C6-C1-C2	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84 109.65	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19 C17-C18-C130	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87 119.06	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4-N3 C6-C1-C2 C1-C2-N3	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84 109.65 107.75	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19 C17-C18-C130 C19-C18-C130	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87 119.06 119.08	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4-N3 C6-C1-C2 C1-C2-N3 C2-N3-H10	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84 109.65 107.75 112.43	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19 C17-C18-C130 C19-C18-C130 C19-C18-C130 C4-N3-H10	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87 119.06 119.08 112.14	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4-N3 C6-C1-C2 C1-C2-N3 C2-N3-H10 Atoms	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84 109.65 107.75 112.43 Dihedral angle (°)	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19 C17-C18-C130 C19-C18-C130 C19-C18-C130 C4-N3-H10 Atoms	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87 119.06 119.08 112.14 Dihedral angle (°)	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4-N3 C6-C1-C2 C1-C2-N3 C2-N3-H10 Atoms C22-N21-N7-C6	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84 109.65 107.75 112.43 Dihedral angle (°) 179.134	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19 C17-C18-C130 C19-C18-C130 C19-C18-C130 C4-N3-H10 Atoms C4-C5-C28-C29	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87 121.87 119.06 119.08 112.14 Dihedral angle (°) -163.101	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4-N3 C6-C1-C2 C1-C2-N3 C2-N3-H10 Atoms C22-N21-N7-C6 N21-N7-C6-C5	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84 109.65 107.75 112.43 Dihedral angle (°) 179.134 178.593	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19 C17-C18-C130 C19-C18-C130 C19-C18-C130 C4-N3-H10 Atoms C4-C5-C28-C29 C6-C1-C2-N3	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87 119.06 119.08 112.14 Dihedral angle (°) -163.101 54.065	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4-N3 C6-C1-C2 C1-C2-N3 C2-N3-H10 Atoms C22-N21-N7-C6 N21-N7-C6-C5 N7-C6-C5-C4	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84 109.65 107.75 112.43 Dihedral angle (°) 179.134 178.593 -120.77	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19 C17-C18-C130 C19-C18-C130 C19-C18-C130 C4-N3-H10 Atoms C4-C5-C28-C29 C6-C1-C2-N3 C4-C8-C11-C12	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87 119.06 119.08 112.14 Dihedral angle (°) -163.101 54.065 179.719	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4-N3 C6-C1-C2 C1-C2-N3 C2-N3-H10 Atoms C22-N21-N7-C6 N21-N7-C6-C5 N7-C6-C5-C4 C4-N3-C2-C1	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84 109.65 107.75 112.43 Dihedral angle (°) 179.134 178.593 -120.77 -59.184	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19 