

One Pot, Four Component Synthesis of Phthalazine-1,4-diones Derivatives in [BMIM][OH] Medium

D.P. LOKA MAHESHWARI^{1,*} and B. SATYANARAYANA²

¹GVK Biosciences Private Limited, IDA Nacharam, Hyderabad-500076, India ²Macleods Pharmaceutical ltd, Kondivita Rd, Marol MIDC Industry Estate Andheri East, Mumbai-400093, India

*Corresponding author: E-mail: lokamaheshwari123@gmail.com

Received: 4 May 2019;

Accepted: 16 July 2019;

Published online: 18 November 2019; AJC-19669

[BMIM][OH] mediated, green and efficient synthesis of phthalazines (5) have been developed by condensing diethyl phthalate (1), ethyl cyanohydrazide (2), substituted benzaldehyde (3) and malononitrile (4) in the presence of Meldrum's acid at 60-65 °C and at room temperature for 60-90 min. The importance of this method includes shorter reaction time and high yield.

Keywords: Diethyl phthalate, benzaldehydes, Ethyl cyanohydrazide, Meldrum's acid, Ionic liquids.

INTRODUCTION

Now a days, ionic liquids are using widely as reaction medium in modern organic chemistry [1]. Ionic liquids have non-volatile nature at room temperature and the main driving force for motivating chemists to develop green chemistry methods of synthesis of organic and heterocyclic compounds [2-4]. Multi-component reactions are one-pot reactions, which contains three to more components in single reaction vessel to give a final desired product containing substantial components of all the reactants [5-7]. One of great challenges in modern medicinal chemistry is design and discovery of pharmaceutical active molecules.

Heterocyclic products have nitrogen atom extend out over a wide area in the world and their act of applying to pharmaceutical active compounds and agrochemicals are becoming larger degree important [8,9]. Heterocyclic compounds with phthalazine moiety have great considerable priority attention among a large veriety of nitrogen containing compounds because of their biological active properties and clinical applications [10]. Phthalazine compounds possess anticonvulsant [11], cardiotonic [12,13] and vasorelaxant [14] activities. That's why so many preparation methods are reporting for synthesis of phthalazine compounds [15-19]. Nevertheless the development of new synthetic methods for the efficient preparation of heterocycles containing phthalazine ring fragment is an interesting challenge. Therefore, it has been well thought-out to prepare phthalazine moiety which containg pyrans. Here, we report one-pot four component reaction for tiltle compounds in weakly basic [BMIM][OH] medium.

EXPERIMENTAL

Melting points are uncorrected and identified in sulfuric acid bath by open capillary tubes. Thin layer chromatography wrere moved on silica gel-G and visualizations were done by UV. ¹H NMR spectra were recorded in DMSO-*d*₆ using TMS as internal standard at 400 MHz operating frequency.

One-pot synthesis of compounds (5a-f): Diethyl phthalate (1) (1 mmol) and ethyl cyanohydrazide (2) (1 mmol) were heated at 60-65 °C for 0.5 h in [BMIM][OH] (1 mmol) for 0.5 h. To this reaction mass added benzaldehyde (3) and malononitrile (4) compounds and heated at 60-65 °C for 0.5 h. Reaction was monitored by thin-layer chromatography (TLC). After completion of reaction, water (20 mL) was pored into reaction mass and filtered separated solid by filtration flask. The product was recrystallized from ethanol solvent to obtain compound **5**.

2-(7-Amino-2,2-dimethyl-4-oxo-5-phenyl-4,5-dihydropyrano[2,3-*d***][1,3**]dioxine-6-carbonyl)-**2,3-dihydrophthalazine-1,4-dione (5a):** m.p.: 160–162 °C; IR (KBr, v_{max} , cm⁻¹): 3146-3434 (br, m, -NH-), 1793 (s, s, -CO-), 1740 (s, s, -CO-), 1693 (s, s, -CONH-); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.3

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

(s, 3H, -CH₃), 1.5 (s, 3H, -CH₃), 5.3 (s, 1H, -CH), 7.0-7.9 (m, 9H, Ar-H), 8.2 (s, 2H, $-NH_2$), 11.3 (s, 1H, -NH); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 21.5, 22.1, 43.7, 72.9, 74.9,78.2, 99.7, 118.5, 123.6, 125.4, 127.3, 127.6, 128.1, 129.2, 135.2, 142.9, 155.2, 158.9, 165.0; HRMS calcd for C₂₄H₁₉N₃O₇ [M+H]⁺: 462.0467. Found: 462.0426.

