ISRA $($ India)	$=\mathbf{4 . 9 7 1}$	SIS (USA)	$=0.912$	ICV (Poland)	$=\mathbf{6 . 6 3 0}$
ISI (Dubai, UAE)	$=0.829$	PИHЦ (Russia)	$=0.126$	PIIF (India)	$=\mathbf{1 . 9 4 0}$
GIF (Australia)	$=\mathbf{0 . 5 6 4}$	ESJI (KZ)	$=8.997$	IBI (India)	$=\mathbf{4 . 2 6 0}$
JIIF	$=\mathbf{1 . 5 0 0}$	SJIIF (Morocco)	$=\mathbf{5 . 6 6 7}$	OAJII (USA)	$\mathbf{0 . 3 5 0}$

J.R. Alieva

ADU
Phd
zhralieva@mail.ru

2 LOCAL TWO-SIDED SIMMETRIC MULTIPLICATIONS IN THE BANACH ALGGEBRA OF MATRIX

Abstract

This article is about learning the notion of 2 local two-sided symmetric multiplications in the Banach algebra of matrixes. The lemma and the theorem concerning the above mentioned matter are proven.

Key words: matrix, unit matrix, the Banach algebra, 2 local two-sided multiplication, equality. Language: English Citation: Alieva, J. R. (2020). 2 local two-sided simmetric multiplications in the Banach alggebra of matrix. ISJ Theoretical \& Applied Science, 09 (89), 310-312.

Soi: http://s-o-i.org/1.1/TAS-09-89-36 Doi: crossef https://dx.doi.org/10.15863/TAS.2020.09.89.36 Scopus ASCC: 2600.

Introduction

Description: Let us mark the two-dimensional algebra as $M_{2}(R)$. Let us assume that if such $A \in$ $M_{2}(R)$ exists in case of taking a random $x, y \in$ $M_{2}(R)$ in purpose of reflection of $\Delta: M_{2}(R) \rightarrow$ $M_{2}(R)$, and if to fulfil the $\Delta(x)=A X A \quad \Delta(y)=A Y A$ equality in it, then Δ is defined as 2 local two-sided multiplication According to this notion, the following lemma is relevant:

Lemma: There is such a matrix as $A \in M_{2}(R)$ in the algebra of two-dimensional matrixes, and in case of two-sided multiplication for all $e_{i j} \in M_{2}(R)$, $i, j=1,2$ unit matrixes, the $\Delta\left(e_{i j}\right)=A e_{i j} A$ equality is fulfilled. Which means:

$$
\Delta\left(e_{3.1}\right)=A e_{3.1} A, \Delta\left(e_{12}\right)=A e_{12} A
$$

$$
\Delta\left(e_{21}\right)=A e_{21} A, \Delta\left(e_{22}\right)=A e_{22} A
$$

Proof: Let us mark the product of the matrix of 2 local two-sided multiplication of all four unit matrixes.

Then the following equalities are relevant in this case.

$$
\begin{aligned}
& \Delta\left(e_{3.1}\right)=B e_{3.1} B=C e_{3.1} C=N e_{3.1} N, \\
& \Delta\left(e_{12}\right)=B e_{12} B=D e_{12} D=M e_{12} M, \\
& \Delta\left(e_{21}\right)=C e_{21} C=G e_{21} G=M e_{21} M, \\
& \Delta\left(e_{22}\right)=G e_{22} G=D e_{22} D=N e_{22} N .
\end{aligned}
$$

Let us calculate the 2 local two-sided multiplication for each matrix.

