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Abstract: When solving geometrically nonlinear problems of magnetoelasticity in the theory of plates and shells, 

it is difficult, in a general case, to evaluate the effect of nonlinearity in determining their stress state. To evaluate 

such a process, nonlinear oscillations of an isotropic rod of constant cross section under the influence of the 

electromagnetic Lorentz force are considered. The obtained estimates for the rod also characterize the qualitative 

side of the behavior of flexible plates and shells in a magnetic field. 
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Introduction 

In the mechanics of conjugate fields, an 

important place is occupied by the study of a 

continuous medium motion taking into account 

electromagnetic effects. Analysis of electromagnetic 

processes is possible only on the basis of a system of 

electrodynamic equations, together with material 

relationships.In recent decades, considerable attention 

in special literature has been devoted to the study of 

strain processes in electrically conductive bodies 

placed in an external constant magnetic field under the 

influence of force, thermal, and electromagnetic loads 
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 

20,21,22,23,24,25]. 

Interest in research in this area is associated with 

the importance of a quantitative study and assessment 

of the observed effects of the relationship of 

mechanical, thermal and electromagnetic processes 

and their practical application in various fields of 

modern technology in the development of new 

practices, as well as in the field of radio electronics, 

electrical engineering, modern measuring systems and 

etc. Most of the known works on elastic conductive 

body strain have been performed for a linearized 

system of equations. However, the solution of a 

number of applied problems, which include non-

stationary problems of determining the stress state of 

flexible current-carrying anisotropic plates and shells, 

requires a more complete study of mechanical 
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processes, including wave fields accompanying 

magnetoelastic interaction, based on a nonlinear 

model of magnetoelasticity and presents an urgent 

scientific problem. 

I. STATEMENT OF THE PROBLEM. THE 

EQUATIONS OF MAGNETOELASTICITY. 

Suppose that an electrically conductive body is 

in a magnetic field formed by an electric current in the 

body itself (self-magnetic field) and a source located 

at a distance from the body (external magnetic field). 

The body has finite electrical conductivity   and does 

not have the property of spontaneous polarization and 

magnetization. Let’s assume that, in the general case, 

there are no surface currents and foreign charges. 

Magnetoelasticity equations for similar bodies in 

the Euler coordinates are presented in the form 

[3,9,10]: 

equations of motion: 
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In relations (1)-(4) the following notation is 

introduced: ijt - the components of the tensor of 

internal stresses;  iF - the vector components of 

volume mechanical forces; 
 iF - the components of 

the vector of Lorentz volume forces; 

, , , ,k k k k kE D H B J - the components of the vectors 

of intensity and induction of the electric field, 

intensity and induction of the magnetic field, 

respectively; 
= + k k e kJ J V - the components of 

the density vector of total current;
 


kJ  - conduction 

current density;
 
e kV  - the convective current 

density; e - the density of electric charges;  - the 

density of the substance in the current state;
 kV  - the 

components of the velocity vector; 

 
= +
 

k
k

d
V

dt t x
 - the total time derivative. 

It is necessary to add kinematic equations for the 

processes of electrical and thermal conductivity and 

the governing equations to the equations of magneto-

elasticity (1)-(4). Later, we will neglect the 

temperature effects, and take the kinematic equations 

for the processes of electrical conductivity in the form 

of Ohm's law: 

  
=  +  +  

  

j i
i i ijk k e

u u
J E B

t t
,      (5) 

and 

= i iD E , = i iB H ,           (6) 

where   is the coefficient of electrical permeability, 

 is the coefficient of magnetic permeability 

 =   = 0 0( , ) . 

When setting the boundary value problems, it is 

necessary to formulate the boundary conditions for 

mechanical and electromagnetic characteristics. In 

spatial variables for the full stress tensor, it can be 

written: 

( )  +  = +  
  1 1( )/ /

c
k ki ki i k kit s P s .      (7) 

Here ki  
is the Maxwell tensor 

 = + −  +1 2 ( )ki i k i k ki j j j jE D H B E D H B  (8) 

( )

c

ki  - is the Maxwell tensor in vacuum; iP  
- the 

components of surface forces related to the site 

dimensions in a strained state; k - the components of 

the unit normal vector to the strained boundary of the 

body; 1S - the part of the body boundary on which the 

boundary conditions in  stresses are set. 

II. NUMERICAL EXAMPLE. ANALYSIS  

OF RESULTS. 

Consider a rectilinear rod made of aluminum, l  

long with a hinged fixing in its ends. We believe that 

the flexible rod is in a constant external magnetic field 

and serves as a conductor of electric current, supplied 

to the ends of the rod from an external source and is a 

function of time t . As a result of current interaction 

with the magnetic field, the Lorentz volume forces 

arise in the rod [3]: 

 BJf


=                                   (9)      

The current density is set by the formula 

 ,sin
01

itJJ


−=                        (10)      

and the magnetic induction vector is taken as constant 

jBB

=

0
                                 (11)      

where −  is the circular frequency. In this case, the 

ponderomotive force is 

ktBJf


 sin
001
=                  (12)      

The equation of the rod transverse bending 

according to the balance of forces acting on the 

element along the axis z  takes the form  
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
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

            (13)

     

where −x  is the membrane part of the longitudinal 

normal stress.  
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Boundary conditions are: 

0/,0 22 == xww    at  lxx == ,0     (14)      

Initial conditions are:  

0,0 == ww      at     0=t                 (15)      

For the case where only the transverse load acts 

( ,0=x
 
linear case) equation (13) takes the form 

,sin
12

0012

2

4

43

tBJ
t

w
h

x

wEh
 =




+



     (16) 

Equation (13) is a differential equation of forced 

bending vibrations of a rod of constant cross section. 