C17-C18-C130 C19-C18-C130 C19-C18-C130 C4-N3-H10 Atoms C4-C5-C28-C29 C6-C1-C2-N3 C4-C8-C11-C12 C4-C8-C15-C14	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87 119.06 119.08 112.14 Dihedral angle (°) -163.101 54.065 179.719 -179.794	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4-N3 C6-C1-C2 C1-C2-N3 C2-N3-H10 Atoms C22-N21-N7-C6 N21-N7-C6-C5 N7-C6-C5-C4 C4-N3-C2-C1 C6-C5-C28-C29	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84 109.65 107.75 112.43 Dihedral angle (°) 179.134 178.593 -120.77 -59.184 73.293	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19 C17-C18-C130 C19-C18-C130 C4-N3-H10 Atoms C4-C5-C28-C29 C6-C1-C2-N3 C4-C8-C11-C12 C4-C8-C15-C14 C2-C9-C16-C17	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87 119.06 119.08 112.14 Dihedral angle (°) -163.101 54.065 179.719 -179.794 -177.781	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4-N3 C6-C1-C2 C1-C2-N3 C2-N3-H10 Atoms C22-N21-N7-C6 N21-N7-C6-C5 N7-C6-C5-C4 C4-N3-C2-C1 C6-C5-C4 C4-N3-C2-C1 C6-C5-C28-C29 C11-C12-C13-C131	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84 109.65 107.75 112.43 Dihedral angle (°) 179.134 178.593 -120.77 -59.184 73.293 179.787	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19 C17-C18-C130 C19-C18-C130 C4-N3-H10 Atoms C4-C5-C28-C29 C6-C1-C2-N3 C4-C8-C11-C12 C4-C8-C15-C14 C2-C9-C16-C17 C2-C9-C20-C19	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87 121.87 119.06 119.08 112.14 Dihedral angle (°) -163.101 54.065 179.719 -179.794 -177.781 177.97	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4-N3 C6-C1-C2 C1-C2-N3 C2-N3-H10 C22-N21-N7-C6 N21-N7-C6-C5 N7-C6-C5-C4 C4-N3-C2-C1 C6-C5-C4 C4-N3-C2-C1 C6-C5-C28-C29 C11-C12-C13-C131 C15-C14-C13-C131	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84 109.65 107.75 112.43 Dihedral angle (°) 179.134 178.593 -120.77 -59.184 73.293 179.787 -179.858	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19 C17-C18-C130 C19-C18-C130 C4-N3-H10 Atoms C4-C5-C28-C29 C6-C1-C2-N3 C4-C5-C28-C29 C6-C1-C2-N3 C4-C8-C11-C12 C4-C8-C15-C14 C2-C9-C16-C17 C2-C9-C20-C19 N3-C4-C5-C28	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87 121.87 119.06 119.08 112.14 Dihedral angle (°) -163.101 54.065 179.719 -179.794 -177.781 177.97 179.851	
Atoms C23-C22-C27 C22-N21-N7 N21-N7-C6 C1-C6-C5 C6-C5-C4 C5-C4-N3 C6-C1-C2 C1-C2-N3 C2-N3-H10 C22-N21-N7-C6 N21-N7-C6-C5 N7-C6-C5-C4 C4-N3-C2-C1 C6-C5-C4 C4-N3-C2-C1 C6-C5-C28-C29 C11-C12-C13-C131 C15-C14-C13-C131 C16-C17-C18-C130	Bond angle (°) 119.56 120.93 122.1 114.46 107.46 108.84 109.65 107.75 112.43 Dihedral angle (°) 179.134 178.593 -120.77 -59.184 73.293 179.787 -179.858 -179.82	Atoms C6-C5-C28 C4-C5-C28 C11-C8-C15 C16-C9-C20 C12-C13-C14 C17-C18-C19 C17-C18-C130 C19-C18-C130 C4-N3-H10 Atoms C4-C5-C28-C29 C6-C1-C2-N3 C4-C8-C11-C12 C4-C8-C15-C14 C2-C9-C16-C17 C2-C9-C20-C19 N3-C4-C5-C28 N3-C2-C9-C20	Bond angle (°) 114.23 112.61 118.66 118.79 121.87 121.87 121.87 119.06 119.08 112.14 Dihedral angle (°) -163.101 54.065 179.719 -179.794 -177.781 177.97 179.851 40.708	