$$
\begin{aligned}
& \Delta\left(e_{3.1}\right)=B e_{3.1} B=\left(\begin{array}{ll}
b_{3.1} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
b_{3.1} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)=\left(\begin{array}{cc}
b_{3.1}^{2} & b_{3.1} b_{12} \\
b_{21} b_{3.1} & b_{21} b_{3.1}
\end{array}\right) \\
& \Delta\left(e_{12}\right)=B e_{12} B=\left(\begin{array}{ll}
b_{3.1} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
b_{3.1} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)=\left(\begin{array}{cc}
b_{3.1} \mathrm{~b}_{21} & b_{3.1} b_{22} \\
b_{21} & b_{21} b_{22}
\end{array}\right) \\
& \Delta\left(e_{21}\right)=C e_{12} C=\left(\begin{array}{ll}
c_{3.1} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
c_{3.1} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)=\left(\begin{array}{cc}
c_{3.1} c_{12} & c_{12}^{2} \\
c_{3.1} c_{22} & c_{22} c_{12}
\end{array}\right) \\
& \Delta\left(e_{22}\right)=G e_{22} G=\left(\begin{array}{ll}
g_{3.1} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
g_{3.1} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=\left(\begin{array}{ccc}
g_{12} g_{21} & g_{12} g_{22} \\
g_{21} g_{22} & g_{22}^{2}
\end{array}\right)
\end{aligned}
$$

| | ISRA (India) | $=4.971$ | SIS (USA) $=0.912$ | ICV (Poland) | $=6.630$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Impact Factor: | ISI (Dubai, UAE) $=0.829$ | PИHL (Russia) $=\mathbf{0 . 1 2 6}$ | PIF (India) | $=1.940$ | |
| GIF (Australia) | $=0.564$ | ESJI (KZ) $=8.997$ | IBI (India) | $=4.260$ | |
| | $=1.500$ | SJIF (Morocco) $=\mathbf{5 . 6 6 7}$ | OAJI (USA) | $=0.350$ | |

The indexes of the elements of the product matrix are the same even if we calculate the multiplication of the two other matrixes while fulfilling the 2 local two-sided multiplication. Therefore,

$$
B e_{3.1} B=C e_{3.1} C=N e_{3.1} N,
$$

$$
\begin{gathered}
B e_{12} B=D e_{12} D=M e_{12} M \\
C e_{21} C=G e_{21} G=M e_{21} M \\
G e_{22} G=D e_{22} D=N e_{22} N
\end{gathered}
$$

let us equalize all the their elements from the equality

$$
\begin{gathered}
b_{3.1}^{2}=c_{3.1}^{2}=n_{3.1}^{2}, \quad b_{3.1} b_{12}=c_{3.1} c_{12}=n_{3.1} n_{12}, \quad b_{3.1} b_{21}=c_{3.1} c_{21}=n_{3.1} n_{21} \\
b_{12} b_{21}=c_{12} c_{21}=n_{12} n_{21}, \quad b_{3.1} b_{21}=d_{3.1} d_{21}=m_{3.1} m_{21}, \quad b_{21}^{2}=d_{21}^{2}=m_{21}^{2} \\
b_{21} b_{22}=d_{21} d_{22}=m_{21} m_{22}, \quad c_{3.1} c_{12}=g_{3.1} g_{12}=m_{3.1} m_{12}, \quad c_{12}^{2}=g_{12}^{2}=m_{12}^{2} \\
c_{3.1} c_{22}=g_{3.1} g_{22}=m_{3.1} m_{22}, \quad c_{12} c_{22}=g_{12} g_{22}=m_{12} m_{22}, \quad g_{12} g_{21}=d_{12} d_{21}=n_{12} n_{21} \\
g_{12} g_{22}=d_{12} d_{22}=n_{12} n_{22}, \quad g_{22} g_{21}=d_{22} d_{21}=n_{22} n_{21}, \quad g_{22}^{2}=d_{12}^{2}=n_{12}^{2}
\end{gathered}
$$

Let us assume that the matrixes which we are looking through consist of positive elements different only from zero. Then, the elements of quadratic equality are equal among each-other. Which means:

$$
\begin{array}{cl}
b_{3.1}=c_{3.1}=n_{3.1}, & b_{21}=d_{21}=m_{21} \\
c_{12}=g_{12}=m_{12}, & g_{22}=d_{22}=n_{22}
\end{array}
$$

We get the following result if we apply these equalities to the above mentioned ones.

$$
\begin{gathered}
b_{3.1}=c_{3.1}=d_{3.1}=g_{3.1}=n_{3.1}=m_{3.1}, \\
b_{12}=c_{12}=d_{12}=g_{12}=n_{12}=m_{12}, \\
b_{21}=c_{21}=d_{21}=g_{21}=n_{21}=m_{21}, \\
b_{22}=c_{22}=d_{22}=g_{22}=n_{22}=m_{22}
\end{gathered}
$$

The result is $\mathrm{B}=\mathrm{C}=\mathrm{D}=\mathrm{G}=\mathrm{N}=\mathrm{M}$. It means that we have achieved the equality among all the matrixes. The proof is completed.

