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Introduction 

Rectangular plates with variable geometric and 

mechanical parameters located under dynamic 

vibration loads are used in various industries and 

construction. A rectangular transversely dynamically 

loaded plate can rest on a deformable (elastic or 

viscoelastic) base. For example, in the coverings of 

roads, bridges or runways of airfields. To study the 

dynamic strength and bearing capacity of such 

structures, knowledge of their dynamic stress-strain 

state under vertical loads is required. The problem of 

bending vibrations of viscoelastic plates on an elastic 

base is an urgent problem in the mathematical theory 

of viscoelasticity. In a closed analytical form, its 

solution, to simplify the elastic formulation, manages 

to obtain a limited number of boundary value 

problems. An alternative approach to finding an 

approximate or semi-analytical solution of an elastic 

problem is to present the solution in the form of a series 

[1,2,3]. The authors of [4] propose, using the variation 

method for elastic problems, to reduce the resolving 

equations to a system of ordinary differential 

equations. The disadvantage of these methods is their 

explicit dependence on the methods for setting the 

boundary conditions and patterns of loading. In [4], a 

finite-difference approach is used for statically loading, 

which in turn leads to difficulties in the implementation 

of boundary conditions. For high-order differential 

equations, a large template is used. All of the above 

reasoning necessitates the development of effective 

methods for solving boundary value problems of plate 

theory operating on a deformable base. 

Problem statement and solution methods In this 

paper, for the numerical solution of the problem of 

plate bending, the method of collocations and least 

residuals (KNI) is used. The KNN method has proven 

itself in solving ordinary differential equations and 

partial differential equations for hydrodynamic 

problems [6]. It is used for the first time to calculate the 

VAT of plates. Consider a rectangular plate on an 

elastic base. 

 

 
 

Fig.1. Plate on an elastic base 

 

Problem statement and solution methods In this 

paper, for the numerical solution of the problem of 

plate bending, the method of collocations and least 

residuals (KNI) is used. The KNN method has proven 

itself in solving ordinary differential equations and 

partial differential equations for hydrodynamic 

problems [6]. It is used for the first time to calculate the 

VAT of plates.  Consider a rectangular plate on an 

elastic base. The elastic base reaction will be 

considered using a one-parameter model based on the 

Winkler hypothesis (hereinafter referred to as the 

Winkler model) [5-10], and two more complex two-

parameter models of Vlasov [4] and Pasternak [8]. 

Winkler's hypothesis suggests that the reaction of the 

base is proportional to the deflection of the slab 

))()((
0

 dwtRwkp

t

m  −−= ,                (1) 

Where p - is the reaction of the base, w -is the 

deflection of the slab, 
mk -is the instantaneous bed 

coefficient (proportionality coefficient), determined 

experimentally for each type of soil. Despite its 

simplicity, in many cases the use of this model is 

sufficient to obtain practical results. However, this 

representation of the reaction of the soil has several 

disadvantages. For example, external loads are 

distributed on the soil only within the area of the 

bottom of the slab. This position does not correspond 

to real observations, according to which the soil 

settles, and therefore is stressed outside the plate. 

Another disadvantage k  -is the difficulty in 

determining the value of the bed coefficient, which 

depends on the size and shape of the test stamp. A 

more complex model of soil reaction is embedded in 

two-parameter models.  

In [8] it 
1C is proposed to obtain coefficients from 

the following considerations. connects the intensity of 

the vertical rebound of the soil with its sediment, and 

the second independent coefficient allows you to 

determine the intensity of the vertical shear force. The 

following possible parameter values are also given 
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Where  -is the Laplace operator, 
21 , mm СС -are the 

soil parameters. Here, in addition to the work of the 

base for compression (Winkler hypothesis), the work 

of the base for shear or shear is additionally taken into 

account. In [4], the authors present the base as a 

medium in which there are no longitudinal (along the 

plane of the resting plate) displacements. Then the 

coefficients can be determined by the following 

formulas 
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fE ,
fv - the instantaneous Young's modulus and the 

Poisson's ratio of the elastic base, ( )z -is the 

transverse distribution function of the elastic base, 

which characterizes the extinction of the soil tension 

with increasing depth H . In that work 
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Where. 1.5 = In [8] it is proposed to obtain 

coefficients from the following considerations. 

Connects the intensity of the vertical rebound of the 

soil with its sediment, and the second independent 

coefficient allows you to determine the intensity of the 
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Let's move on to the mathematical formulation of the 

problem. In a rectangular area, we consider a boundary 

value problem that describes the bending of the plate 

taking into account the reaction of the elastic base (Fig. 