donor and acceptor pairs involving the charge transferring in the molecule. The Mulliken population analysis in 3,5-DMCl molecule was calculated using B3LYP level with 6-311G (d,p) basis set (Table-4). The Mulliken charge distribution structure of 3,5-DMCl is shown in Fig. 2. The charge distributions of this compound revealed that the carbon atoms attached with hydrogen atoms and C6, C8, C9 and C22 atoms are positively charged and remaining carbon atoms are negatively charged. A 21N has the greater negative charge than the other two nitrogen atoms, as well as all hydrogen atoms have a positive charge. The Mulliken atomic charges shows the N atoms attached with C and H atoms. The 44H and 10H have a high positive charge than the other hydrogen atoms. The 44H and 10H have to be attached with 21N and 7N atoms and these two atoms have the higher positive charge because of electronegativity of N atoms [14]. A 22C atom has more positive charge compared to other C atoms in this compound and it also attached with more electronegative atom 21N. Similarly, more negative charge is carried by the carbon atoms 31C and 28C [15].

Fig. 1. Optimized geometry of 3ECl, 3MCl and 3,5-DMCl

TABLE-2 OPTIMIZED GEOMETRICAL PARAMETERS OF 3MCI			TABLE-3 OPTIMIZED GEOMETRICAL PARAMETERS OF 3 5-DMCI				
OI TIMIZED	Pond Pond		Devil			,5 DMCI	
Atoms	Bond length (Å)	Atoms	Bond length (Å)	Atoms	Bond length (Å)	Atoms	Bond length (Å)
C23-C22	1.407	C8-C11	1.404	C23-C22	1.408	C3-H53	1.095
C22-C27	1.406	C8-C15	1.399	C22-C27	1.406	C3-H54	1.094
C22-N21	1.402	C13-C14	1.393	C22-N21	1.403	C3-H55	1.098
N21-H44	1.013	C13-C12	1.392	N21-H44	1.009	C5-C28	1.532
N21-N7	1.364	C13-C130	1.829	N21-N7	1.362	C28-H50	1.093
N7-C6	1.298	C2-C9	1.519	N7-C6	1.297	C28-H51	1.094
C6-C1	1.514	C9-C20	1.406	C6-C1	1.517	C28-H52	1.095
C6-C5	1.521	C9-C16	1.404	C6-C5	1.528	C18-Cl29	1.828
C1-C2	1.556	C18-C17	1.392	C4-C5	1.52	C18-C19	1.394
C2-N3	1.47	C18-C19	1.393	C4-N3	1.475	C18-C17	1.392
N3-C4	1.478	C18-Cl29	1.828	C2-N3	1.472	C13-C130	1.829
C4-C5	1.569	C5-C28	1.533	N3-H10	1.017	C13-C12	1.392
N3-H10	1.017	C28-H50	1.093	C1-C2	1.573	C13-C14	1.394
C1-H31	1.095	C28-H51	1.094	C1-C3	1.54		
C4-C8	1.519	C28-H52	1.096	Atoms	Bond	Atoms	Bond
Atoms	Bond	Atoms	Bond	Atoms	angle (°)	Atoms	angle (°)
Atoms	angle (Å)	Atoms	angle (Å)	C23-C22-C27	119.56	N3-C4-C5	108.8
C23-C22-C27	119.6	C5-C28-H52	111.1	C23-C22-N21	118.51	C4-N3-H10	112.42
C24-C25-C26	119.1	C5-C28-C51	110.65	C22-N21-N7	120.19	C2-N3-H10	112.42
C23-C22-N21	118.64	C5-C4-N3	108.96	N21-N7-C6	125.73	C12-C13-Cl30	119.08
C23-N21-H44	117.98	C4-N3-C2	116	H44-N21-N7	121.88	C14-C13-Cl30	119.04
C22-N21-N1	120.81	C1-C2-N3	107.89	N7-C6-C1	131.47	C14-C13-C12	121.88
N7-N21-H44	121.16	C16-C9-C2	120.38	N7-C6-C5	115.91	C15-C8-C11	118.66
C6-N7-N21	122.13	C2-C9-C20	120.81	C6-C5-C4	107.74	C16-C9-C20	118.66
C2-C1-C6	110.36	C16-C9-C20	118.78	C6-C1-C2	107.74	C17-C18-Cl29	119.08
C4-C5-C6	109.14	C17-C18-Cl29	119.1	C1-C2-N3	108.04	C19-C18-Cl29	119.07
C6-C5-C28	113.39	C19-C18-Cl29	119.07	C2-N3-C4	117.67	C17-C18-C11	121.85
C5-C28-H50	110.43	C17-C18-C19	121.87	Atoms	Torsion	Atoms	Torsion
Atoms	Torsion	Atoms	Torsion	Atoms	angle (°)	Atoms	angle (°)
Atoms	angle (°)	Atoms	angle (°)	C23-C22-N21-N7	179.38	C6-C1-C2-N3	56.101
C27-C22-N21-N7	1.62	C2-C9-C16-C17	-177.959	C27-C22-N21-N7	-0.52	C1-C2-C9-C16	106.111
C23-C22-N21-N7	-178.508	C9-C16-C17-C18	-0.233	C22-N21-N7-C6	179.219	C1-C2-C9-C20	-73.509
C22-N21-N7-C6	-179.789	C16-C17-C18-Cl29	-179.821	N21-N7-C6-C1	1.442	C16-C17-C18-Cl29	-179.894
N21-N7-C6-C1	1.582	C20-C19-C18-Cl29	-180	N7-C6-C1-C2	113.587	C20-C19-C18-Cl29	179.91
N7-C6-C1-C2	125.93	C1-C6-C5-C28	177.975	N7-C6-C1-C31	-14.661	C4-C8-C15-C14	-178.931
N7-C6-C5-C4	-127.29	N3-C4-C5-C28	-178.506	N7-C6-C5-C28	9.313	C4-C8-C11-C12	178.879
C1-C2-N3-C4	-60.452	C4-C8-C11-C12	179.255	C6-C5-C4-N3	-53.889	C15-C14-C13-Cl30	-179.905
C6-C1-C2-N3	53.531	C4-C8-C15-C14	-179.363			C11-C12-C13-Cl30	179.856
C6-C5-C4-N3	-52.026	C15-C14-C13-C130	-179 892				