Theorem: $\in M_{2}(R)$ is being considered, in this case, if to take a random $x \in M_{2}(R)$ for the
reflection of $\Delta: M_{2}(R) \rightarrow M_{2}(R)$ in the matrixes algebra as $5 A=\left\{a_{i j}, a_{i j}>0\right\}$, there is such $A \in$ $M_{2}(R)$ in which the $\Delta(x)=A X A$ equality is fulfilled.

Proof: For a random $x \in M_{2}(R)$

$$
\begin{gathered}
\Delta(x)=B x B, \quad \Delta\left(e_{3.1}\right)=B e_{3.1} B, \\
\Delta(x)=C x C, \quad \Delta\left(e_{12}\right)=C e_{12} C \\
\Delta(x)=D x D, \quad \Delta\left(e_{21}\right)=D e_{21} D, \\
\Delta(x)=F x F, \quad \Delta\left(e_{22}\right)=F e_{22} F .
\end{gathered}
$$

According to the lemma, there is such an A

$$
\begin{array}{cc}
B e_{3.1} B=A e_{3.1} A, & C e_{12} C=A e_{12} A, \\
D e_{21} D=A e_{21} A, & F e_{22} F=A e_{22} A
\end{array}
$$

that the equalities given are relevant. And this gives the following results:

$$
\begin{gathered}
\left\{\begin{aligned}
b_{3.1}^{2} & =a_{3.1}^{2} \\
b_{3.1} b_{12} & =a_{3.1} a_{12} \\
b_{3.1} b_{21} & =a_{3.1} a_{21} \\
b_{21} b_{12} & =a_{21} a_{12}
\end{aligned}\right. \\
\left\{\begin{aligned}
d_{3.1} d_{12} & =a_{3.1} a_{12} \\
d_{12}^{2} & =a_{12}^{2} \\
d_{3.1} d_{22} & =a_{3.1} a_{22} \\
d_{22} d_{12} & =a_{22} a_{12}
\end{aligned}\right.
\end{gathered}
$$

$$
\begin{aligned}
& \left\{\begin{aligned}
c_{3.1} c_{21} & =a_{3.1} a_{21} \\
c_{3.1} c_{22} & =a_{3.1} a_{22} \\
c_{21}^{2} & =a_{21}^{2} \\
c_{21} c_{22} & =a_{21} a_{22}
\end{aligned}\right. \\
& \left\{\begin{aligned}
f_{21} \mathrm{f}_{12} & =a_{21} a_{12} \\
f_{12} f_{22} & =a_{12} a_{22} \\
f_{21} f_{22} & =a_{21} a_{22} \\
f_{22}^{2} & =a_{22}^{2}
\end{aligned}\right.
\end{aligned}
$$

we get these ones. It means:

$$
a_{3.1}=b_{3.1}=c_{3.1}=d_{3.1}, \quad a_{12}=b_{12}=f_{12}=d_{12},
$$

	ISRA $($ India)	$=4.971$	SIS (USA)	$=0.912$	ICV (Poland)	$=6.630$
Impact Factor:	ISI (Dubai, UAE) $=0.829$	PИHL (Russia) $=\mathbf{0 . 1 2 6}$	PIF (India)	$=\mathbf{1 . 9 4 0}$		
GIF (Australia)	$=0.564$	ESJI (KZ)	$=8.997$	IBI (India)	$=4.260$	
	JIF	$=1.500$	SJIF (Morocco) $=\mathbf{5 . 6 6 7}$	OAJI (USA)	$=0.350$	

$$
a_{21}=b_{21}=c_{21}=f_{21}, \quad a_{22}=c_{22}=d_{22}=f_{22}
$$

For the comfort, let us enter the following markings.

