
Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 388

QR – Issue QR – Article

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2020 Issue: 09 Volume: 89

Published: 26.09.2020 http://T-Science.org

M.R. Malikov

Samarkand State Medical Institute

Associate Professor of the Department of Information Technology

A.A. Rustamov

Samarkand State Medical Institute

 Assistant of the Department of Information Technology

N.I. Ne’matov

Samarkand State Medical Institute

Assistant of the Department of Information Technology

Republic of Uzbekistan, Samarkand

STRATEGIES FOR DEVELOPMENT OF MEDICAL INFORMATION

SYSTEMS

Abstract: This article, aimed primarily at professionals, contains a description of methods, models of

technologies for the development of complex information systems, which include MIS. The main focus is on the

organization and design of the storage subsystem.

Key words: MIS, technology, strategy, medicine, system, model, method, principle, integration.

Language: English

Citation: Malikov, M. R., Rustamov, A. A., & Ne’matov, N. I. (2020). Strategies for development of medical

information systems. ISJ Theoretical & Applied Science, 09 (89), 388-392.

Soi: http://s-o-i.org/1.1/TAS-09-89-49 Doi: https://dx.doi.org/10.15863/TAS.2020.09.89.49

Scopus ASCC: 1710.

Introduction

1. PROBLEMS AND ERRORS IN THE USE

OF COMPUTER TECHNOLOGY

The lack of strategic and tactical planning at the

stage of developing a medical information system

usually leads to the following problem situations:

- incompatibility of interfaces of some systems;

- Lack of integrated access to medical,

administrative or reference information;

- inadequacy of the system to the requirements

of the end user;

- lack of expected performance;

- lack of necessary support for standards;

- insufficient or exhaustion of system resources;

- discrepancy between the applied information

technologies and the strategy of the medical

organization.

Most of these situations arise not because of

technological errors, but because of deficiencies in

control. Moreover, the problem lies in the absence or

inadequacy of the methodology for using and

managing existing technologies [Bourke, 1994]. Most

of the failures in the development of information

systems projects are caused not by technological

failures, but by methodological and organizational

errors, among which the following can be

distinguished:

- incorrect prioritization in the organization of

work;

- selection of standards and technologies that are

not adequate for the tasks set;

- inability to achieve consensus and agreed

vision of problems;

- non-observance of organizational and technical

requirements;

- lack of provision of technical personnel with

appropriate tools, skills and authority;

- lack of clearly set goals, methods for assessing

efficiency and control and accounting policies;

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
http://s-o-i.org/1.1/TAS-09-89-49
https://dx.doi.org/10.15863/TAS.2020.09.89.49

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 389

- incorrect organization of access and secrecy of

information. For the successful implementation of the

information system, it is necessary to adhere to the

accepted standards and models for supporting the

software life cycle.

2. MODELS AND METHODS OF

ORGANIZING SOFTWARE DEVELOPMENT

PROJECT MANAGEMENT MODEL:

The requirements analysis defines the objectives

of the system being developed and specifies the

requirements of future users. Figuratively speaking,

this stage should formulate the answer to the question:

"WHY is the system needed?"

The specification phase defines the requirements

of the users in terms of the functionality of the

computer system as that functionality would appear

from the outside. The question to be answered is

"WHAT is a system?"

The design phase provides an accurate model of

the system and a detailed description of its

implementation (“HOW to build the system?”). This

phase is often divided into two steps: architectural

design and detailed design, the result of which should

be a kind of formalism, on the basis of which further

coding of programs will be carried out.

The implementation and development phase

corresponds to writing programming code.

The validation phase is the verification of the

adequacy of the system to the specified requirements.

It implies installation and testing of the system in real

life situations.

During the maintenance and support phase,

system updates and improvements are carried out in

accordance with the modified requirements.

A feature of this model is the following: not a

single step can begin until the previous step is

completed and its compliance with the requirements is

checked at a certain checkpoint.

PROJECT MANAGEMENT METHODS

RACINES (an acronym for RAtionalization des

Choix INformatiquEs) is some action guide for project

organizers that was first published in 1988 by the

French Ministry of Industry. This method formalizes

the definition and implementation of a strategic plan

for organizing projects in accordance with the

following five steps:

The first step is the stage of evaluating the

possibilities and preparing the project. Involves the

implementation of work structures, usually organized

around a management committee that acts as a

decision-making body, a user group or advisory body,

and a project team that plays the role of the main

manufacturer.