2-(7-Amino-2,2-dimethyl-4-oxo-5-(*p***-tolyl)-4,5-dihydropyrano[2,3-***d***][1,3]dioxine-6-carbonyl)-2,3-dihydrophthalazine-1,4-dione (5b): m.p.: 168–170 °C; IR (KBr, v_{max}, cm⁻¹): 3140-3438 (br, m, -NH-), 1790 (s, s, -CO-), 1750 (s, s, -CO-), 1696 (s, s, -CONH-); ¹H NMR (DMSO-***d***₆, 400 MHz): \delta 1.3 (s, 3H, -CH₃), 1.6 (s, 3H, -CH₃), 2.2 (s, 1H, -CH₃), 5.4 (s, 1H, -CH), 7.1-7.9 (m, 8H, Ar-H), 8.1 (s, 2H, -NH₂), 11.4 (s, 1H, -NH); ¹³C NMR (DMSO-***d***₆, 100 MHz): \delta 20.4, 21.2, 42.6, 72.8, 73.9, 77.1, 99.6, 117.4, 123.5, 124.3, 127.3, 127.6, 128.2, 128.5, 135.2, 142.9, 155.1, 157.8, 165.1; HRMS calcd for C₂₅H₂₁N₃O₇ [M+H]⁺: 476.1433. Found: 476.1482.**

2-(7-Amino-5-(4-methoxyphenyl)-2,2-dimethyl-4-oxo-4,5-dihydropyrano[2,3-*d***][1,3**]dioxine-6-carbonyl)-**2,3dihydrophthalazine-1,4-dione (5c):** m.p.: 156–159 °C; IR (KBr, v_{max} , cm⁻¹): 3142-3444 (br, m, -NH-), 1780 (s, s, -CO-), 1754 (s, s, -CO-), 1690 (s, s, -CONH-); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.3 (s, 3H, -CH₃), 1.6 (s, 3H, -CH₃), 3.9 (s, 1H, -CH₃), 5.3 (s, 1H, -CH), 7.1-7.9 (m, 8H, Ar-H), 8.2 (s, 2H, -NH₂), 11.2 (s, 1H, -NH); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 21.4, 22.3, 42.4, 72.8, 74.6,76.2, 98.5, 118.3, 122.4, 125.4, 127.4, 127.5, 128.2, 129.1, 134.2, 142.8, 154.2, 158.5, 164.5; HRMS calcd for C₂₅H₂₁N₃O₈ [M+H]⁺: 492.1365. Found: 492.1313.

2-(7-Amino-2,2-dimethyl-5-(4-nitrophenyl)-4-oxo-4,5dihydropyrano[2,3-*d***][1,3**]dioxine-6-carbonyl)-**2,3**dihydrophthalazine-1,4-dione (5d): m.p.: 172–174 °C; IR (KBr, v_{max} , cm⁻¹): 3130-3446 (br, m, -NH-), 1785 (s, s, -CO-), 1759 (s, s, -CO-), 1696 (s, s, -CONH-); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.4 (s, 3H, -CH₃), 1.7 (s, 3H, -CH₃), 5.4 (s, 1H, -CH), 7.1-7.9 (m, 8H, Ar-H), 8.4 (s, 2H, -NH₂), 11.3 (s, 1H, -NH); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 21.1, 22.1, 43.3, 72.5, 74.7,78.3, 99.4, 118.2, 123.3, 125.5, 127.3, 127.6, 128.6, 129.2, 135.3, 142.5, 155.1, 158.6, 165.7; HRMS calcd for C₂₄H₁₈N₄O₉ [M+H]⁺: 507.2431. Found: 507.2484.

2-(7-Amino-2,2-dimethyl-4-oxo-5-(*o*-tolyl)-4,5-dihydropyrano[**2,3-d**][**1,3**]dioxine-6-carbonyl)-2,3-dihydrophthalazine-1,4-dione (5e): m.p.: 165–167 °C; IR (KBr, v_{max} , cm⁻¹): 3143-3435 (br, m, -NH-), 1793 (s, s, -CO-), 1754 (s, s, -CO-), 1690 (s, s, -CO-); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.3 (s, 3H, -CH₃), 1.6 (s, 3H, -CH₃), 2.3 (s, 1H, -CH₃), 5.3 (s, 1H, -CH), 7.1-7.9 (m, 8H, Ar-H), 8.1 (s, 2H, -NH₂), 11.3 (s, 1H, -NH); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 21.3, 22.3, 43.5, 72.7, 74.8, 78.2, 99.7, 118.3, 123.5, 125.3, 127.3, 127.4, 128.2, 129.3, 135.3, 142.8, 155.4, 158.6, 165.2; HRMS calcd for C₂₅H₂₁N₃O₇ [M+H]⁺: 476.1433. Found: 476.1479.

