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which is further solved by the direct and orthogonal Godunov sweep method with a combination of the Mueller and 
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Key words: crack, viscoelastic cylinder, freezing procedure, Navier equation, orthogonal sweep, ordinary 

differential equation. 

Language: English 

Citation: Safarov, I. I., Тeshaev, M. K., Boltaev, Z. I., Kulmuratov, N. R., & Hamroev, N. N. (2019). Own waves 

in a spatial viscoelastic cylinder with radial crack. ISJ Theoretical & Applied Science, 12 (80), 341-345. 

Soi: http://s-o-i.org/1.1/TAS-12-80-67      Doi:    https://dx.doi.org/10.15863/TAS.2019.12.80.67  

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:Safarov54@mail.ru
mailto:nurillo.Kulmuratov.64@mail.ru
http://s-o-i.org/1.1/TAS-12-80-67
https://dx.doi.org/10.15863/TAS.2019.12.80.67


Impact Factor: 

ISRA (India)        = 4.971 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.126  

ESJI (KZ)          = 8.716 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

Philadelphia, USA  342 

 

 

Scopus ASCC: 2210. 

 

Introduction. 

In a number of works, for the control of linearly 

extended objects, the use of a rod wave is proposed to 

give rise to the minimum velocity dispersion and 

torsion wave mode, in which there is no dispersion 

[1,2]. As an informative parameter in the waveguide 

control of linearly extended objects, as a rule, the 

reflection coefficient is used. The specified parameter 

does not allow to identify longitudinal defects 

[3,4]. Taking into account the damping ability of the 

waveguide material plays an important role in the 

dynamic behavior of the structure [5,6]. It leads to a 

noticeable weakening of natural oscillations, a 

significant decrease in amplitudes during forced 

oscillations and smoothing of stresses in the 

concentration zone during oscillations. The complexity 

of their solution is explained by many reasons, for 

example, the rheological properties of real waveguides, 

non-classical geometric shapes, etc., which causes a 

wide variety of schematized models to describe real 

phenomena in one approximation or another and makes 

it difficult to create a unified mathematical model of a 

mechanical system [7] . 

The dispersion dependences having a certain 

number of traveling wave modes in the frequency 

range were obtained in [8, 9]. In this paper, we consider 

one of the problems of this type on the propagation of 

Eigen waves in an isotropic viscoelastic cylindrical 

waveguide with a radial crack. The viscoelastic 

properties of materials are described using the 

Boltzmann – Voltaire integral [10, 11]. A solution 

technique and an algorithm have been developed to 

study the propagation of waves in a viscoelastic 

cylinder with a radial crack. 

 

2. Statement of the problem of wave 

propagation in an infinite cylinder with a radial 

crack. 

A viscoelastic isotropic cylindrical waveguide is 

considered which occupies a region in  

𝑉 = {𝑟0 < 𝑟 ≤ 𝑅, 0 < 𝜃 ≤ 𝜃0, −∞ < 𝑧 < ∞}, 

a dimensionless system of cylindrical coordinates 

(𝑟, 𝜙, 𝑧). The waveguide has a collinear direction Oz 

axis. Let the natural (harmonic) waves propagate along 

the Oz axis in an infinite viscoelastic cylinder with a 

radial crack. The relationship between stress and strain 

is as follows [7] 

𝜎𝑖𝑘 = �̃�𝜃𝛿𝑖𝑘 + 2�̃�휀𝑖𝑘. 

Here 𝜎𝑖𝑘- is the stress tensor, 휀�̂�𝑘- is the strain 

tensor, 𝜃 -is the volumetric strain, �̃� and �̃� is the 

operator modulus of elasticity [3,5] 

�̃�𝜙(𝑡) = 𝜆01 [𝜙(𝑡) − ∫ 𝑅𝜆(𝑡 − 𝜏)𝜙(𝑡)𝑑𝜏
𝑡

0

] ; 

�̃�𝜙(𝑡) = 𝜇01 [𝜙(𝑡) − ∫ 𝑅𝜇(𝑡 − 𝜏)𝜙(𝑡)𝑑𝜏
𝑡

0
],          (2) 

𝜙(𝑡) – a random function of time; 𝑅𝜆(𝑡 − 𝜏) and 

𝑅𝜇(𝑡 − 𝜏) - relaxation nuclei and 𝜆01, 𝜇01- instant 

elastic moduli. 