Assessment and orientation step - analysis of

existing information systems and resources,

identification of needs, priority boundaries and

determination of the direction in which to move.

Consideration step for possible scenarios. A

scenario is a strategy that fills a specified set of

objectives with a strategic plan. Each proposed

scenario should include a conceptual solution, an

organizational solution, a technical solution, a

financial calculation, a sequence of actions that is

determined by the established priorities, and an

assessment of the potential impact on the organization

if this scenario occurs. However, scenarios are only a

qualitative, not quantitative, model. As a result, only

one scenario is selected, which turns out to be optimal

taking into account all critical conditions.

The next step is to draw up an action plan.

Includes the development of a progressive detailed

quantitative description of the scenario chosen in the

third step. At the same time, the sequence of actions

and organizational measures is indicated along with

the necessary technical and human resources.

The final step is the implementation of the

strategic plan. Typically, scenario selection takes 6 to

18 months, while an action plan can take 5 to 10 years.

Disadvantages of the method:

- The method does not always identify the

required resources or quality control processes for the

products obtained at each step.

- The method is not well suited for large projects,

where the specification may change.

Software development technologies are

progressing very quickly and currently allow

significant results to be obtained in a short time. The

result can be obtained in the form of prototypes, which

are provided directly to the user.

The spiral method is based on the principle of

incremental development. New features are added at

each step (increment). Each turn of the spiral includes

requirements analysis, specification, design,

implementation, and validation.

At the end of each loop, a new version of the

software is produced, which will be operated until the

next phase ends.

Spiral method and rapid prototyping help

improve the management of project resources.

Explicit specification of system versions allows

checking and verification of each version. While not

guaranteeing that cascading errors (initial errors that

multiply in the next stages) are eliminated, this

method guarantees that they are eliminated, allowing

you to return to the latest acceptable version of the

system at any time.

However, system analysis gives rise to many

intractable problems, including:

- Inability to obtain comprehensive information

to assess the system requirements from the point of

view of the customer.

- The customer does not have sufficient

information about the data processing problem.

- The specification of the system is often

incomprehensible to the customer due to the scope and

technical terms.

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 390

The severity of these problems can be

significantly reduced through the use of modern

structural methods, among which structural analysis

methodologies are central.

3. PRINCIPLES OF STRUCTURAL

ANALYSIS

It is customary to call a structural analysis a

method for studying a system, which begins with its

general overview and then details it, acquiring a

hierarchical structure with an increasing number of

levels. All structural analysis methodologies are based

on some general principles and guidelines.

The following two basic principles are used: the

principle of "divide and conquer" and the principle of

hierarchical ordering. The first principle means

breaking complex and time consuming tasks into

many smaller independent subproblems. The second

declares the organization of parts of the system into

tree-like hierarchical structures, i.e. the system can be

understood and built in levels, each of which adds new

details.

In addition to two basic principles, there are a

number of others, no less important. Some of them

are: the principle of abstraction, formalization,

conceptual generality, consistency, etc.

DATA-FOCUSED STRUCTURAL

ANALYSIS METHODOLOGIES

There are many methodologies for structural

analysis designed to solve specific problems. Since we

are interested in information systems development,

we will only consider data-driven methodologies. The

development of an enterprise-wide information

system is a rather laborious and lengthy process. The

combination of these two factors - the laboriousness

of the development process and the information

content (data orientation) of the software being

developed - most often determines the choice of one

of the existing DBMS as a development tool and

method of presenting information.

4. DATA DESIGN

When designing data-driven systems, the inputs

and outputs are the most important, not processing and

computation. Therefore, the order of analysis and

design is somewhat different from the traditional order

when developing, say, real-time systems. Namely:

data structures are defined first, procedural

components are built as derived from data structures.

In fact, the design process consists in defining data

structures, merging them into the prototype of the

program structure and filling this structure with

detailed data processing logic.

Jackson's structural design is a classic example

of this approach. Its basic design procedure is intended

for "simple" programs (a "complex" program is

broken down into simple ones using traditional

methods) includes the following 4 stages:

- Data design phase.

- Program design stage.

- Operations design phase.

- The stage of designing texts.