2-(7-Amino-5-(4-chlorophenyl)-2,2-dimethyl-4-oxo-4,5-dihydropyrano[2,3-d][1,3]dioxine-6-carbonyl)-2,3dihydrophthalazine-1,4-dione (5f): m.p.: 152–154 °C; IR (KBr, v_{max} , cm⁻¹): 3120-3396 (br, m, -NH-), 1770 (s, s, -CO-), 1769 (s, s, -CO-), 1670 (s, s, -CO-); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.3 (s, 3H, -CH₃), 1.8 (s, 3H, -CH₃), 5.1 (s, 1H, -CH), 7.1-7.9 (m, 8H, Ar-H), 8.1 (s, 2H, -NH₂), 11.3 (s, 1H, -NH); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 20.4, 21.5, 43.2, 71.4, 73.6,77.4, 96.3, 116.1, 122.1, 125.4, 127.1, 127.4, 128.5, 129.1, 135.3, 142.5, 154.2, 158.4, 164.4; HRMS calcd for $C_{24}H_{18}CIN_3O_7$ [M+H]⁺: 496.5234. Found: 496.5291.

Preparation of 3-(1,4-dioxo-3,4-dihydrophthalazin-2(1*H*)-yl)-3-oxopropanenitrile (6) *via* step-wise reaction: A mixture of diethyl phthalate (1) and ethyl cyanohydrazide (2) were heated at 60-65 °C in [BMIM][OH] (1 mmol) for 0.5 h. Reaction was monitored by thin-layer chromatography (TLC). After completion of reaction, water (20 mL) was pored into reacction mass and filtered separated solid by filtration flask. The product was recrystallized from ethanol solvent to obtain compound **6**. Yield = 71 %. m.p. 153-154 °C [lit m.p. 150-152 °C] [21].

Preparation of (*E*)-2-(2-cyano-3-(1,4-dioxo-3,4-dihydrophthalazin-2(1*H*)-yl)-3-oxoprop-1-en-1-yl)benzene-1-ylium (7) from compounds 6 and 3: A mixture of compound 6 (1 mmol), compounds 3a-f (1 mmol) and [BMIM][OH] (1 mmol) were heated at 60-65 °C for 0.5 h. Reaction was monitored by thin-layer chromatography (TLC). After completion of reaction, water (20 mL) was pored into reacction mass and filtered separated solid by filtration flask. The product was recrystallized from ethanol solvent to obtain 7. Yield = 89 %.

Compound 7: m.p.: 200–202 °C; IR (KBr, v_{max} , cm⁻¹): 3267-3518 (br, m, -NH-), 2258 (s, s, -CN-), 1749 (s, s, -CO-), 1683 (s, s, -CO-), 1613 (s, s, -CO-); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 7.6-8.4 (m, 10H, Ar-H and NC-C=CH), 11.4 (s, 1H, -OH); ¹³C NMR (DMSO-*d*₆, 400 MHz): δ 35.5, 81.3, 81.4, 117.2, 122.9, 124.0, 127.2, 128.4, 128.5, 129.0, 129.1, 129.6, 133.0, 136.1, 143.4, 164.4, 164.5, 164.8; HRMS calcd for C₁₈H₁₁N₃O₃ [M+H]⁺: 318.0423. Found: 318.0426.

Preparation of compound 5 from compounds 7 and 4: A mixture of compound 7 (1 mmol), compound 4 (1 mmol) and [BMIM][OH] (1 mmol) were heated at 60-65 °C for 0.5 h. Reaction was monitored by thin-layer chromatography (TLC). After completion of reaction, water (20 mL) was pored into reacction mass and filtered separated solid by filtration flask. The product was recrystallized from ethanol solvent to obtain compound 5. Yield = 83 %.

RESULTS AND DISCUSSION

Firstly, multi-component reaction of diethyl phthalate (1) (1 mmol), ethyl cyanohydrazide (2) (1 mmol), benzaldehyde (3a) (1 mmol) and malononitrile (4) (1 mmol) in different ionic liquid medium (([DBUH][OAc], [BMIM][Br] and [BMIM][OH]) at 60-65 °C to form compound 5a have been taken as a replica reaction [20]. However, it is established that the one-pot reaction of in the presence of [BMIM][OH] as medium for 60-90 min at 60-65 °C give the highest yield (90 %) for compound **5a** (Table-1, entry 1). Here, initially compound 1 was reacted with cyanohydrazide (2) in [BMIM][OH] at 60-65 °C for 30 min to form compound 6 as intermediate (confirmed by TLC that means absence of starting materials). To this reaction, mass added compounds 3a and 4 and again heated at 60-65 °C for 0.5 h to form compound 5a. The compound 5a was obtained in excellent yield (90 %) on simple work-up of reaction mixture. The structure of compound 5a has been confirmed by ¹H NMR, IR and Mass spectroscopy.

