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Introduction 

Numerical methods are increasingly used to 

study mathematical models of hydrodynamic systems. 

At the same time, their application to the solution of 

the basic equations — the Navier-Stokes equations — 

for large Reynolds numbers encounters serious 

difficulties. They are mainly associated with the 

presence of a small parameter at the highest derivative 

and, as a consequence, the appearance of strong 

spatial inhomogeneity in the solution. Therefore, the 

requirements for the approximation properties of 

numerical methods increase sharply. The stability 

problem of single-phase hydrodynamic systems 

reduces to the eigenvalue problem for an ordinary 
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fourth-order differential equation with a small 

parameter at the highest derivative. Mathematical 

modeling and the construction of numerical methods 

for solving this class of equations are devoted to [1-3]. 

Existing methods for modeling the stability problem 

of hydrodynamic systems make it possible to 

accurately calculate individual eigenvalues of the 

stability problem and to obtain a solution in the areas 

of heterogeneity. However, when modeling the 

spectrum of eigenvalues, their effectiveness is 

insufficient. In more complex multi-parameter 

problems of hydrodynamic stability (for example, in 

mathematical modeling of the stability of two-phase 

flows), the situation is aggravated by a decrease in 

efficiency and becomes practically unacceptable. 

 

FORMULATION OF THE PROBLEM 

One of the important problems in the numerical 

simulation of hydrodynamic systems is the problem of 

hydrodynamic stability. In a linear formulation for 

plane-parallel flows of a single-phase flow, this 

problem reduces to the eigenvalue problem for the 

Orr-Sommerfeld equation [1-6]: 

 

    (1) 

 

with uniform boundary conditions 

) = 0 ; 

   (2) 

 

which depend on the type of currents studied. 

In equation (1), the parameter λ = λr +ıλi is the 

eigenvalues, λr is the phase velocity, λi is the rise 

coefficient,  is the differential 

operator, η is the coordinate of the direction across the 

main stream, k is the wave number, is the Reynolds 

number, ρ is the density, µ is the viscosity, 

 is the maximum velocity of the main 

flow, L is the characteristic length, U (η) is the profile 

of the velocity of the main flow, ψ (η) is the amplitude 

of the stream function for perturbations.  

The investigated flow will be stable or unstable 

depending on the value of the imaginary part of the 

eigenvalue λ = λr +ıλi. If λi > 0, then the flow under 

consideration is unstable if  λi < 0 -stable. If  λi = 0, 

then the oscillations are neutrally stable, the curve in 

which λi = 0 is called the neutral stability curve. 

Effective methods are required to determine the 

eigenvalues in problem (1) - (2). 

 

THE SOLUTION OF THE PROBLEM 

Equation (1) contains a small parameter (kRe)−1  

for the highest derivative, therefore, considerable 

difficulties arise in obtaining approximate solutions 

close to exact. Existing numerical methods [2,4] for 

numerical modeling of problem (1) - (2) can be 

divided into several groups: 1) finite-difference 

methods; 2) methods of step-by-step integration; 3) 

the method of exclusion and differential sweep; 4) 

spectral methods; 5) pre-integration method.  

1. The use of finite-difference methods for 

solving equation (1) - (2) was proposed in [7]. The 

essence of these methods is to approximate the 

derivatives involved in (1) by finite differences, and 

to solve the resulting system using linear algebra 

methods. Such a scheme, however, requires a fairly 

small step. For k k Re ∼ 104, for example, to obtain 

sufficiently accurate (three signs) results, a uniform 

difference grid containing 100 nodes was used. 

Another disadvantage of this method is that with its 

help there is only one eigenvalue. 

In order to reduce the number of computational 

nodes in [8], it is proposed to use a difference grid with 

a variable step to solve equation (1) (2). The 

construction of such a grid depends on several 

parameters, the choice of which is associated with 

certain difficulties. The data presented in this work 

show that the number of nodes increases with the 

parameter kRe. The method defines one eigenvalue. 

A method for constructing a non-uniform grid 

for the numerical solution of second-order equations 

with a small parameter with the highest derivative was 

proposed in [9, 10]. According to this technique, in 

[11, 12], to find the eigenvalues for equation (1) - (2), 

an uneven grid is constructed using a special mapping. 

The mapping is specified so that the gradient modulus 

of the desired function is estimated by a value 

independent of kRe. Selecting the parameters of this 

display allows you to adjust the distance between the 

nodes of the grid in accordance with the size of the 

transition zone of the boundary layer and the critical 

point. The use of an uneven grid makes it possible to 

calculate one eigenvalue with high accuracy for a 

small number of grid nodes. 

