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Introduction 

The solution of physically nonlinear problems 

reduces to nonlinear differential equations, the 

analytical solution of which can be obtained only in 

the simplest cases. Therefore, various approximate 

methods for solving physically nonlinear problems 

and related problems of plasticity are widespread. 

These methods are based on the linearization of 

differential equations and are reduced to solving 

problems of the theory of elasticity. Such methods 

include: the method of elastic solutions (method A. A. 

Ilyushin [1]), the method of variable parameters of 

elasticity, reducing the solution of nonlinear problems 

to the solution of a number of linear problems of the 

theory of elasticity for inhomogeneous bodies, the 

method of sequential loading (step method), based on 

summing n elastic problems when dividing the 

external load into n small values. 

The aim of the work is to develop a method for 

constructing the fields of characteristics of a stress-

strain state for a homogeneous physically nonlinear 

isotropic body. The system of interconnected 

procedures meets its achievement: the correct 

formulation of the problem, the dimensionlessness (P-

theorem), the choice of a solution method, and 

verification of results. 

An effective tool for constructing elastic fields of 

isotropic and anisotropic bodies has been the modern 

energy method of boundary states (MGS) [2], which 

was initially oriented towards computer algebras. Its 

development in terms of connecting the perturbation 

method (MGSV) [3] allows you to effectively cope 

with the features of the physical plan for the 

environment. 

The boundary state method is used to solve a 

wide class of problems in the theory of elasticity. 

Thermoelasticity problems were investigated, 

anisotropic problems were considered, for example, in 

[4] plane problems of the theory of elasticity for a 

doubly connected region were solved, and in [5] the 
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proposed method for solving plane problems was 

generalized to the spatial case. 

A number of works are devoted to solving 

boundary value problems of the theory of elasticity 

with the participation of mass forces [6-9]. The 

peculiarity of the solution is that the elastic field 

satisfies the given mass and surface forces at the same 

time. 

Below is a methodology for constructing a 

solution to the spatial problem of physically nonlinear 

deformation of an isotropic medium. 

 

Statement of the problem and the 

mathematical model of its solution 

A physically nonlinear medium from a homogeneous 

continuous isotropic material is investigated. In the 

physically nonlinear theory, as well as in the theory of 

plasticity, the following concepts are used [10]: 

stress intensity 
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strain rate 
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The same quantities expressed in terms of 

principal stresses: 
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The dependence of the stress intensity on the 

strain intensity is shown in Fig. 1. Curve 1 

corresponds to a linear dependence, 2 - nonlinear. 

 

 

 

 
Рисунок 1 - Зависимость между интенсивностями напряжений и деформаций 

 

On the image 1 0E  – elastic modulus, cE  – 

secant module, moreover 

 
i

i
cE




= .                                  (3) 

We introduce a small parameter   

characterizing the deviation of the secant modulus 

from the elastic modulus: 

 )1(0 −= EEc .                             (4) 

Let the material have a nonlinear tensile-

compression diagram described by the relation 

 k
iii BA  −= ,                             (5) 

where А, B, k – are material constants determined from 

experiment. From (4) it follows 

0

1
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Eñ−= . 

Substituting in the last equality the dependencies 

(3) and (5), we obtain 
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The relationship between stress intensity and 

strain intensity does not depend on the type of stress 

state. From this it follows that the dependence 

)( ii f  =  is the same for any combination of 

stresses and strains and can be determined from any 

experiment, for example, uniaxial tension, in which 

the main stresses and strains: 

 =1 ; 021 == ;  =1 ;  −== 32 ,  

where   – Poisson's ratio. Substituting these values in 

(1) and (2), we obtain 

  =i ; 



3
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Having a dependence of  ~  under uniaxial 

tension, according to formulas (7), one can obtain a 

dependence of ii  ~ . The maximum strain value is 

  – the value known from experience on uniaxial 
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tension, substituting it into the right one from formulas 

(7), is determined by i , and then by ( 6) the small 

parameter   is calculated. 

The state of the environment is subject to 

Hooke's law [11]: 

,2;2

;2;2

;2;2

xzxzzz

yzyzyy

xyxyxx







=+=

=+=

=+=

 

where   и   – Lame parameters;   – volumetric 

deformation, zyx  ++= . 