]	FABLE-1					
EFFECT OF IONIC LIQUID AND TEMPERATURE							
ON REACTION OF COMPOUNDS 1, 2, 3a AND							
4 TO YIELDING COMPOUND 5a							
Entry	Ionia liquid	Temp.	Time	Compd.			

	Entry	Ionic liquid	(°C)	(min)	5a (%)
ĺ	1	[BMIM][OH]	60-65	60	90
	2	[BMIM][Br]	60-65	120	70
	3	[DBU][OAc]	60-65	150	85
	4	[BMIM][OH]	RT	300	75
	5	[BMIM][OH]	40-45	150	78
	6	[BMIM][OH]	80-85	50	80

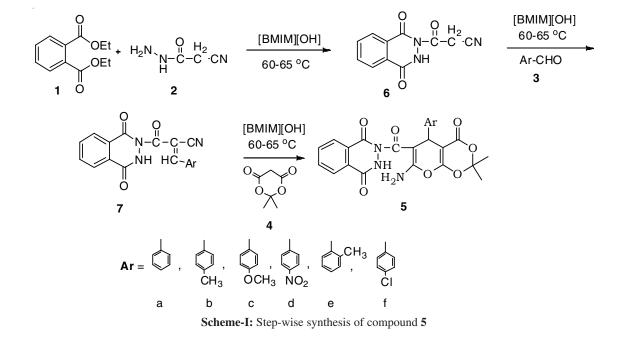
Encouraged by above optimization results conditions, the one-pot reaction has been carried out at different temparature (room temperature, 40, 60 and 80 °C) in the presence of [BMIM][OH] mediated to get desired compound 5a. However, it is established that the one-pot reaction of [compound 1 (1) mmol), compound 2 (1 mmol), compound 3a (1 mmol) and compound 4a (1 mmol)] in the presence of [BMIM][OH] as medium (1 mmol) for 60-90 min at 60-65 °C give the highest yield (90 %) for compound 5a (Table-1, entry 1). In order to examine the quantity of [BMIM][OH], the one-pot reaction has been carried out at different quantity (0.5, 1 and 2 mmol) of [BMIM][OH] with respect of diethyl phthalate (1). However, it was found that the one-pot reaction of [compound 1 (1 mmol), compound 2 (1 mmol), compound 3a (1 mmol) and compound 4a (1 mmol)] in the presence of [BMIM][OH] as medium (1 mmol) for 2 h at 60-65 °C gave the highest yield (90 %) (Table-2, entry 2).

	TABLE-2 EFFECT OF AMOUNT OF [BMIM][OH] FOR ONE POT REACTION						
Entry	mmol of [BMIM][OH]	Time (h)	Compd. 5a (%)				
1	0.5	4	82				
2	1.0	1	90				
3	2.0	1	83				

Having optimized good reaction conditions, the over simplification of the reaction was identified by conducting the one pot reaction with several others compounds **3b-f** respectively in [BMIM][OH] medium at 60-65 °C for 2 h giving compounds **5b-f** in good yields. It is established that this reaction works with a wide variety of substrates. It is worthy to mention that the reaction of compounds **1**, **2**, **3a-f** and **4** could get higher yield and require shorter reaction time for formation of compounds **5a-f**.

The synthesis of compound **5** could also be achieved in step-wise syntheses. Thus, a mixture of diethyl phthalate (**1**) and ethyl cyanohydrazide (**2**) was heated at 60-65 °C for 0.5 h in [BMIM][OH] medium to form intermediate **6** [21]. Then, compound **6** was reacted with benzaldehyde (**3**) at 60-65 °C for 0.5 h in [BMIM][OH] medium to form intermediate **7** [18] followed by compound **7** was reacted with malononitrile (**4**) at 60-65 °C for 0.25 h in [BMIM][OH] medium to form compound **5** (Scheme-I).

Conclusion


In summary, successfully modified a easy multi-component reaction for synthesis of phthalazine-1,4-diones with simple work up procedures in green methods.