2. The difference calculation of the 

hydrodynamic stability problem using two-

dimensional grids is described in [13]. An analysis of 

the necessary conditions imposed on the grid 

parameters for the correct description of the 

hydrodynamic properties is described in [14, 15]. 

Studies have shown that with an increase in the 

parameter kRe, a smaller step is required. 

3. In [16], a more effective method for solving 

ordinary differential equations is proposed — the local 

collocation method. Its essence is that the integration 
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region is divided into parts, in each of which an 

approximate local solution is calculated using the 

collocation method. As a result, a solution in the entire 

domain is obtained using a system of linear algebraic 

equations with a tape matrix. The convergence of the 

method is proved and estimates of the rate of 

convergence of the approximate solution to the exact 

one are obtained. It is shown that the local collocation 

method is equivalent to a finite-difference method of 

high order of accuracy. This method allows you to 

localize and determine the most dangerous 

eigenvalues, it is also effective for determining one 

eigenvalue. 

4. Along with the methods described above, in 

the problems of hydrodynamic stability, the method of 

step-by-step integration is used. The essence of this 

method is to reduce boundary value problems to 

Cauchy problems and integrate the latter with an 

arbitrary variable step. Among them, the shooting 

method was the first to be used for hydrodynamic 

stability problems [17]. The calculations showed that 

if the eigenvalues of the matrix differ greatly in the 

value of the material part, and this is characteristic of 

equation (1) - (2), then during the integration process, 

due to numerical errors, almost no correct sign 

remains in the eigenvalues. 

5.To overcome this difficulty, an 

orthogonalization method was proposed in [18]. It 

consists in dividing the integration interval into rather 

short sections, the length of which should be the 

smaller, the greater the difference between the values 

of different eigenvalues. Then, in each section, two 

solutions are orthogonalized and normalized. The 

disadvantage of this method is that it requires a large 

amount of computation to determine one eigenvalue. 

6. In [19], a method is described for constructing 

basic solutions using the elimination method, which 

differs little from the orthogonalization method, but in 

the elimination method the integration and 

orthogonalization procedures are combined, which 

leads to savings in arithmetic calculations. In some 

cases, the differential sweep method is more 

convenient [20]. Its application for solving the 

hydrodynamic stability problem is described in [21]. 

The essence of the method is that in the process of 

direct sweep, solutions are found that satisfy the 

boundary conditions at one of the ends of the interval. 

After solving the eigenvalue problems, the 

eigenfunctions are found by inverse sweeping. Close 

to the differential sweep method is the determinant 

method [22]. In [23], this method was applied to 

localize the eigenvalues in studying the stability of the 

boundary layer. These methods also provide for the 

definition of one eigenvalue. 

7. The use of spectral methods for the numerical 

simulation of problem (1) (2) was described in [24], 

where Chebyshev polynomials of the first kind were 

used as basis functions. It is shown that in this case the 

convergence in the number of basis functions is 

exponential. The main advantage of these methods is 

that you can immediately find all spectral values and 

choose the most unstable among them. However, 

finding all the eigenvalues of a filled matrix of a high 

order is a very time-consuming process, associated 

with high costs of computer time. In addition, with an 

increase in the parameter kRe, the size of the matrices 

necessary for sufficiently accurate determination of 

the eigenvalues increases, and this imposes an 

additional memory requirement. 

8. In the article [25], for the numerical 

integration of equation (1) - (2), the preliminary 

integration method is used. The essence of this method 

is that the solution of equation (1) - (2) is expanded in 

a series according to Chebyshev polynomials of the 

first kind, the derivatives of the solution are also 

represented as a series in these polynomials. Then, 

equations (1) are preliminarily fourfold integrated and 

four integration constants appear in the obtained 

equations. These constants are selected from the 

condition of satisfying four boundary conditions. The 

result is a generalized algebraic eigenvalue problem. 

Solving this system, all eigenvalues of equation (1) - 

(2) are determined. The complex matrices of the 

algebraic system will be filled, and with an increase in 

the number of basis functions, their order increases 

sharply, which leads to a deterioration in the accuracy 

of calculating the eigenvalues. 

It follows from the above analysis that almost all 

of the listed methods, except the spectral method and 

the method of preliminary integration, are designed to 

find one eigenvalue. 