Molecular electrostatic potential (MEP): The molecular electrostatic potential is related to the electronic density and also useful descriptor for determining sites for electrophilic and nucleophilic reactions as well as hydrogen-bonding inter-

actions [14,22-24]. Molecular electrostatic potential surface for 3ECl, 3MCl, 3,5-DMCl are obtained by DFT/B3LYP using 6-311G (d,p) basis set. The shapes, sizes, charge densities, delocalization and reactive sites were determined for 3ECl, 3MCl, 3,5-DMCl [25]. The charge distribution of molecule is

TABLE-4 MULLIKEN POPULATION ANALYSIS OF 3,5-DMCI					
Atoms	Charges	Atoms	Charges		
1C	-0.0948	29Cl	0.0659		
2 C	-0.0287	30Cl	0.0608		
3N	-0.6023	31C	-0.4588		
4C	-0.027	32H	0.1504		
5C	-0.1222	33H	0.1131		
6C	0.2051	34H	0.1154		
7N	-0.2115	35H	0.1343		
8C	0.0924	36H	0.1404		
9C	0.0911	37H	0.1592		
10H	0.2893	38H	0.1582		
11C	-0.1515	39H	0.1509		
12 C	-0.1025	40H	0.1384		
13C	-0.2293	41H	0.1606		
14C	-0.1026	42H	0.1609		
15C	-0.1369	43H	0.1559		
16C	-0.1549	44H	0.3131		
17C	-0.1022	45H	0.112		
18C	-0.2304	46H	0.1211		
19C	-0.1025	47H	0.1182		
20C	-0.1391	48H	0.1219		
21N	-0.6462	49H	0.1545		
22C	0.3638	50H	0.1474		
23C	-0.1641	51H	0.1337		
24C	-0.1393	52H	0.1412		
25C	-0.1184	53H	0.1557		
26C	-0.1449	54H	0.1628		
27C	-0.1204	55H	0.1371		
28C	-0.3941	_	_		

arranged in a three dimensional orientation. The different values of electrostatic potential at the surface are represented by different colours: red or yellow represents regions of most electronegative electrostatic potential. Blue represents regions of the most positive electrostatic potential and green represents region of zero potential. Potential increases in the order of red < orange < yellow < green < blue. Fig. 3 shows that in all molecules, the regions reveals the positive potentials are localized over the vicinity of hydrogen atoms and the regions reveals the negative potentials are localized over the phenyl ring and two chlorine atom. Compound 3,5-DMCl has a highly rich in negative and positive charge on phenyl ring and hydrogen atoms so these two sites are chemically active.