Consider the physical meaning of various terms of 

equation (13). Their signs depend on the chosen sign 

rule, and do not have a special physical meaning. The 

first term of equation is the deflection resistance, 

calculated as a variation of transverse force, the 

moment of which balances the variation of the 

bending moment, which occurs due to a change in 

curvature, i.e. we have the bending resistance to 

deflection proportional to the bending rigidity of the 

rod. 

The second term is the transverse component 

caused by the curvature of a certain axial force xN . If 

the force xN  does not depend on deflection due to the 

axial load applied at the ends and so that it remains 

constant under bending, then the second term is linear 

with respect to w . Axial force xN can also be caused 

by deflection. This happens if the rod supports prevent 

the ends of the rod from moving towards each other. 

Then, if the rod is bent by transverse forces, the axial 

line will extend, and since it bends, and therefore 

becomes longer, than it was originally, the supports 

will create tensile force xN acting on the rod, which 

will increase in proportion to the square of deflection. 

The second term in this case will increase in 

proportion to the third degree of deflection, and the 

equation will become non-linear with respect to w .  

The third term presents the action of inertial 

volume load. The fourth term of equation is a 

transverse load, tending to cause deflection. 

Representing the electromagnetic load as 

,/sinsin00 lxtBJ                         (17)      

a solution to the boundary value problem (13) - (15) is 

sought in the form 

,/sinsin),( 1 lxtwtxw =               (18)      

where −1w  is the deflection in the middle of the rod 

span. Before proceeding to the solution of the 

problem, determine the normal stress x . Let − l

be the difference between the lengths of the curved 

and non-curved axes of the rod. Then 
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Substituting expression (18) and (19) into 

equation (13), after dividing by 

l

x
sin , we have 
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Given that 

ttt  3sin
4

1
sin

4

3
sin3 −=  

and collecting the coefficients at ,sin t  we obtain 

an approximate relation with respect to 
h

w1  in the 

form 

.
12

9 122
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  (21)      

The first term of relation (21) characterizes the 

load resistance due to bending; the second term 

characterizes the resistance due to the force action 

2

2

x

w
h

x



  .  

In Fig. 1, the dashed line shows the resistance 

due to the bending only, the solid line shows the total 

resistance, where −P is the right-hand side of 

expression (21). It can be seen from Fig. 1 that the 

elementary linear theory gives a good approximation 

until the deflection is small, say, of an order 

hw 3.01   
compared to the height of the cross 

section. For large deflections, the part of the load 

corresponding to the second term
2

2

x

w
hx



  grows 

rapidly and therefore must be taken into account. 

By resolving relation (21) with respect to the 

square of the circular frequency, we have 
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
 .  (22)      

To implement the oscillatory process, it is 

necessary for the right-hand side of relation (22) to be 

positive. Fulfillment of this requirement allows one to 

determine the limits of variation of the current density 

depending on 
h

w1  at known 0B . Failure to do so 

leads to the fact that part of the frequencies is equal to 

zero or to an imaginary value. The amplitudes of the 

corresponding oscillations will increase unlimitedly. 
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This is due to reaching or exceeding the critical value 

according to Euler, and the rod loses stability. 

 
Fig. 1. Deflection resistance. 

 

Figure 2 shows the dependencies
0

J  on 

relationship
h

w
1  in linear and nonlinear cases. The 

dashed line indicates the linear case, the solid line 

indicates the nonlinear case at TB 5.0
0
=   and at the 

following parameters of the rod: 

.2670;101.7

;102;5.0

32

10

3

m

kg

m

N
E

mhml

==

== −


 

From the graphs it follows that for the 

corresponding values of 
h

w
1

 
of oscillatory process, 

the component of the current density vector
0

J  must 

take the values that are below the given lines. 

  

 
Fig. 2. Comparison of solutions in linear and nonlinear cases 
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From the same graphs it follows that, given the 

appropriate values of 
0

J , it is possible to determine 

the values for the corresponding relations
h

w
1 .  

Note that everything said above regarding the 

considered rod characterizes qualitatively the 

behavior of flexible plates and shells located in an 

electromagnetic field. 

III. CONCLUSIONS. 

When a material body moves in an 

electromagnetic field, force interaction and energy 

exchange occur between the body and the field, due to 

conduction currents and body polarization and 

magnetization phenomena. If to ignore the body 

polarization and magnetization, and consider only the 

conduction currents, then the force interaction of the 

body and the field occurs only due to the Lorentz 

forces, and the energy exchange is caused by the Joule 

heat only. To assess the influence of nonlinearity in 

determining the stress-strain state of flexible current-

carrying plates and shells, nonlinear oscillations of an 

isotropic rod of constant cross section under the 

Lorentz electromagnetic force are considered. The 

obtained estimates for the rod also characterize the 

qualitative side of flexible plates and shells behavior 

in a magnetic field. 
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