 

ANALYSIS OF RESULTS 

The development of effective numerical 

methods for immediately determining all the 

eigenvalues of the hydrodynamic stability problem (1) 

- (2) is of undoubted interest. The need to create such 

methods is especially evident in mathematical 

modeling of more complex problems, in particular, in 

the study of the stability problem of two-phase and 

multiphase flows. In this regard, it is necessary to have 

such a numerical solution method that would ensure 

high accuracy of calculations with a small amount of 

memory and time. In addition, it is desirable that the 

method under consideration allows us to 

simultaneously calculate all the eigenvalues of the 

problem. The spectral-grid method (CCM) [26-32] 

meets all these requirements and combines the high 

accuracy of spectral methods with the efficiency of the 

uneven grid method. Using this method, all 

eigenvalues of the hydrodynamic stability problem are 

determined. Theoretical substantiations and numerical 

results for solving the problem on the eigenvalues of 

single-phase and two-phase flows are given in [26]. 

The equivalence of the spectral-grid method with the 

method of inhomogeneous spline approximation was 

established in [27]. In [28], convergence theorems for 

the spectral-grid method were proved and estimates of 
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the convergence rate of the method were obtained. 

The rationale for the efficiency of the spectral-grid 

method is described in [29]. The use of the spectral-

grid method for the numerical simulation of more 

complex problems of hydrodynamic stability for two-

phase flows is described in [30–32]. The spectral-grid 

method (CCM) consists in the fact that the integration 

region is divided into a grid, in each of whose 

elements an approximate solution is sought in the 

form of a series of Chebyshev polynomials of the first 

kind. At the internal nodes of the grid, continuity of 

the solution of the stability equations and their 

derivatives up to the (m - 1) th order, where m is the 

order of the highest derivative of the differential 

equation, is required. At the boundary of the 

integration interval, the satisfaction of the 

corresponding boundary conditions of the stability 

problem is required. An approximate solution in the 

entire grid domain is determined by solving the 

generalized eigenvalue problem for a system of linear 

algebraic equations with a special block-diagonal 

matrix. 

We turn to the presentation of the SSM algorithm 

for the numerical simulation of problem (1) (2). To do 

this, on the integration interval [η0, ηl] we introduce a 

grid and get N different elements: 

 

[η0,η1],[η1,η2],...,[ηj,ηj+1],...,[ηN−1,ηN], 

j = 1,2,...,N – 1 

 

Differential equation (1) on each of these 

elements takes the form 

 

.   (3) 

 

The boundary conditions (2) are written at the 

points η0 and ηN: 

 

) = 0 ; 

  (4) 

 

At the partition points, we require continuity of 

the solution of equation (3) and its derivatives up to 

3rd order. These conditions are of the form: 

 

ψ(tj)(ηj) = ψ(tj+1)(ηj), 

 t = 0,1,2,3  

j = 1,2,...,N − 1            (5) 

 

where t indicates the order of the derivative. 

We represent the solutions ψj of equation (3) in 

the form of a series of Chebyshev polynomials of the 

first kind. To do this, each element [ηj, ηj + 1] is 

displayed on the interval [−1, + 1] using the following 

change of the independent variable: 

 

, 

 

lj denotes the length of the j th element. After this 

transformation, equations (3) take the form  

 

,  (6) 

 

 
 

From conditions (4) - (5) we have 

,   (7) 

We seek an approximate solution to problem (6) 

- (7) on each of the grid elements in the form 
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,     (8) 

 

where Tn(y)-are Chebyshev polynomials of the first 

kind,  their nodes, and pj is the number of 

polynomials used to approximate the solution on the j 

th element of the grid. 

The expansion coefficients  [26] for the 

function Uj (y) (8) are determined by the following 

inverse transformation: 

 

 
m ̸= 0, pj, j = 1,2,...,N. 

 

For the convenience of exposing the SSM, we 

write equation (6) in the operator form, i.e. 

Ljψj = 0,j = 1,2,...,N, 

 

where the Lj-differential operator defined by the 

formula 

 

 
 

Substituting series (8) into equation (7), we 

require that the left-hand side of (6) on each of the grid 

elements be orthogonal to the first (pj - 4) Chebyshev 

polynomials: 

 

 (Ljψj,Tn) = 0, n = 0,1,...,pj − 4, j = 1,2,...,N,

 (9) 

  
- scalar product on the segment (−1,+1). 

In addition, we require that the series in 

Chebyshev polynomials (8) exactly satisfy the 

boundary conditions and continuity conditions (7). 