Frontier molecular orbitals: The frontier molecular orbital can offer a reasonable qualitative prediction of the excitation properties and the ability of electron transport [14,26,27]. The electronic absorption basically means the transition from the ground to the excited state and mainly described by electron transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) [16]. So, 3,5-DMCl molecule has chemical stability and chemical reactivity. The value of energy separation between the HOMO and LUMO were calculated by using B3LYP/6-311 G (d,p). The red represents the positive electron and green represents the negative electron. In HOMO electrons are localized over the ring A and LUMO the electrons are localized over the ring B and C (Fig. 4). Three compounds 3ECl, 3MCl, 3,5-DMCl have an energy gap of 4.466

Fig. 3. Molecular electrostatic potential of 3ECl, 3MCl and 3,5-DMCl

Fig. 4. Frontier molecular orbital of 3,5-DMCl

eV, 4.4841 eV and 4.418 eV, respectively. So, 3,5-DMCl molecule has highest chemical stability and chemical reactivity.

Global reactivity descriptors: The chemical reactivity and site selectivity determination of molecules was done by Koopman's theorem. The compound which have the lowest energy gap is the 3,5-DMCl ($\Delta E_{gap} = 4.418 \text{ eV}$). The lower energy gap allows it to be the softest molecule. The compound have the highest energy gap is 3MCl ($\Delta E_{gap} = 4.4841 \text{ eV}$). The compound has the highest HOMO energy is the compound 3,5-DMCl ($E_{HOMO} = -5.255 \text{ eV}$) and higher energy permit it to be the best electron donor. The compound that has the lowest LUMO energy is the compound 3,5-DMCl ($E_{LUMO} = -0.833 \text{ eV}$), which indicates that it can be the best electron acceptor (Table-5).

TABLE-5 CALCULATED ENERGY VALUES OF 3ECI, 3MCI, 3,5-DMCI					
Compounds	3EC1	3MCl	3,5-DMCl		
E _{LUMO}	-0.8264	-0.8019	-0.833		
E _{HOMO}	-5.2932	-5.286	-5.255		
Energy gap (E _L -E _H)	4.4660	4.4841	4.418		
Ionization potential (I)	5.2932	5.2860	5.255		
Affinity (A)	0.8264	0.8019	0.833		
Electronegativity (χ)	3.0598	3.0439	3.0437		
Chemical potential (µ)	-3.0598	-3.0439	-3.044		
Global hardness (η)	2.2334	2.24205	2.2111		
Global softness (S)	1.1167	1.12102	1.1055		
Electrophilic index (ω)	2.0959	2.0663	2.095		

Compound 3,5-DMCl has lowest value of potential ionization (I = 5.2932 eV), so acts as a better electron donor, while compound 3,5-DMCl has the largest value of affinity (A = 0.833 eV), henceforth act as a better electron acceptor. The chemical reactivity varies with the structural molecules. Chemical hardness (softness) value of compound 3,5-DMCl (η = 2.2111 eV, S = 1.1055) is lesser (greater) among all the molecules. Thus, compound 3,5-DMCl is found to be more reactive among all the studied compounds. Compound 3ECl possesses higher electronegativity value (χ = 3.0598 eV) than all compounds, so it is the leading

electron acceptor. The value of electrophilic index (ω) for compound 3ECl (ω = 2.0959 eV) denotes that it is the stronger electrophiles than all compounds. The compound 3,5-DMCl has the lesser frontier energy gap so, it is more polarizable and associated with a high chemical reactivity, low kinetic stability (Table-5) and also termed as soft molecule [28].