If in Hooke's law instead of Young's module we 

use the secant module (4), then it will have the form: 

 xxxxxx 23/22 −++= ; 

 yyyyyy 23/22 −++= ; 

 zzzzzz 23/22 −++= ; 

  xyxyxy 22 −= ;               (8) 

 yzyzyz 22 −= ; 

 xzxzxz 22 −= , 
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This purpose allows us to describe the actual 

behavior of a physically nonlinear medium through 

the constants of a certain elastic medium and a small 

parameter  , the zero value of which corresponds to 

a linear isotropic medium. 

We introduce the asymptotic series: 
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Superscripts in parentheses, equal to the degrees 

of a small parameter, identify the number of the 

corresponding element in the asymptotic series. 

Hooke's law (8) after replacing the summation 

and postulate variables with zero values for any 

formally non-existent decomposition element for 

which the index has a negative value ( 0n ) leads to 

the corollary: 
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After redesignation (tensor-index form of 

record): 
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we obtain for the decomposition elements the familiar 

form of the generalized Hooke law for an isotropic 

body: 
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Cauchy's ratio is converted to a similar form: 
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Denoting through 0
i  volume forces and 

assuming the series to be known 
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we rewrite the equilibrium equations in the form 
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Relations (11) - (13) in shape correspond to the 

deformed state of an isotropic linearly elastic body. 

 

Solution method 

Any internal state of a linear isotropic 

elastostatic medium constitutes a set of displacements, 

strains, stresses = },,{ jijiiu   coordinated by 

the defining relations. Their trace at the boundary V  

of region V  with a single external normal contains 

information about displacements and forces along the 

boundary = },{ ii pu , jjii np =  and 

corresponds to the boundary state. The spaces of 

possible internal and boundary states are Hilbert and 

isomorphic [2]: Ã . 

Any correct problem reduces to an infinite 

system of linear algebraic equations 

 qc =Q ,                            (14) 
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with respect to the vector of Fourier coefficients c  of 

the expansion of the desired state in a series along an 

orthonormal basis 

 =
l

l
lc )( .                            (15) 

The Q  matrix is structurally determined only by 

the type of boundary conditions (BC) and numerically 

through an orthonormal basis. In the first and second 

main tasks, matrix Q  is the identity matrix. The 

vector of the right parts includes information about the 

specific content of the BC. 

At each step, an infinite system of equations (14) 

is formulated in accordance with the BC of this 

iteration. In practice, it is quite realistic to consider BC 

only at 0=n , solving only the main problem with 

EQ   in subsequent iterations and taking into 

account the corrections on the right-hand side caused 

by the appearance of fictitious volume forces in the 

ratios, which in the general case are not potential, but 

have a polynomial character. The general method of 

finding the internal state for a class of such forces is 

known [12]. 

Before performing iterations, the following 

actions are performed: on the basis of the general 

Papkovich-Neiber solution and the basis of harmonic 

functions in VV  , the bases of spaces   and   

are formed [2]; isomorphic orthonormal bases are 

constructed; members of )(0 n
i  decomposition series 

for 0
i  are established. Due to the independence of 

the initial basis from parameter  , the orthonormal 

basis is constructed exactly once and then used in each 

iteration. 

At step 0=n : state 
)0(~

  is sought due to 

volume forces )(0 n
i ; in real BC, a correction is made 

corresponding to this state, an infinite system of 

equations qc =)0(Q  is formed; its solution and linear 

combination (15) give an internal state of 
)0( ; its sum 

with the state of the bulk forces prepares the initial 

approximation for  : )0()0( ~
 += . According to 

the previous (10) formulas, the tensor 
)0(~

ij  is 

established. 

At 0n : the tensor 
)()()( ~ n

ji
n
ji

n
ijs  −=  and the 

vector )(n
i  are constructed; state 

)(~ n  is sought due 

to volume forces )(n
i  in accordance with (13); in BC, 

the correction value from them is introduced and the 

first main problem for the system of equations (11) – 

(13) is solved; summing with the state of fictitious 

volume forces and adjusting the stress field in 

accordance with (10) 
)()()( ~ n

ji
n
ji

n
ij s  += , this additive 

can be included in the accumulated resulting state with 

a coefficient of 
n . 