Given the following properties of Chebyshev 

polynomials 

, these 

conditions are written as: 

, 
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   (10) 

 

In formula (10), derivatives of Chebyshev 

polynomials are calculated by the following 

recurrence formulas: 

 

Tn+1(x) = 2xTn(x) − Tn−1(x), T0(x) = 1, T1(x) = x, n = 1,2,3,..., 

′ ′ ′ ′ ′ 

Tn+1(x) = 2xTn(x) + 2Tn(x) − Tn−1(x), T0(x) = 0, T1(x) = 1, n = 1,2,3,..., 

′′ ′′ ′ ′′ ′′ ′′ 

Tn+1(x) = 2xTn (x) + 4Tn(x) − Tn−1(x), T0 (x) = 0, T1 (x) = 0, n = 1,2,3,..., 

′′′ ′′′ ′′ ′′′ ′′′ ′′′ 

Tn+1(x) = 2xTn (x) + 6Tn (x) − Tn−1(x), T0 (x) = 0, T1 (x) = 1, n = 1,2,3,..., 

 

 

In the general case, when different numbers of 

Chebyshev polynomials are given on different 

elements, we obtain 

 

m¯ = (p1 + p2 + ... + pN + N) 

 

equations to determine the same number of unknowns. 

It is convenient to write the resulting system in matrix 

form: 

(A − λB)X = 0,   (11) 

 

where the complex matrices A and B have a block-

diagonal structure of a special form, and the vector x 

contains the coefficients a(
n

j) in expansion (8), i.e. 

 

 
 

In system (11), the matrix B is degenerate and 

contains 4N zero rows corresponding to boundary 

conditions and continuity conditions, since they are 

independent of λ. The corresponding rows of the 

matrix A will contain integers obtained from the 

values of the Chebyshev polynomials and their 

derivatives to the third order at the points −1 or 1. 

Using non-degenerate transformations of the columns 

of the matrices A and B, we reduce system (11) to the 

form 

 

 (AQ − λBQ)(Q−1x) = 0,  (12) 

 

where Q is the corresponding non-degenerate 

transformation [26]. With this transformation Q, the 

zero rows of the matrix B do not change, and the 

nonzero ones are transformed according to the 

transformation Q. Then, from each block of the 

matrices AQ and BQ, the first four rows and the first 

four columns can be excluded. From the remaining 

equations we obtain an algebraic system 

 

(T − λW)Y = 0,   (13) 

 

where W is in the general case a non-degenerate 

square matrix. Then the order of the matrices T and W 

will be: (¯m−4N)*(¯m−4N), where m¯ is the total 

number of polynomials in the CCM, i.e. 

 

 
 

Multiplying (13) on the left by the matrix W − 1, 

we obtain 

 

(D − λE)Y = 0, D = TW−1  (14) 

 

standard eigenvalue problem. The eigenvalues of 

system (14) can be found by standard methods. In this 

paper, they are determined using the QR algorithm. 

 

CONCLUSION 

From an analysis of methods for solving the 

hydrodynamic stability problem, it can be determined 

that the spectral method (SM), the preliminary 

integration method (MPI) and the spectral-grid 

method allow one to determine all eigenvalues of the 

problem (1) - (2), and the remaining methods are 

designed to determine only one own value. Therefore, 

we compare SM, MPI and SSM in accuracy and in the 

number of arithmetic operations. In the table. 1. data 

are presented showing the accuracy of the calculations 

of the unstable mode (harmonic with the largest value 

λi for the Poiseuille flow U(y) = 1 − y2  for various 

numbers of basis functions. The parameters Re, k, are 

fixed: Re = 104, k = 1. Their value is selected in 

accordance with the results of [24.25]. Calculations of 

the quantity λ = λr +ıλi, corresponding to max (λi) are 

given in Table 1. 
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Table 1 

 

m¯ Methods λ = λr + ıλi 

 СМ 0.23690887+0.00365515i 

15 MPI 0.23690886+0.00365513i 

 SSM 0.23690887+0.00365517i 

 SМ 0.23752649+0.00373967i 

32 MPI 0.23752650+0.00373953i 

 SSM 0.23752649+0.00373967i 

Exact Value [24,25] 0.23752649+0.00373967i 

 

Now compare these methods in terms of the 

number of arithmetic operations. To solve the 

eigenvalue problem of the form (14) with a complex 

matrix D, the implementation of a single step of the 

QR algorithm requires approximately 

arithmetic operations, where n-indicates the order of 

the matrix D. The comparison results are given in 

table. 2. 

 

Table 2 

 

m¯ MPI SМ SSМ 

 Q¯ Q¯ N Q¯ 

5 837 7 1 6 

20 53600 27443 4 426 

50 837500 652150 10 6666 

100 6700000 5927730 20 426666 

 

In tables 1 and 2, m¯ denotes the total number of 

Chebyshev polynomials of the first kind for 

approximating the solution of problem (1) - (2), and N 

denotes the number of grid elements in the spectral-

grid method. The results presented illustrate that the 

spectral-grid method is economical and has high 

accuracy. 
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