Non-linear optical (NLO) properties: Density functional theory has been used as an effective method to investigate the organic non-linear optical (NLO) materials. It provides key functions of frequency shifting, optical modulation, optical logic, optical switching and optical memories for the emerging technologies in areas such as telecommunication, signal processing and optical interconnections [20,29-33]. The polarizability (α), hyperpolarizability (β) and the electric dipole moment (μ) of title compounds are calculated by finite field method using B3LYP/6-311G (d,p) basis set available in Gaussian 09 package. The polarizability and hyperpolarizability tensors ($\alpha_{xx}, \alpha_{xy}, \alpha_{yy}, \alpha_{xz}, \alpha_{yz}, \alpha_{zz}$ and $\beta_{xxx}, \beta_{xxy}, \beta_{yyy}, \beta_{xxz}, \beta_{yyz}, \beta_{yzz}$, β_{zzz} , β_{yzz} , β_{zzz} can be obtained by a frequency job output file of Gaussian 09.

$$\mu = \left(\mu_x^2 + \mu_y^2 + \mu_z^2\right)^{1/2}$$
$$\alpha_0 = \frac{1}{3}\left(\alpha_{xx} + \alpha_{yy} + \alpha_{zz}\right)$$
$$\beta_0 = \left[\left(\beta_{xxx} + \beta_{xyy} + \beta_{xzz}\right)^2 + \left(\beta_{yyy} + \beta_{xxy} + \beta_{yzz}\right)^2 + \left(\beta_{zzz} + \beta_{xxz} + \beta_{yyz}\right)^2\right]^{1/2}$$

However, α and β values of Gaussian output are in atomic units (a.u.) so they have been converted into electronic units (esu) (α : 1 a.u. = 0.1482 × 10⁻²⁴ esu, β : 1 a.u. = 8.6393 × 10⁻³³ esu). The complete equations for calculating the magnitude of total static dipole moment (μ), mean polarizability total (α_{tot}), anisotropy of polarizability (α) and the mean first hyperpolarizability (β_0) can be calculated using the equations, respectively [34]. Urea is one of the photolytical molecules used in the study of the NLO properties of the molecular systems. Therefore, it was used frequently as a threshold value for comparative purposes. The calculated values of dipole moment (μ) for the compounds were found to be -1.1896, -0.9872 and 2.5045, respectively. The 3,5-DMCl value is two times higher than to the value of urea (μ = 1.3732D). The values of hyperpolarizability (β_0) are -1.6169 × 10⁻³⁰, -1.5538 × 10⁻³⁰ and 1.6475 × 10⁻³⁰ esu calculated. The 3,5-DMCl value is higher than that of urea 0.3728 × 10⁻³⁰ esu, while the values of polarizability (α_0) are found to be -2.9974 × 10⁻²³, -2.9005× 10⁻²³ and -2.9964 × 10⁻²³ esu, respectively for 3ECl, 3MCl, 3,5-DMCl molecules (Table-6).

TABLE-6 NON-LINEAR OPTICAL PARAMETERS OF 3ECL 3MCL 3 5-DMCL					
Parameters	3ECl	3MCl	3,5-DMCl		
μ	-1.654	-1.5861	-1.7377		
μ_{y}	0.9079	0.8765	1.7243		
μ_z	0.8497	0.9126	0.529		
μ	-1.1896	-0.9872	2.5045		
α _{xx}	-206.9044	-200.7135	-208.7175		
α_{xy}	-1.9219	-1.2651	-3.4474		
α_{vv}	-212.9405	-206.8203	-211.37707		
α _{xz}	-4.0931	-2.9987	-5.1329		
$\alpha_{\rm vz}$	-1.919	-2.4933	-2.0863		
0.zz	-186.9216	-179.6151	-186.4767		
α_0	-202.2555	-195.7163	-202.1904		
α_0 (esu)	-2.9974×10^{-23}	-2.9005×10^{-23}	-2.9964×10^{-23}		
β_{xxx}	-124.3148	-133.7215	-70.4879		
β_{xxy}	93.9662	97.7847	-62.1451		
β_{xyy}	-101.41	42.222	-157.6246		
β _{ννν}	-148.965	-153.2058	-62.1451		
β_{xxz}	-10.0301	-6.8109	-11.8934		
β_{xyz}	-13.6343	-18.9345	-6.9908		
β_{vvz}	38.0385	35.6918	34.1488		
β _{xzz}	42.4164	42.222	38.652		
β_{vzz}	8.0519	12.2455	6.5934		
β _{yzz}	-0.1177	-0.179	-1.9657		
βο	-187.1579	-179.8582	190.6983		
β_0 (esu)	-1.6169×10^{-30}	-1.5538×10^{-30}	1.6475×10^{-30}		

