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Introduction 

Physically nonlinear problems are devoted to a 

lot of research. In [1], the basic principles of the theory 

of plasticity of anisotropic materials are presented. 

Rather new models of continuous media are stated. In 

[2], the process of elastoplastic deformation of 

transversely isotropic composites with cavities is 

studied. In [3], physical nonlinearity was considered 

together with material inhomogeneity. Homogeneous 

and inhomogeneous problems are solved in an 

axisymmetric formulation for a thick-walled cylinder. 

The geometrically and physically nonlinear problem 

of bending a three-layer plate with a soft anisotropic 

filler was considered in [4]. In [5], a solution to the 

problem of contact of plates with a physically 

nonlinear medium is presented. In [6], the resolving 

equations of the planar deformation theory of 

plasticity were constructed, which are described by 

mathematical models in which the physical relations 

are in the form of arbitrary cross-dependencies 

between invariants of stress and strain tensors. 

The method of boundary states in the field of 

solving anisotropic problems has proved its 

effectiveness. For example, in [7] the plane problems 

of the theory of elasticity were solved for rectangular 

bodies with circular cutouts, and in [8], the Saint-

Venant problem for an extended anisotropic cylinder 

was studied. 

A number of works are devoted to solving 

boundary value problems of the theory of elasticity 

with the participation of mass forces [9-12]. 

This paper presents a methodology for solving 

physically nonlinear problems of the theory of 

elasticity for transversely isotropic composite bodies, 

in which the rigidity in one direction (z axis) is much 

higher than the rigidity in the other direction, as a 

result of which a simplified theory of plasticity can be 

applied. 

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
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Statement of the problem and the 

mathematical model of its solution 

A physically nonlinear medium from a 

homogeneous continuous isotropic material is 

investigated. In the physically nonlinear theory, as 

well as in the theory of plasticity, the following 

concepts are used [13]: 

stress intensity 
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The same quantities expressed in terms of 

principal stresses: 
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The intensity of tangential stresses (according to 

Huber-Mises [14]) is 
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Shear strain rate 

 ii  3= .                               (4) 

Consider the process of deformation in the xy 

isotropy plane of a transversally isotropic body (the z 

axis is perpendicular to the isotropy planes). 

The dependence of the intensity of shear stresses 

on the intensity of shear deformations is shown in 

Figure 1. Curve 2 corresponds to a linear dependence, 

2 to a nonlinear one. 

 
Figure 1 - Dependence between stress and strain intensities 

 

In figure 1 G  is the shear modulus for the plane 

of isotropy, cG  is the secant shear modulus for the 

same plane, and 
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i
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We introduce a small parameter   

characterizing the deviation of the secant shear 

modulus from the shear modulus: 

 
)1( −=GGc .                             (6) 

Let the material have a nonlinear net shear 

diagram described by the relation 

 
k
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where A, B, k – are material constants determined from 

the experiment on shear in the plane of isotropy. From 

(6) it follows 

 
G
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Substituting equalities (5), (8) into dependence 

(7), we obtain 
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The relationship between the intensity of shear 

stresses and the intensity of shear deformations does 

not depend on the type of stress state. From this it 

follows that the dependence )( ii f  =  is the same 

for any combination of stresses and strains and can be 

determined from any experiment, for example, by a 

pure shift. Having stresses and strains from the 

simplest experiment, using formulas (1), (2), (3), (4), 

we can obtain the dependence ii  ~  and calculate 

the small parameter by the formula (9). 

In a similar way, we can introduce a small 

parameter   for planes perpendicular to the isotropy 

planes: 
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where C, B, h – are material constants determined 

from the experiment on shear in a plane perpendicular 
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to the isotropy plane, c

zG , zG  – is the secant shear 

modulus and shear modulus in the same plane. 

The state of the medium in the simplified theory 

of plasticity is subject to the generalized Hooke law 

[15]: 
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where )( p  and )(q  are plasticity functions of type 

A.A. Ilyushin, equal to zero in the elastic zone; i – 

parameters of a transversely isotropic medium 

associated with technical constants by the following 

expressions: 
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here zE  and E  are the elastic modules, respectively, 

in the direction of the z axis and in the isotropy plane, 

z  is the Poisson's ratio characterizing compression 

along r during tension along the z axis,   is the 

Poisson's ratio characterizing lateral compression in 

isotropic planes under tension in the same planes, G  

and zG  – shear modulus in isotropy planes and 

perpendicular to them. 

