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Introduction 

Modern materials used in mechanical 

engineering, aircraft construction, such as 

polycrystalline metals, ceramics, and composite 

materials with significant anisotropy in terms of 

elastic properties, are often exposed to strong thermal 

effects. Determination of the stress-strain state of 

heated bodies due to the complex physical nature of 

materials is an urgent scientific problem. 

The work [1] is devoted to the study of 

thermomechanical processes of the final deformation 

of anisotropic media. For a transversely isotropic 

cylinder, the boundary value problems of the theory of 

elasticity were solved with the participation of mass 

forces [2-5]. The peculiarity of the solution lies in the 

fact that the wake of the elastic field simultaneously 

satisfies the specified conditions on the boundary and 

inside the region. In the case of small deformations of 

an elastic anisotropic body, stresses, deformations, 

and temperature are most often related using the 

Duhamel-Neumann equations, the derivation of which 

from the point of view of thermomechanics is given in 

Novatsky's monograph [6]. The problems of 

thermoelasticity for anisotropic bodies were 

considered in the books: B.E. Pobedri, A.S. Kravchuk, 

V. Novatsky. 

In [7] an axisymmetric problem of static 

thermoelasticity for a transversely isotropic circular 

cylinder of finite length is considered. Using a special 

voltage function, the basic equation of the problem is 

derived. It is proved that the operator is symmetric and 

positive definite, and thus the solution of the original 

equation is reduced to the problem of the minimal 

functional. 

The problems of determining the temperature 

field from the values of temperatures and heat fluxes 
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set at the boundary for isotropic homogeneous and 

inhomogeneous bodies were investigated by the 

method of boundary states in [8]. 

The work [9] is devoted to the study of stress 

fields in the problems of gradient thermoelasticity 

arising in the framework of gradient models of 

thermal conductivity that describe the thermal barrier 

properties of boundaries due to a more complete 

consideration of the conjugation conditions at the 

interfaces of composite layers. In [10], the stationary 

problem of the gradient theory of thermoelasticity for 

layered composite structures was considered. A 

solution is given to the problem of inhomogeneous 

temperature heating of a single-layer and two-layer 

structure. 

In [11] using the generalized Fourier method, an 

axisymmetric thermoelastic boundary value problem 

for a transversely isotropic half-space with a 

spheroidal cavity was solved. 

In [12] an inverse method was developed for 

determining the stress-strain state of an elastic 

isotropic body from continuous volumetric forces. 

In [13] unrelated boundary value problems of 

thermoelasticity were solved for shallow shells of 

double curvature and constant torsion under 

conditions of convective heat transfer through the 

main surfaces with the external environment. The 

solutions are obtained by methods of single and 

double trigonometric series with variable coefficients. 

Recently, three-dimensional asymmetric 

problems of thermoelasticity for isotropic bodies have 

been widely studied [14], [15]. In [16], an exact 

solution of an asymmetric boundary value problem of 

the theory of elasticity is constructed for a cylindrical 

reservoir with a liquid in a temperature field (an 

unconnected thermoelastic problem). 

The aim of the work is to develop a mathematical 

model for solving thermoelasticity problems for 

transversely isotropic bodies of revolution located in 

a stationary axisymmetric field of steady 

temperatures. The model is based on the fundamentals 

of the integral overlay method, the method of 

boundary states and the inverse method. 

 

1. Formulation of the problem 

In the stationary problem of thermoelasticity, 

thermal boundary conditions reflect the effect of the 

environment on the surface S of the body and are 

written in the form of one of the following conditions: 

1) the temperature T is set on the surface as a 

function of the coordinates 

)(PkT = , SP ; 

2) the normal component of the temperature 

gradient is set on the surface as a function of the 

coordinates 

)(/ PknT = , SP , 

corresponding to the heat flux passing through the 

surface S; 

3) a function describing free heat transfer is 

given on the surface: 

)()/( PfTn =+  , SP , 

where   is some constant 

4) mixed boundary thermal conditions are set on 

the surface, i.e. different boundary conditions are set 

on different sections S. 

Let in an undeformed and unstressed state a 

transversely isotropic body bounded by one or several 

coaxial surfaces of revolution has a temperature of 1T  

as a function of coordinates r, z. As a result of the 

influence of any factors (external loads, internal heat 

sources, surface heating), the body temperature 

changed and became 2T , then the temperature 

increment will be 12 TTTT −== . The surface of 

the body is free from pinching and external stress. We 

will assume that a change in temperature does not lead 

to a change in the elastic and thermal constants of the 

material. The limiting values of the temperature 

function at the points of the boundary are used as the 

boundary temperature conditions. 