Conclusion

Three substituted piperidine phenyl hydrazines 3ECl, 3MCl and 3,5-DMCl were theoretically studied using density functional theory employing Becke's three parameter hybrid exchange functional with Lee-Yang-Parr (B3LYP) co-relational functional involving 6-311G (d,p) basis set. The optimized molecular parameters such as bond length, bond angle were analyzed by DFT method. The molecular electrostatic potential map of studied compounds, positive region is mainly localized over the hydrogen atom and negative region localized over the phenyl ring and Cl atoms. The FMO analysis identifies the presence of delocalized electron density within the molecule and energy gap calculated. Insight into the global reactivity properties has been obtained by analysis of frontier molecular orbital.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- R. Rohs, I. Bloch, H. Sklener and Z. Shakked, Nucleic Acids Res., 33, 7048 (2005); <u>https://doi.org/10.1093/nar/gki1008</u>.
- I.A. Guedes, C.S. de Magalhães and L.E. Dardenne, *Biophys. Rev.*, 6, 75 (2014);

https://doi.org/10.1007/s12551-013-0130-2.

- B.P. Lanyon, J.D. Whitfield, G.G. Gillett, M.E. Goggin, M.P. Almeida, I. Kassal, J.D. Biamonte, M. Mohseni, B.J. Powell, M. Barbieri, A. Aspuru-Guzik and A.G. White, *Nat. Chem.*, 2, 106 (2010); https://doi.org/10.1038/nchem.483.
- D.A.H. Hanaor, M.H.N. Assadi, S. Li, A. Yu and C.C. Sorrell, *Comput. Mech.*, 50, 185 (2012); https://doi.org/10.1007/s00466-012-0728-4.
- C. Ramalingam, Y.T. Park and S. Kabilan, *Eur. J. Med. Chem.*, 41, 683 (2006);

https://doi.org/10.1016/j.ejmech.2006.02.005.

- S. Balasubramanian, G. Aridoss, P. Parthiban, C. Ramalingan and S. Kabilan, *Biol. Pharm.*, 29, 125 (2006); https://doi.org/10.1248/bpb.29.125.
- A. Manimekalai, J. Jayabharathi, L. Rufina and R. Mahendran, *Indian J. Chem.*, 42B, 2074 (2003).
- C.R. Noller and V. Baliah, J. Am. Chem. Soc., 70, 3853 (1948); https://doi.org/10.1021/ja01191a092.
- P.S. Watson, B. Jiang and B. Scott, Org. Lett., 2, 3679 (2000); https://doi.org/10.1021/o1006589o.
- N. Rameshkumar, A. Veena, R. Ilavarasan, P. Shanmugapandiyan, M. Adiraj and S.K. Sridhar, *Biol. Pharm. Bull.*, 26, 188 (2003); <u>https://doi.org/10.1248/bpb.26.188</u>.
- K. Ajay Kumar, G. Pavithra, N. Renuka and G. Vasanth Kumar, Int. Res. J. Pharm. Appl. Sci., 2, 145 (2012).
- S. Guidara, H. Feki and Y. Abid, J. Mol. Struct., 1080, 176 (2015); https://doi.org/10.1016/j.molstruc.2014.09.084.
- K. Bhavani, S. Renuga, S. Muthu and K. Sankaranarayanan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 1260 (2015); <u>https://doi.org/10.1016/j.saa.2014.10.012</u>.
- 14. A.D. Becke, *Physical Review A*, **38**, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098.
- 15. C. Lee, W. Yang and R.G. Parr, *Phys. Rev. B Condens. Matter*, **37**, 785 (1988);

https://doi.org/10.1103/PhysRevB.37.785.