1) [1,4]. 
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where ),,( 21 txxw -deflection of the plate; ),,( 21 txxq - 

external load; ),,( 21 txxp  - reaction of the elastic base; 

))1(12/( 22

0 −= hED - cylindrical stiffness; 
1l ,

2l ,

h  - length, width, thickness of the plate; ,0Е - 

moments young's modulus and Poisson's ratio of the 

plate.The el astic base reaction is determined for each 

model from the corresponding formulas (1), (2) with 

coefficients (3) or (4). We 
1 2( , ) 0p x x  obtain the 

classical equation of plate bending [1]. 

On the edges of the plate, we will use the known 

boundary conditions [1]. For 
1 0x = example, when 

there may be a free edge: 
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Special attention should be paid to the size . This 

function can be interpreted as the influence of the soil 

outside the plate on its edges [4,8]. Since the Winkler 

model does not account for this effect, then for her . For 

two-parameter models, it takes the following form [4] 
2
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Similarly, you can write conditions on other edges of 

the plate. Let's cover the   area with a rectangular grid 

uniform in each direction with cells   ( i=1,..., N ). 

To determine the solution in each cell, we will use the 

domain decomposition method-the method of 

iterations on subdomains (the alternating Schwartz 

method), in which the subdomain is a cell. In each cell, 

a local coordinate system is entered, associated with 

the source variables by the following formulas 
*

1 1 1 1( )y x x h= − , *

2 2 2 2( )y x x h= − , where, 
12h ,

22h

- cell dimensions in the direction, 
1x ,

2x  respectively; 

* *

1 2( , )x x - cell center coordinate. In each cell, we 

present the approximate solution as a fourth-degree 

polynomial and write a local system of linear algebraic 

equations to determine the unknown coefficients. This 

system includes.  

collocation equations 
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where k

iw - решение в ячейке 
i на k -ой итерации; 

terms of agreement 
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Where
jw is the solution from the neighboring cell on 

the k  -th iteration if
j  "calculated" and ( 1)k − - th 
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otherwise; n - external normal to the boundary
i ; 

boundary condition 0k

iw = , 0
k

iw

n


=



 in case of 

pinching. 

The local system of linear algebraic equations consists 

of 9 Integra-differential collocation equations written 

at the inner points of the cell. Also, at each cell 

boundary, depending on whether this boundary is 

adjacent to the boundary of the source region, three 

matching conditions or three boundary conditions are 

written. The resulting SLOUGH will be redefined. Its 

solution will be understood in the sense of least 

squares. 

 

Numerical results.  

Consider a rectangular plate on an elastic base 

under the action of a uniform dynamic load ipteQq −= 0

. 

 

(a) 

 

(b) 

 

 

(c) 

Fig. 2. The shape of the amplitude of a uniformly loaded plate whose two edges are pinched for the 

Winkler (a), Vlasov (b), and Pasternak (с) models. 

 

Two adjacent sides of the plate are pinched, the 

other two are free. In the experiment, calculations are 

given for three models of the base (Fig. 2, 3) for the 

parameters 
1 22 20l l= = m, 0.1h = m, 2H = m, 

Е0=200GPa, 0.28v = , 0.4fE =  GPa, 0.4fv = , 

0.3k = GPA/m, Q0=1MPa . 

 

 

 
Fig. 3. Section of the amplitude of the deflection of the plate at, two edges of which are pinched, for the 

models of Winkler (solid), Vlasov (dashed), Pasternak (dashed). 

 

The figures show that for two fQ -parameter 

models, taking into account the function on the free 

edge leads to its lifting, which from the point of view 

of real experience is more logical than for the case of 

the Winkler model, when the free edge is deformed 

without bending.
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(а)  

          (b) 

 

(с) 

 

Fig. 4. The shape of the amplitude of the free-lying plate on the ground under a special load for the models of 

Winkler (a), Vlasov (b), Pasternak (с). 

 

 

 
Fig. 5. Section of the amplitudes of the deflection of the free-lying plate on the ground for the models of 

Winkler (solid), Vlasov (dashed), Pasternak (dashed). 

 

Consider a square plate, free-lying on the ground, 

simulating, for example, the Foundation of the bridge 

support. The plate is under the action of a uniform 

dynamic (harmonic) load applied to the region

[2,8] [2,8]  (Fig.4,5), 
1 2 10l l= = m, 0.1h = m, 2H =

m, 200E = GPa, 0.28v = , 0.4fE = GPa, 0.4fv = , 

0.3k = , Q0=1 MPa.  

In this case, the deflection of the plates does not 

depend qualitatively on the choice of the base reaction 

model, since the values of deflections on the contour 

are small.  

 

 
Fig. 5. Section of the amplitudes of the deflection of the free-lying plate on the ground for the models of 

Winkler (solid), Vlasov (dashed), Pasternak (dashed). 
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