At the design stage of data, it is necessary to

define the structures of input and output data and, on

their basis, build some model of the internal data

representation. This requires:

Build a model of the functional requirements of

the system at the level of control processes (analyzing

the subject area).

Then build a data model at the entity-relationship

level (by analyzing processes).

DATA FLOW DIAGRAMS

Data flow diagrams (DFDs) are the most popular

tool for building a system model at the level of control

processes. With their help, these requirements are

broken down into functional components (processes)

and presented as a network connected by data streams.

The main goal is to demonstrate how each process

transforms its inputs into outputs, as well as to reveal

the relationships between the processes. DFDs are

represented using Jordan notation.

The following concepts are basic:

Data stream. A mechanism for transferring

information from one part of the system to another.

They are depicted by named arrows, the orientation of

which indicates the direction of movement of

information.

Process. Produces output streams from input

streams according to some rule. It is depicted as a

circle, inside which the name of the process and its

number are placed (for links to it inside the diagram).

Data storage (storage). Allows you to save data

between processes. The information it contains can be

used at any time after it has been defined, and the data

can be selected in any order. It is depicted by two

parallel horizontal lines, between which the name of

the repository is written.

External entity. An entity outside the context of

the system, which is a source or receiver of data (does

not participate in data processing). It is represented by

a rectangle with a name inside.

When constructing diagrams, it is advisable to

observe the following sequence:

Dividing many requirements into groups.

Identification of external and internal system

objects. Extract information about objects from the

requirements for primary (input) and secondary

(output) documents.

Identification of the main types of information

circulating between the system and external objects.

Development of a common DFD. At the same

time, proceed from the recommendation: place from 3

to 6-7 processes on each diagram (the limit of human

capabilities of simultaneous perception). Combine

more complex processes into one process, and group

threads.

Formation of DFD of lower levels by

decomposing complex processes into parts (in parallel

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 391

to decompose data streams) until functions can be split

into parts.

Construction of specifications of elementary

processes (at the level of algorithms).

If necessary - making changes to the DFD of any

levels as the details of the requirements are clarified.

The result of completing all of these stages is a

ready-made model of the functional requirements of

the system and a clear understanding of the structure

of the subject area. At the end of this stage, you can

proceed to building the data model.

ESSENCE-CONNECTION DIAGRAMS

One of the most commonly used tools for

developing data models are Entity-Relationship

Diagrams (ERDs). ERDs provide a standard way to

define data and the relationships between them. With

their help, the detailing of the data stores of the

designed system is carried out, the system components

are determined, the ways of their interaction,

including the identification of objects important for

the subject area (entities), the properties of these

objects (attributes) and their relations with other

objects (links).

This notation was introduced by Chen and was

further developed by Barker. These diagramming

techniques are used to design relational databases.

An entity is a set of instances of real or abstract

objects (people, events, states, ideas, objects, etc.) that

have common attributes or characters. Any system

object can be represented by only one entity, which

must be uniquely identified. In this case, the name of

the entity should reflect the type or class of the object,

and not its specific instance (for example, PATIENT,

not KIM N.I.).

An independent entity represents the

independent data that is always present in the system

and the relationship. other entities may or may not

exist.

A dependent entity represents data that is

dependent on other entities in the system. Therefore,

it must always have relationships with other entities.

An associated entity represents data that is

associated with a relationship between two or more

entities (see many-to-many relationships below).

A relationship in its most general form is a

relationship between two or more entities. Verb

groups are used to name relationships (has, can own,

defines).

An unconstrained (mandatory) relationship is an

unconditional relationship, that is, a relationship that

always exists as long as there are related entities.

A constrained (optional) relationship is a

conditional relationship between entities.

A substantially constrained relationship is used

when the respective entities are interdependent in the

system.

Relationships are used to identify the

requirements by which entities are involved in

relationships. Each relationship connects an entity and

a relationship and can only be directed from

relationship to entity.

The value of a link characterizes its type and, as

a rule, is selected from the following set:

{"0 or 1", "0 or more", "1", "1 or more", "p: q"}

A pair of relationship values belonging to the

same relationship determines the type of this

relationship. The following types of relationships are

used:

1 * 1 (one-to-one);

1 * N (one-to-many);

N * M (many-to-many).

Relationships of this type are used in the early

design stages to clarify the situation. In the future,

each of these relations must be converted into a

combination of relations of types 1.

2 (possibly with the addition of auxiliary

associative entities and the introduction of new

relationships).

