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Introduction 

Shell calculation is one of the most urgent problems 

of deformable solid mechanics. This is due to the 

widespread use of shells in various fields of 

engineering and construction. The use of shells in 

shipbuilding, aircraft construction, and rocket 

technology leads to the need to determine their 

dynamic characteristics. Of great practical interest is 

the study and elimination of resonant phenomena in 

shells. A significant number of theoretical and 

experimental works have been devoted to the study of 

natural oscillations of circular cones. However, there 

are still no reliable solutions that allow us to determine 

the parameters of resonances in a wide range of 

changes in physical and geometric parameters. There 

are also works in which dependences for determining 

the resonant frequencies [1] and the vibration forms of 

truncated conical panels are obtained by theoretical and 

experimental method [2, 3]. The other method is 

mainly used for the study of shells, which allow us to 

move from the stability equations of conical shells to 

the corresponding equations for cylindrical shells with 

a circular cross-section. Many papers use the moment-

free and semi-moment-free shell theory [4, 5]. 

Approximate methods are also used for solving 

problems of natural oscillations [6, 7]. The problems of 

vibrations of reinforced conic shells in a geometrically 

nonlinear formulation, taking into account the 

rheological properties of the material, are particularly 

difficult, and there are practically no solutions for 

them. Analysis of the literature shows that the existing 

optimal shell designs for a given geometric and 

rheological parameters cannot be implemented in 

practice, and the level of research remains only 

theoretical. In this regard, despite the long history of 

the solution, the problem of determining the resonant 

frequency of natural vibrations, taking into account the 

rheological properties of shells, remains relevant. 

The purpose of this work is to develop a method, 

algorithm, and program for finding resonant 

frequencies and waveforms for circular viscoelastic 

conical shells under various boundary conditions. 

 

Geometric parameters and strain parameters 

 Let's direct the X - axis along the generatrix of 

the cone (see Fig. 1);   denote by the angle of the 

shell taper; 
0R and 

1R - respectively, the radii of the 

smaller base. Obviously, the radius of an arbitrary 

ring section will be [8, 9] 

0 sinr R x = +                    (1) 

The position on a parallel circle is determined 

by the angle . Adhering to the notation used in shell 

theory [10], we obtain the following expressions of 

geometric parameters: 

1 12 2

1 1 1 cos
, 1, 0, ; 0; .a x A B r

R R R r


= = = = = = =

 (2) 

To obtain the parameters of deformations, we 

denote the movement along the normal to the median 

surface throughw  , tangent to the circle of radius r , 

though v , along the generatrix through u . Then for 

the parameters of the tensile strain we get 

1
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Figure 1. Calculation scheme 

 

The physical relations for an isotropic 

viscoelastic body take the form [11] 
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Here  is the Poisson ratio of the shell 

material, which is assumed to be constant; 
кЕ

~
- 

operator elastic modulus of the conical shell, 

( ) ( ) ( ) ( )0

0

t

k к EкE f t E f t R t f d  
 

= − −    
 



кE0
- Instantaneous young's modulus of elasticity 

(k=1, 2, 3...l); k=1-instantaneous modulus of 

elasticity of the shell, )(tf - continuous function; 

)( −tRЕк
- relaxation core. 

 

 

 

Selecting appoximating functions 

The Eigen functions of , ,w v u  the 

oscillation are chosen as the sum of the products of 

two functions: one that depends on х , and the other 

that depends on  , namely: 

( )cos ,

( )sin ,

( )cos .

mn m

mn m

mn m

w A W x n

v B V x n

u C U x n







=

=

=







                (5) 

, ,mn mn mnA B C - Custom parameters. 

When choosing approximating functions, we 

follow the scheme adopted and tested on the 

calculation of the cylindrical shell, namely, we 

assume that ( )mW x - the beam function, also, 
( ), ( ), ( )m m mX x V x U x  the parameters 

mnB and
mnC  - 

are not independent quantities, but are associated 

with ( )mW x  and 
mnA additional conditions. These 

terms come down to what we accept
0 0. = =  

Substituting (5) into (3), we obtain that for 

arbitrary  and  the following conditions must be 

met: 

'

( ) ( )sin cos 0,

( ) ( )
( ) sin 0.

mn m mn m mn m

m m
mn m mn

B V x n C U x A X

V x U x
B V x nC

r r

 



+ − =

 
− − = 

 

  (6) 

from the first equation, we obtain up to the 

longitudinal component 

( ) cos .mn
mn m m

A
B V x X

n
=                 (7) 

Substituting the value ( )mn mB V x  in the second 

equation, we find (6) 

'

2

( )
( ) cos ( ) sin .mn m

mn m m

A X x
C U x r X x

n r
 
 

= − 
 

(8) 

So, based on (7), (8) and ( ) ( )m mW x X x=  the 

assumption that, instead of (5), we get the following 

expression for approximating functions: 

( )'

2
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 (9) 

 

Determination of strain parameters depending 

on the selected approximation functions 

Based on (5), expressions for the parameters of 

the tensile strain can be written as follows: 

'

1 2

'
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 (10) 

2 it follows from expression (10) that with this 

choice of functions, it vanishes only for shells of 

small taper or for a large value п . 