A change in temperature is accompanied by the 

occurrence of displacements, deformations and 

stresses, which must be determined. 

Due to axial symmetry, the displacement vector 

component 0=v , the stress tensor components 

0==   zr  and the strain tensor 0==   zr . 

In cylindrical coordinates, the sought 

axisymmetric (ie, depending only on the coordinates z 

and r) temperature displacements, deformations, and 

stresses must satisfy the following resolving equations 

[17]. 

1. Differential equilibrium equations: 

 0==   zr .                             (1) 

2. Generalized Hooke's Law: 
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Here the designations are introduced: ij  – 

stress tensor components; ij  – strain tensor 

components; u, w – components of the displacement 

vector in the direction of the r and z axes; z , r  – 

coefficients of thermal expansion in the direction of 
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the z and r axes; T is the temperature; rE , zE  – 

modules of elasticity in the direction of the plane of 

isotropy and normal to it; r  – Poisson's ratio, 

characterizing compression in the plane of isotropy, 

when stretched in this plane, z  – the same, but when 

stretched in the direction normal to the plane of 

isotropy; rG  and zG  - shear modules for the plane of 

isotropy and any perpendicular to it. 

 

 

 

2. Solution method 

Method of boundary states [18] and the inverse 

method [12] are similar in structure; both use the 

concept of space of internal states of the environment 

  ,...,..., 11 k= ,                      (4) 

whose basis is orthogonalized. The desired state is 

expanded into a Fourier series in terms of the elements 

of the orthonormal basis, and the task is to find the 

coefficients of this linear combination. The difference 

lies in the choice of the orthogonalizer and in the 

expression for dot products. 

Sets are accepted as internal state k : 
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The main difficulty is the construction of the 

basis of internal states, which is based on a general, 

fundamental or particular solution for the 

environment. The procedure for constructing the basis 

of internal states in the case of thermal deformations 

is described below. 

Orthonormalization of the basis is carried out 

according to the developed recursive-matrix Gram-

Schmidt algorithm [19], where as cross scalar 

products are taken (for example, for the first and 

second states): 

dVTT
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The sought thermoelastic state is the Fourier 

series: 
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where k  are the elements of the orthonormal basis of 

the internal state  , kc  are the Fourier coefficients, 

which are calculated as follows: 

 dVTTc

V

k
k =

)(
0 ,                           (6) 

where )(
0

kT  is the temperature in the basic element   

k , T  is a given temperature field. 

 

3. Building a basis of internal states 

The temperature field giving the temperature 

value at any point of the body will be considered 

known. 

The steady-state temperature field ),(0 yzT
pl

 of 

a flat state with no heat sources inside satisfies the heat 

equation [17]: 
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where zk  and rk  are the coefficients of thermal 

conductivity in the direction of the z and r axes; 
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Displacements and stresses of plane states 

corresponding to the temperature field [17]: 
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zy
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where 0g , 0p , 0q , 0  are constants depending on 

elastic and thermomechanical constants; ( )00   – 

some analytical function of the variable 0 . 

In [17], based on the method of integral 

superposition, a relationship was established between 

the spatial stressed and deformed states of an elastic 

transversely isotropic body and certain auxiliary two-

dimensional states, the components of which depend 

on two coordinates z and y (variables). Plane 

deformation arising in infinite cylinders with axis  , 

having at each point a plane of elastic symmetry 

parallel to the zy plane, is used as plane auxiliary 

states. 

The transition to an axisymmetric spatial state in 

cylindrical coordinates is carried out according to the 

dependencies [20]: 
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The basis of space (4) can be constructed by 

assigning the following values to the function 0  in 

(7), (8) sequentially: n
00  = , ...3,2,1=n  and, 

according to (9), to carry out the transition to a spatial 

axisymmetric temperature state, forming a finite-

dimensional basis. 

 

4. Test problem 

We will test the method by studying the 

thermoelastic state of a transtropic cylinder made of 

coarse dark gray siltstone [21]. After the 

dimensionless procedure, the analogy of which is 

given in [22], the elastic characteristics of the 

material: 21.6=zE ; 68.5=rE ; 55.2=zG ; 

22.0=z ; 24.0=r . The body occupies an area: 

}22,10),{(2 −= zrrzD . Let us set the 

following dimensionless thermomechanical 

characteristics of a hypothetical transversely isotropic 

material: 6.1=zk , 5.6=rk , 7.6=z , 6.8=r . 