After performing a sufficient number of 

approximations, it is necessary to carry out the final 

substitution of the value   and go to dimensional 

values. 

 

The solution of the problem 

 

Testing of the proposed methodology was 

carried out on a rather simple first basic task for a 

cube-shaped body. After carrying out the 

dimensionlessness, an analogy of which is shown in 

[13], the body occupies the region 

}1,,1),,{( −= zyxzyxV  and the technical 

constants of the hypothetical isotropic material (4) – 

(6): 30 =E ; 5.0= ; 3=A ; 2=B ; 2=k ; 1.0=i

. Small parameter (6) 1/15 = . 

Loaded along faces 1S  and 2S  by forces (Figure 

2): 

( )
( )




−


=

2

1

,,},0,0,1{

,,},0,0,1{
},,{

Szyx

Szyx
ppp zyx

. 

No mass forces: 00 =i . 

 
Figure 2 - Boundary conditions for the test problem 

 

The application of the boundary-state method 

with perturbations allows us to consider an isotropic 

medium with dimensionless Young's modulus in 

tension 3  0 =E  and a Poisson's ratio of 0.5 =  at 

each iteration step. 

Solution (9) is the series: 
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1=x ; 0===== xyxzyzzy  . 

After substituting the small strain parameter 

(calculated by the Cauchy relations [8]) for n = 3, they 

are equal: 

0.35713  =x ; 0.17856−== zy  ; 

0=== xyxzyz  . 

The error will be estimated by comparing the 

strains of the resulting state with the strains of the 

elastic state, where the secant modulus (4) 

8.20 == cEE  is used as the elastic modulus. For the 

last state: 

357143.0=x ; 17857.0−== zy  ; 

0=== xyxzyz  . 

For deformations, the errors were: x  – 0.36%; 

y  and z  – 0.56%. Those. three iterations to achieve 

satisfactory accuracy are sufficient. 

We study the convergence of the obtained series 

with a significant increase in the small parameter. 

Now let 3=A ; 8=B ; 2=k ; 2.00 =  and 

0.53333 = . Now the comparison must be carried 

out with the state at 4.10 == cEE . For this state of 

deformation: 

0.714286 =x ; 0.357143−== zy  ; 

0=== xyxzyz  . 

After substituting a small parameter in series 

(16), deformations: 

at n = 3: 0.65649   =x ; 0.32824 −== zy  ; 

0=== xyxzyz  ; 

at n = 16: 71427 0.  =x ; 

0.357135 −== zy  ; 0=== xyxzyz  . 

For the latter case, the errors were: x  – 0.22%; 

y  and z  – 0.22%. Accuracy is ensured by 

increasing the number of iterations. 

The material considered earlier was 

incompressible ( 5.00 = ). When using material with 

a non- 5.0  Poisson's ratio, the accuracy of the 

calculations decreases. For example, for 30 =E ; 

0.066666 = ; n = 3, the accuracy of the calculation 

of deformations depending on the Poisson's ratio is 

presented in table 1. 

 

Table 1 

Decision error analysis 

 4.00 =  3.00 =  2.00 =  1.00 =  05.00 =  

x  %44.0  %89.0  %33.1  %78.1  %2  

y , z  %1.1  %96.2  %66.6  %77.17  %98.39  

 

It should be noted that the error is laid already at the 

first iteration and an increase in the number n does not 

lead to its decrease. 

 

Conclusion 

An analysis of the foregoing allows us to 

conclude that the MGSW has proven to be an effective 

means of writing out an explicit solution in physically 

nonlinear problems of mechanics for bodies made of 

materials in which the tensile-compression diagram is 

described by a quadratic curve. The accuracy depends 

on the value of the Poisson's ratio, since Hooke's law 

(8) describes the dependence of strains on stresses in 

the theory of plasticity, in which, as you know, a 

Poisson's ratio of 0.5 is taken. 

 

The study was carried out with the financial 

support of RFBR and the Lipetsk Region as part of the 

research project No. 19-41-480003 "p_a". 
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