If, in Hooke's law (11), instead of shear modules, 

secant modules (6), (10) are used, and discrete values 

)( p , )(q  are assigned to functions  ,  , 

respectively, then it will have: 

zzyyxxxx  3242 )]1(2[ ++−+= ; 

zzxxyyyy  3242 )]1(2[ ++−+= ; 
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xyxy  )1(2 4 −= ; 

xzxz  )1(2 5 −= ; 

yzyz  )1(2 5 −= . 

This purpose allows us to describe the actual 

behavior of a physically nonlinear transversely 

isotropic medium through the constants of a certain 

elastic medium and small parameters   and  , the 

zero values of which correspond to a linear medium. 

Next, asymptotic series are introduced: 
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Hooke's law (12) after replacing the summation 

and postulate variables with zero values for any 

formally non-existent decomposition element for 

which the index has a negative value ( 0n ) leads to 

the corollary: 
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Then you can write: 

 
)()()( ~ n

ji
n
ji

n
jis  −= .                     (13) 

and get for the decomposition elements the familiar 

form of the generalized Hooke law for a transversely 

isotropic body: 
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Cauchy's ratio: 
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Denoting through 0
i  volume forces and 

assuming the series to be known 
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we rewrite the equilibrium equations in the form 
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Relations (14) - (16) in shape correspond to the 

deformed state of a linear transversely isotropic elastic 

body. 

The method of boundary states with 

perturbations 

Any internal state of a linear isotropic 

elastostatic medium constitutes a set of displacements, 

strains, and stresses agreed upon by the governing 

relations = },,{ jijiiu  . Their trace at the 
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boundary V  of region V  with a single external 

normal jn  contains information about displacements 

and forces along the boundary = },{ ii pu , 

jjii np =  and corresponds to the boundary state. 

The spaces of possible internal and boundary states 

are Hilbert and isomorphic [16]: 

},...,,{},...,,{ )()2()1()()2()1( nn Г  == . 
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Any correct problem reduces to an infinite 

system of linear algebraic equations 

qc =Q ,                                 (17) 

with respect to the vector of Fourier coefficients c  of 

the expansion of the desired state in a series along an 

orthonormal basis 

 =
l

l
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Matrix Q  is structurally determined only by the 

type of boundary conditions and numerically through 

an orthonormal basis. In the first and second main 

problems, matrix Q  is the identity matrix. The vector 

of the right-hand sides includes information on the 

specific filling of the boundary conditions. 

At each step, an infinite system of equations (17) 

is formulated in accordance with the boundary 

conditions of this iteration. In practice, it is enough to 

consider real boundary conditions only at 0=n , 

solving only the main problem with EQ   in 

subsequent iterations and taking into account the 

corrections on the right-hand side caused by the 

appearance of fictitious volume forces in the relations, 

which in the general case are not potential, but have a 

polynomial character. 

Before performing iterations, the following 

actions are performed: on the basis of the general 

solution and the basis of harmonic functions in 

VV  , the bases of spaces   and   are formed; 

isomorphic orthonormal bases are constructed; the 

members of )(0 n

i  expansion series for 0

i  are 

established. Due to the independence of the initial 

basis from small parameters, the orthonormal basis is 

constructed exactly once and then used in each 

iteration. 

At step 0=n : state )0(~
  is sought due to volume 

forces )(0 n

i ; a correction corresponding to this state 

is worn into real boundary conditions, an infinite 

system of algebraic equations is formed qc =)0(Q ; its 

solution and linear combination (18) give the internal 

state )0( ; its sum with the state of the bulk forces 

prepares the initial approximation for  : 

.
~ )0()0(  +=  According to the previous (13) 

formulas, the tensor 
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ij . 
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ijs  −=  and vector 

)(n

i  are constructed; state )(~ n  is sought due to 

volume forces )(n

i  in accordance with (16); the 

correction value from them is introduced into the 

boundary conditions and the first main problem for the 

system of equations (14) - (16) is solved; summing 

with the state of fictitious volume forces and adjusting 

the stress field in accordance with (13) 
)()()( ~ n

ji

n

ji

n

ij s  +=  allow this additive to be included in 

the accumulated resulting state with coefficients 
n , 

n . 

After performing a sufficient number of 

approximations, it is necessary to carry out the final 

substitution of the values of small parameters and go 

to dimensional quantities. 