Preset temperature field 2+= zÒ . 

The orthonormalized basis of the temperature 

functions 0T  in (5) is presented in Table 1 

 

 

Table 1. Orthonormal basis set of temperature functions 

 

 0T  

1  70711.0−  

2  z61237.0−  

3  22 59266.007294.075375.0 zr −+  

4  32 58163.021475.028853.1 zzrz −+  

5  422242 56268.041552.07238.101278.021216.06645.0 zzrzrr −++−−−  

 

Fourier coefficients (6) 

 ,...0,0,0,633.1,82843.2 −−kc . 

The decision is strict. Reconstructed components 

of the temperature elastic field (5): 

rzru 00736.201471.4 −−= ; 

22 72338.78935.3095057.0 zzrw ++−= ; 

zr 6334.71267.143 −−= ; 

z6334.71267.143 −−= ; 

zz 9333.198667.39 += ; rrz 96667.9−= ; 

0==   rz ; 2+= zT . 

 

5. Design problem 

Let us investigate the thermoelastic equilibrium 

of a transversely isotropic stepped cylinder with the 

same elastic and thermomechanical characteristics. 

Set temperature field 2zT = . The body occupies an 

area: 

};20,20),{(; 121 =+= zrrzDDDD  

}01,10),{(2 −= zrrzD . 

 

 
Fig. 1. Meridian section of a body of revolution 
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When determining the elastic field from 

temperature, an orthonormal basis of 20 elements was 

used. The solution representing series (6) satisfies all 

equations (1) – (4). 

In Figure 2 shows a graph illustrating the 

"saturation" of the Bessel sum (the left side of the 

Bessel inequality). This is an indirect sign of the 

convergence of the solution. 

 

 

Fig. 2. Bessel sum 

 

Figure 3 illustrates the comparison of the 

reconstructed temperature field with a given field. 

This comparison is key to assess the accuracy of the 

solution across the entire area. 

 

          

 а b 

Fig. 3. Temperature field: a - preset; b - restored 

 

Let us compare the temperature at the S1 

boundary (Fig. 4). The dashed line on the graph is the 

specified values; solid - recovered values. 

 

 
Fig. 4. Verification of temperature at the border S1 
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As seen from Fig. 3 and 4, the reconstructed 

temperature field coincides with the preset ones within 

the range of a certain accuracy ( %10  of the preset 

value at any point in the region). 

The contours of the obtained components of the 

stress-strain state are shown in Fig. 5 a – d. Due to 

axial symmetry, region 

}21,20),{( − zrrz  is depicted. 

 

              

 а b c 

 

       

 d e 

Fig. 5. Isolines: a – stress zz ; b – stress rr ;; c – stress zr ; d – displacement u; e – displacements w 

 

The question of the convergence of the solution 

when the basis increases was investigated. With an 

increase in the number of used elements of the basis 

of internal states, an oscillation was observed in the 

vicinity of the singular boundary, which continued to 

grow and "creep" into the depth of the region with an 

increase in the number of used basis elements, while 

the Fourier coefficients constantly decrease. For 

example, the found temperature values on the surface 

S1 with 43 retained basis elements are shown in Fig. 

6. Naturally, the solution becomes unusable in this 

case. Overcoming these difficulties requires further 

research, but here, however, as an approximate result, 

the obtained state was chosen, the reconstructed 

temperature of which corresponded to the given. 

 



Impact Factor: 

ISRA (India)        = 4.971 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.126  

ESJI (KZ)          = 8.997 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

Philadelphia, USA  168 

 

 

 

Fig. 6. Temperature at the S1 boundary at 43 Fourier coefficients 

 

Finally, we can say that the convergence of the 

solution mainly depends on the boundary of the body 

and the temperature distribution function. 

The proposed approach, which is, in fact, a 

development of the inverse method, has shown its 

effectiveness in terms of solving thermoelastic 

axisymmetric problems for transversely isotropic 

bodies of revolution. The advantage of the presented 

approach is that the most laborious calculations, 

namely the construction of an orthonormal basis, are 

performed once for a body of a certain configuration. 

Then this basis can be used to solve various 

thermoelastic problems for this body. The main 

advantage over numerical methods is that in its 

structure the method operates with quadratures, which 

are taken by means of computer algebra with absolute 

precision. This eliminates another reason for the 

formation of the resulting calculation error associated 

with the intermediate nature of the numerical 

calculation. Also, the proposed approach allows you 

to get an analytical solution to problems. 
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