- H. Saleem, S. Subashchandrabose, N. Ramesh Babu and M. Syed Ali Padusha, Spectrochim. Acta A Mol. Biomol. Spectrosc., 143, 230 (2015); https://doi.org/10.1016/j.saa.2015.02.016.
- G.A. Zhurko and D.A. Zhurko, Chemcraft Program, Academic version 1.5 (2004).
- R.P. Singh, R. kant, K. Singh, S. Sharma and A. Sethi, *J. Mol. Struct.*, 1095, 125 (2015); https://doi.org/10.1016/j.molstruc.2015.04.018.
- M. Rajkumar, P. Muthuraja, M. Dhandapani and A. Chandramohan, J. Mol. Struct., 1153, 192 (2018); https://doi.org/10.1016/j.molstruc.2017.10.013.
- E. Scrocco and J. Tomasi, New Concepts II, Springer, Berlin-Heidelberg, p. 95 (1973).
- 21. F.J. Luque, J.M. López and M. Orozco, *Theor. Chem. Acc.*, **103**, 343 (2000);
- https://doi.org/10.1007/s002149900013. 22. N. Okulik and A.H. Jubert, *Internet Electr. J. Mol. Design*, **4**, 17 (2005).
- N. Okulik and A.H. Juber, *Internet Lectics*, *Mol. Design*, 4, 17 (2005).
 M.S. Alam and D.U. Lee, *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, 145, 563 (2015);
- https://doi.org/10.1016/j.saa.2015.03.071.
 24. M. Belletête, J.F. Morin, M. Leclerc and G. Durocher, J. Phys. Chem.
- *A*, **109**, 6953 (2005); https://doi.org/10.1021/jp051349h.
 D. Zhenming, S. Heping, L. Yufang, L. Diansheng and L. Bo, *Spectrochim.*
- D. Znenming, S. Heping, L. Yurang, L. Diansheng and L. Bo, Spectrochum. Acta A Mol. Biomol. Spectrosc., 78, 1143 (2011); <u>https://doi.org/10.1016/j.saa.2010.12.067</u>.
- A. Tahar, B. Amel and V. Didier, Int. J. Adv. Res. Sci. Eng. Technol., 5, 5504 (2018).
- N.B. Singh, O.P. Singh, N.P. Singh, N. Singh, Y.P. Singh and N.B. Singh, *Prog. Cryst. Growth Charact. Mater.*, 44, 169 (2002); <u>https://doi.org/10.1016/S0960-8974(02)00014-1</u>.

- C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot and A. Collet, J. Am. Chem. Soc., 116, 2094 (1994); <u>https://doi.org/10.1021/ja00084a055</u>.
- 29. V.M. Geskin, C. Lambert and J.L. Brédas, J. Am. Chem. Soc., 125, 15651 (2003);
- https://doi.org/10.1021/ja035862p.
 30. M. Nakano, H. Fujita, M. Takahata and K. Yamaguchi, J. Am. Chem. Soc., 124, 9648 (2002); https://doi.org/10.1021/ja0115969.
- D. Sajan, H. Joe, V.S. Jayakumar and J. Zaleski, J. Mol. Struct., 785, 43 (2006); https://doi.org/10.1016/j.molstruc.2005.09.041.
- Y. Sun, X. Chen, L. Sun, X. Guo and W. Lu, *Chem. Phys. Lett.*, 381, 397 (2003); https://doi.org/10.1016/j.cplett.2003.09.115.
- O. Christiansen, J. Gauss and J.F. Stanton, *Chem. Phys. Lett.*, **305**, 147 (1999);
 - https://doi.org/10.1016/S0009-2614(99)00358-9.
- N. Issaoui, H. Ghalla, S. Muthu, H.T. Flakus and B. Oujia, Spectrochim. Acta A Mol. Biomol. Spectrosc., 136, 1227 (2015); https://doi.org/10.1016/j.saa.2014.10.008.