Demonstrating the relationship between the

objects of a medical organization (polyclinic).

According to this diagram, each doctor treats one or

more patients. In addition, each patient may or may

not be treated by one or more physicians. Each doctor

conducts an outpatient appointment for which patients

are registered (assigned). In the process of examining

patients at an outpatient appointment, the doctor forms

epicrises that affect the diagnosis. Every diagnosis for

a patient must have an author - a doctor who is

responsible for making the decision.

Each entity has one or more attributes that

uniquely identify each instance of the entity.

Moreover, any attribute can be defined as key.

Entity drill-down is accomplished using attribute

diagrams that expose the attributes associated with an

entity. An attribute diagram consists of a drillable

entity, associated attributes, and domains that describe

the attribute value ranges. In the diagram, each

attribute is represented as a relationship between the

entity and the corresponding domain, which is a

graphical representation of the set of possible attribute

values. All attribute links have meaning at their end.

The attribute name underscore is used to identify a key

attribute.

An entity can be split and represented as two or

more entity-categories, each of which has common

attributes and / or relationships. The entity split into

categories was called the general entity (at

intermediate levels of decomposition, the same entity

can be both a general entity and an entity-category).

To demonstrate the decomposition of an entity

into categories, categorization diagrams are used.

Such a diagram contains a general entity, two or more

entity-categories, and a special node - a discriminator,

which describes how entities are decomposed.

The ER-approach was further developed in the

works of Barker, who proposed an original notation

that made it possible to integrate the model description

tools proposed by Chen at the top level. There is only

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 392

one type of diagram used in Barker notation - ERD.

An entity on ERD is represented by a rectangle of any

size, containing the entity name, a list of attribute

names (possibly incomplete) and indicators of key

attributes (the "#" sign in front of the attribute name).

All relationships are binary and are lines with

two ends (connecting entities), for which a name, a

degree of multiplicity (one or many objects participate

in a relationship) and a degree of obligation (a

relationship between entities is required or optional)

must be defined. For multiple links, the line is attached

to the entity rectangle at three points, and for single

links, at one point. For a mandatory link, a continuous

line is drawn up to the middle of the link, for an

optional one - a dotted line.

References:

1. Dixon, B. (2016). “Health Information

Exchange: Navigating and Managing a Network

of Health Information Systems”, Academic

Press, vol. 1, p.376.

2. Qarshiev, A.B., Nabieva, S.S., & Egamqulov,

A.Sh. (2019). Medical information Systems.

Internotianal Scientific Journal Theretical &

Applied Science, Issue 04, Vol. 72.

3. Bogoslovsky, V. V. (2009). “Prediction of

productivity, adaptation capacity of species and

hybrids of the silkworm for enzyme systems and

proteins spectra the Text.: dissertation of

candidate of biological Sciences,” / V. V.

Theological, Stavropol.

4. Feylamazov, S.A. (2016). "Information

technologies in medicine: A manual for medical

colleges". (p.163). Makhachkala: DBMK.

5. Sakiev, T., & Nabieva, S. (2018). Architecture

of the medical information system. International

Scientific Journal Theoretical & Applied

Science. Section 4. Computer science, computer

injineering and automation. Issue: 05 Volume:

61. Published: 14/05/2018, pp. 35-39

6. Sakiev, T., & Nabieva, S. (2017). Principles of

computer design. International scientific and

practical journal "Theory and Practice of

Modern Science", Issue No. 7 (25) (July, 2017).

7. Primova, H., Sakiev, T., & Nabieva, S. (2019).

Development of medical information systems.

XIII International scientific and technical

conference "Dynamics of Systems, Mechanisms

and Machines" November 2019, Omsk, Russia.

(Scopus).

8. Karshiev, A., & Nabieva, S. (2019). Medical

information systems. International Scientific

Journal Theoretical & Applied Science.

SECTION 4. Computer science, computer

injineering and automation. Issue: 04 Volume:

72. Published: 30/04/2019, pp.505-508.

9. Sakiev, T., & Nabieva, S. (2017). Typical

processes of AWP. International scientific and

practical journal "Theory and Practice of

Modern Science", Issue No. 7 (25) (July, 2017).

10. Coplan, S. (2011). "Project Management for

Healthcare", Information Technology McGraw-

Hill, Education; vol. 1, p.288.