ACKNOWLEDGEMENTS

The authors are thankful to GVK Biosciences Private Limited, IDA Nacharam, Hyderabad, Telangana, India, Macleods Pharmaceutical ltd, Kondivita Rd, Marol MIDC Industry Estate andheri East, Mumbai (Maharashtra), India and JNTU Hyderabad, India.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- A.M. Inamuddin, Green Solvents I, Properties and Applications of Ionic Liquids, Springer: United Kingdom (2012).
- A.M. Inamuddin, Green Solvents II: Properties and Applications of Ionic Liquids, Springer, United Kingdom (2012).
- 3. P. Tundo, A. Perosa and F. Zecchini, Methods and Reagents for Green Chemistry: An Introduction, Wiley, New Jersey (2007).
- P. Wasserscheid and P. Welton, Ionic Liquids in Synthesis, Wiley-VCH, Germany (2003).
- C. Montagne, J.J. Shiers and M. Shipman, *Tetrahedron Lett.*, 47, 9207 (2006); https://doi.org/10.1016/j.tetlet.2006.10.135.
- 6. M. Haji, *Beilstein J. Org. Chem.*, **12**, 1269 (2016); https://doi.org/10.3762/bjoc.12.121.
- A. Varadi, T.C. Palmer, R.D. Notis and S. Majumdar, *Molecules*, 21, 19 (2015);
- https://doi.org/10.3390/molecules21010019. 8. F. Al'-Assar, K.N. Zelenin, E.E. Lesiovskava, LI
- F. Al'-Assar, K.N. Zelenin, E.E. Lesiovskaya, I.P. Bezhan and B.A. Chakchir, *Pharm. Chem. J.*, **36**, 598 (2002); <u>https://doi.org/10.1023/A:1022665331722</u>.
- A.M. Jadhav, S.G. Balwe, J.S. Kim, K.T. Lim and Y.T. Jeong, *Tetrahedron Lett.*, **60**, 560 (2019); <u>https://doi.org/10.1016/j.tetlet.2019.01.028</u>.
- R.W. Carling, K.W. Moore, L.J. Street, D. Wild, C. Isted, P.D. Leeson, S. Thomas, D. O'Connor, R.M. McKernan, K. Quirk, S.M. Cook, J.R. Atack, K.A. Wafford, S.A. Thompson, G.R. Dawson, P. Ferris and J.L. Castro, J. Med. Chem., 47, 1807 (2004); <u>https://doi.org/10.1021/jm031020p</u>.

- R.P. Jain and J.C. Vederas, *Bioorg. Med. Chem. Lett.*, **14**, 3655 (2004); https://doi.org/10.1016/j.bmcl.2004.05.021.
- 12. S.G. Balwe and Y.T. Jeong, *Org. Biomol. Chem.*, **16**, 1287 (2018); https://doi.org/10.1039/c7ob02933k.

11.

- S. Grasso, G. De Sarro, A. De Sarro, N. Micale, M. Zappalà, G. Puja, M. Baraldi and C. De Micheli, *J. Med. Chem.*, 43, 2851 (2000); https://doi.org/10.1021/jm001002x.
- Y. Nomoto, H. Obase, H. Takai, M. Teranishi, J. Nakamura and K. Kubo, *Chem. Pharm. Bull. (Tokyo)*, **38**, 2179 (1990); <u>https://doi.org/10.1248/cpb.38.2179</u>.
- N. Watanabe, Y. Kabasawa, Y. Takase, M. Matsukura, K. Miyazaki, H. Ishihara, K. Kodama and H. Adachi, *J. Med. Chem.*, 41, 3367 (1998); <u>https://doi.org/10.1021/jm970815r</u>.
- T. Sheradsky and R. Moshenberg, J. Org. Chem., 51, 3123 (1986); https://doi.org/10.1021/jo00366a008.
- H.W. Heine, L.M. Baclawski, S.M. Bonser and G.D. Wachob, *J. Org. Chem.*, **41**, 3229 (1976); https://doi.org/10.1021/jo00882a002.
- Y.K. Ramtohul, M.N.G. James and J.C. Vederas, *J. Org. Chem.*, 67, 3169 (2002);
- https://doi.org/10.1021/jo0157831. 19. L.P. Liu, J.M. Lu and M. Shi, *Org. Lett.*, **9**, 1303 (2007);
- https://doi.org/10.1021/o1070178r. 20. J. Volmajer, R. Toplak, S. Bittner and A.M.L. Marechala, *ARKIVOC*, 49 (2003);
- https://doi.org/10.3998/ark.5550190.0004.e06.
 P.P. Kumar, Y.D. Reddy, Ch.V.R. Reddy, B.R. Devi and P.K. Dubey, *Tetrahedron Lett.*, 55, 2177 (2014); https://doi.org/10.1016/j.tetlet.2014.02.020.