 

The solution of the problem 

The task for the body in the form of a cube (the 

Cartesian coordinate system is used). The body 

occupies the region },1,,1),,{( −= zyxzyxV  

and the technical constants of the material [17]: 

3992.1=E ; 6682.2=zE ; 0682.0= ; 248.0=z ; 

6549.0=G ; 5396.0=zG ; 5.0=A ; 2.1=B ; 

4.0=C ; 1.1=D ; 2=k ; 1.0=i . Small 

parameters:; 0.053339 = ; 0.054855 = . 

The body is loaded along the faces with uniform 

unitary forces, causing comprehensive tension and 

shear. Volume forces are absent: 00 =i . 

We show the expressions for strains and stresses 

for n = 3: 
32 38033.043601.049984.0573.0  +++== yyxx ; 

32 10616.01217.013952.018889.0  −−−=zz ;(19) 
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After substituting small deformation parameters: 

0.600964  == yx  ; 181087.0=z ; 

980383.0== xzyz  ; 806445.0=xy . 

The error will be estimated by comparing the 

strains of the obtained state with the strains of the 

elastic state of the material, the technical constants of 

which: 
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For the last state: 

0.600967  == yx  ; 181086.0=z ; 

980392.0== xzyz  ; 806452.0=xy . 

For deformations, the errors were: xx  and yy  – 

0.00047 %; z  – 0.00043%, yz  and xz  – 0.0009 %; 

xy  – 0.00081%. 

We study the convergence of the obtained series 

with a significant increase in small parameters. Let 

now 3.0==CA ; 2.0=B ; 1.0=D ; 2=k ; 

1.00 = , 0.511401 =
 

and 0.4255 = . Here, a 

comparison must be made with the state for a material 

for which 723381.0=E , 52729.2=zE , 

13028.0= ; 424089.0=z ; 31.0=zG ; 

32.0=G . For this strain state: 

1.03449 == yyxx  ; 60072.0=z ; 

6129.1== xzyz  ; 5625.1=xy . 

After substituting small parameters in series 

(19), the strains amounted to: 

when n = 3: 0.99352 == yyxx  ; 060072.0=z ; 

56.1== xzyz  ; 45563.1=xy ; 

when n = 14: 1.03449 == yyxx  ; 060074.0=z ; 

6129.1== xzyz  ; 56243.1=xy . 

Thus, the accuracy of calculations is ensured by 

increasing the number of iterations. 

We now consider the asymmetric problem for a 

cylinder (a cylindrical coordinate system is used). The 

body occupies the area 

}22,10),{( −= zrzrV  and material 

technical constants: 3992.1== rEE ; 6682.2=zE ; 

0682.0== r ; 248.0=z ; 6549.0== rGG ; 

5396.0=zG ; 5.0=A ; 2.0=B ; 4.0=C ; 1.0=D ; 

2=k ; 1.0=i . Small parameters: 0.206026 = ; 

0.240178 = . 

The body is loaded along the faces 1S  and 2S  

with the efforts of: 
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=

.10,2},1,0{

;10,2},1,0{

;22,1},0,1{

},{

rz

rz

zr

pp zr
 

00 =i
. 

Solution (13) in the third approximation (n = 3) 

is the series: 
32 38033.043601.049984.0573.0  rrrru +++= ; 

32 10616.01217.013952.018889.0  zzzzw −−−=

; 

1=== zr   ; 0===   zrrz . 

After substituting the small parameter, the 

strains are equal: 

0.697819  ==  r ; 154051.0=z ; 

0===   zrrz . 

We estimate the error in a similar way, only now 

we need a comparison with a state whose technical 

constants are (20): 12778.1=rE ; 62834.2=zE ; 

084403.0=r ; 297818.0=z ; 42.0=zG ; 

52.0=rG . 

For the last state: 

698547.0==  r ; 153848.0=z ; 

0===   zrrz . 

For deformations, the errors were: r  and   – 

0.1 %; z  – 0.13%.. 

 

Conclusion 

An analysis of the foregoing allows us to 

conclude that the method of boundary states with 

perturbations has proven to be an effective means of 

writing out an explicit solution to physically nonlinear 

problems of mechanics for and transversely isotropic 

media. To solve a particular physically nonlinear 

problem, it is necessary to have an appropriate 

solution to the linearly elastic problem. However, the 

accuracy of the approximate solution in the case of 

nontrivial boundary value problems strongly depends 

on the magnitude of small parameters deflecting the 

nonlinear medium from the linear medium. 

 

The study was carried out with the financial 

support of RFBR and the Lipetsk Region as part of the 

research project No. 19-41-480003 "p_a". 
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