$$
\begin{aligned}
\alpha_{3.1} & =a_{3.1}^{2} x_{3.1}+a_{3.1} a_{12} x_{21}+a_{3.1} a_{21} x_{12}+a_{12} a_{21} x_{22} \\
\alpha_{12} & =a_{3.1} a_{12} x_{3.1}+a_{12}^{2} x_{21}+a_{3.1} a_{22} x_{12}+a_{12} a_{22} x_{22} \\
\alpha_{21} & =a_{21} a_{3.1} x_{3.1}+a_{3.1} a_{22} x_{21}+a_{21}^{2} x_{12}+a_{21} a_{22} x_{22} \\
\alpha_{22} & =a_{21} a_{12} x_{3.1}+a_{12} a_{22} x_{21}+a_{3.1} a_{22} x_{21}+a_{22}^{2} x_{22} \\
\beta_{3.1} & =b_{3.1}^{2} x_{3.1}+b_{3.1} b_{12} x_{21}+b_{3.1} b_{21} x_{12}+b_{12} b_{21} x_{22} \\
\gamma_{21} & =c_{21} c_{3.1} x_{3.1}+c_{3.1} c_{22} x_{21}+c_{21}^{2} x_{12}+c_{21} c_{22} x_{22} \\
\delta_{12} & =d_{3.1} d_{12} x_{3.1}+d_{12}^{2} x_{21}+d_{3.1} d_{22} x_{12}+d_{12} d_{22} x_{22} \\
\varepsilon_{22} & =f_{21} f_{12} x_{3.1}+f_{12} f_{22} x_{21}+f_{3.1} f_{22} x_{21}+f_{22}^{2} x_{22} .
\end{aligned}
$$

Then in this case,

$$
\begin{array}{ll}
\Delta(x)=B X B=\left(\begin{array}{ll}
\beta_{3.1} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right), & \Delta(x)=C X C=\left(\begin{array}{ll}
\alpha_{3.1} & \alpha_{12} \\
\gamma_{21} & \alpha_{22}
\end{array}\right), \\
\Delta(x)=D X D=\left(\begin{array}{ll}
\alpha_{3.1} & \delta_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right), & \Delta(x)=\mathrm{F} X F=\left(\begin{array}{ll}
\alpha_{3.1} & \alpha_{12} \\
\alpha_{21} & \varepsilon_{22}
\end{array}\right) .
\end{array}
$$

Then,

$$
\Delta(x)=B X B=C X C=D X D=F X F=\left(\begin{array}{ll}
\alpha_{3.1} & \alpha_{12} \\
\alpha_{21} & \varepsilon_{22}
\end{array}\right) .
$$

Then, if to take a random $\quad x \in M_{2}(R)$, there is such a $A \in M_{2}(R)$, here, $\Delta(x)=A X A$ can be seen. The theorem is proven.

References:

1. Albeverio, S., Ayupov, Sh.A., \& Abdullayev, R.Z. (2008). Arens spaces associated with von Neumann Algebras and Normal Spaces, SFB 611, the University of Bonn, Preprint, No 381.
2. Dales, H.G. (2000). Banach algebras and automatic continuity. Clarendon Press.
3. Rudin, U. (1975). Functional analysis. Moscow: Mir.
4. Sarimsakov, T.A. (1980). The course of functional analysis. Tashkent: O`qituvchi (teacher).
5. Segal, I. A. (1953). Non-commutative extension of abstract integration, Ann. Math. 57, 401-457.
6. Sherstenev, A.N., \& Lugovaya, G.D. (2008). Functional analysis. Kazan.
7. Feintuch, A., \& Saeks, R. (1982). System theory. A. Hilbert space approach. (p.310). New York, London: Academic Press.
8. Myorfi, D. (1997). Algebras and operators theory. Moscow: Faktorial.
9. Sadovnichiy, V.A. (1999). Operators theory. Moscow: Higher School.
10. Iosida, K. (1967). Functional analysis. Moscow: Mir.