The bending strain parameters will be 
''

1

'
2 2

2 2

' 2 2

2

cos ,

(cos ) sin cos ,

sin cos
sin .

mn m

m m
mn m

m m
mn

A X n

X X
A n X n

r r

X X n
A n

r r n

 

   

 
 

=

 
= − + 

 

  −
= − 

 







 (11) 

 

Calculation of coefficients of equations 

 

 The natural vibration frequencies of the conical 

shell are calculated using the Ritz method. To do this, 

we solve a system of equations of the form (10). We 

write the diagonal terms of the equation as follows: 
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 (12) 

 

4 2 2 2

4

0

' 2 2

( cos )

( sin ) cos .

l

mn

mn m

m m

b h n n X
n

X r X rdx


 

 

= + +

+ − 

          (13) 

The side coefficients of equations (12) usually 

do not vanish 
mХ  - the functions are chosen in such 

a way as to satisfy the condition, 

0

0( )

l

m pX X dx m p=  and 

0

0

l

m pX X rdx = not . 

Therefore, we get 
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Shell with hinged edges 

 

Let's consider the simplest calculated case, 

namely, the case of hinged fastening of the shell 

edges. 

In this case we assume 

sin sin ,m m

m x
X k x

l


= =             (15) 

In this case, the necessary boundary conditions 

are obviously met at the edges of the shell, namely: 

0, 0.w M= =                     (16) 

(the Second condition (16) is accurate to ). 

Before we start calculating the coefficients (12) 

- (14), we introduce the following notation: 

1 0 1 0

0

, .
2

cp

R R R R
R

R


+ −
= =                (17) 

Part of the integrals in closed form is not 

obtained, so by decomposing the integrand in a series 

and respectfully integrating, we get the values of the 

integrals we need. 

To simplify writing, we denote 

2
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where 
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Where m is the number of waves in the shell in 

the longitudinal direction. 

Based on (18)-(19) and the table of elementary 

integrals, we obtain 



2 2
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(20) 

 

We neglect the coefficients mn

pna
 
and mn

pnb in the 

first approximation, the frequency of natural 

vibrations of the conical shell can be determined by 

equating the diagonal term to zero, namely: 

2

1 .
mn

mn
m mn

mn

a
p

b
=                         (21) 

for large and large tapers, this formula will not be 

valid, since there is always a connection between the 

forms of vibrations and in the conical shell . 

Therefore, it 2

1р is necessary to calculate from 

the determinant of this type: 
2 1, 2 1,

, 1 , 1

1, 2 1, 1, 2 1,

, 1 , 1, 1 1,

0,

mn mn m n m n

m n mn m n mn

m n m n m n m n

m n m n m n m n

a p b a p b

a p b a p b

+ +

+ + + +

+ +

− −
=

− −

   (22) 

Where the expression for the side and diagonal 

coefficients is given by the formulas (12)-(13). 
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Numeric example 

 

In [12], we tested and calculated two conical 

shells that are pivotally supported at the ends. Table 

1 shows their geometric characteristics. We calculate 

1, 2,4,6,8,m n= = the frequencies for the case i.e. 

for one longitudinal half-wave and for 2,4,6,8 waves 

in the circumferential direction. 

The calculation is made using the formula (21). 

Based on the formulas (13), we calculate the 

coefficients associated with the shell taper: .
 

0 1 2,L L L  

 

 

Table 1. Geometric characteristics of shells 

 

 
Continued  

 

 

For the shells under consideration, the angle is 

small  , so in the expressions mn

mna and mn

mnb we can 

neglect the values 2 4sin ,sin  and put 2cos 1 = , 

then the approximate formula for 2p is 

2
2 4 3 4 4 3

1 0 0

2 2 2 2 2

2 0 2

1 2 2
4 2 2 2

0

1
2

ln(1 ) 0,7
(1 ) 2 (1 )

1

0,7 1
2 ,

1
2

m cp cp

m

m

p k R R n R R

L n k R n
n

L
n

n n k R


   







 

  
= + + + +   

 

 +  
+ − + − +  − 

 
+ −  

   
+ + + +  

  

 

where 

 

Table 2.   Shell№1 0 '7 40 =       Shell  №2 0 '1 40 =  

 

 
 

эp −  Experimental frequencies, 
Бp −  job 

information [12]. 
3

2

012

h

R
 =  

Hz and the frequency of natural vibrations in  

1

2

0
12 cp

p E
p

R R 
=

−
 

Table 2 shows the calculated experimental data 

for comparison. 

In addition to our calculated values 
1p and 

2p , 

based on the assumption of non-extensibility of the 

cross section and the absence of shifts in the median 

surface for the cone, we present calculated data[11] 

that fully take into account the deformations of the 

median surface. 

From table. 2 it should. That the natural frequency 

of shell vibrations increases with increasing taper, and 

as for the accuracy of the theoretical methods of our 

and, they should be considered the same. 
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Conclusions 

 

The advantage of our methods is the ability to 

obtain simple calculation formulas. With increasing 

frequency, it is obviously necessary to determine the 

eigenfrequencies from equation (22). 
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