We take the integral terms in (2) as small, then the 

functions 𝜙(𝑡) = 𝜓(𝑡)𝑒−𝑖𝜔𝑅𝑡, where 𝜓(𝑡)- is a slowly 

varying function of time, 𝜔𝑅- is a real constant. 

Further, applying the freezing procedure [5], we note 

relations (2) with approximate forms 

�̄�𝜙 = 𝜆01[1 − 𝛤𝜆
С(𝜔𝑅) − 𝑖𝛤𝜆

𝑆(𝜔𝑅)]; �̄�𝜙

= 𝜇01[1 − 𝛤𝜇
С(𝜔𝑅) − 𝑖𝛤𝜇

𝑆(𝜔𝑅)]𝜙, 

Where 

𝛤𝜆
𝐶(𝜔𝑅) = ∫ 𝑅𝜆(𝜏) 𝑐𝑜𝑠 𝜔𝑅𝜏𝑑𝜏;

∞

0

𝛤𝜆
𝑆(𝜔𝑅)

= ∫ 𝑅𝜆(𝜏) 𝑠𝑖𝑛 𝜔𝑅 𝜏𝑑𝜏
∞

0

, 

𝛤𝜇
𝐶(𝜔𝑅) = ∫ 𝑅𝜇(𝜏) 𝑐𝑜𝑠 𝜔𝑅𝜏𝑑𝜏

∞

0

, 𝛤𝜇
𝑆(𝜔𝑅)

= ∫ 𝑅𝜇(𝜏) 𝑠𝑖𝑛 𝜔𝑅 𝜏𝑑𝜏
∞

0

 

- respectively, the cosine and sine Fourier images 

of the core relaxation of the material. As an example of 

a viscoelastic material, we take three parametric 

relaxation nuclei 

𝑅𝜆(𝑡) = 𝑅𝜇(𝑡) = 𝐴𝑒−𝛽𝑡/𝑡1−𝛼. 

The basic equations of motion of a viscoelastic 

cylindrical mechanical waveguide occupying region V, 

which are defined by the following equations [2]: 

 
𝜕𝜎𝑖𝑘

𝜕𝑥𝑘
= 𝜌

𝜕2𝑢𝑖

𝜕𝑡2 ,                                 (3) 

where 𝜌 - is the density of the material. 

Relations (1) and (3) after identical algebraic 

transformations are reduced to a system of six 

differential equations resolved with respect to the first 

derivative with respect to the radial coordinate 

𝜕𝑢𝑟

𝜕𝑟
=

1

𝐾𝜆

𝜎𝑟𝑟 −
�̄�

𝐾𝜆

(
1

𝑟

𝜕𝑢𝜙

𝜕𝜙
+

𝑢𝑟

𝑟
+

𝜕𝑢𝑧

𝜕𝑧
) ; 

𝜕𝑢𝜙

𝜕𝑟
=

1

�̄�
𝜎𝑟𝜙 −

1

𝑟
(

𝜕𝑢𝑟

𝜕𝜙
− 𝑢𝜙) ; 

𝜕𝑢𝑧

𝜕𝑟
=

1

�̄�
𝜎𝑟𝑧 −

𝜕𝑢𝑟

𝜕𝑧
; 

𝜕𝜎𝑟𝑟

𝜕𝑟
= 𝜌

𝜕2𝑢𝑟

𝜕𝑡2
−

�̃�

𝑟
−

1

𝑟

𝜕𝜎𝑟𝜙

𝜕𝜙
−

𝜕𝜎𝑟𝑧

𝜕𝑧
; 

𝜕𝜎𝑟𝜙

𝜕𝑟
= 𝜌

𝜕2𝑢𝜙

𝜕𝑡2
−

1

𝑟

𝜕

𝜕𝜙
[𝜎𝑟𝑟 − �̃�] −

2𝜎𝑟𝜙

𝑟
−

𝜕

𝜕𝑧
�̃�; 

𝜕𝜎𝑟𝑧

𝜕𝑟
= 𝜌

𝜕2𝑢𝑧

𝜕𝑡2
−

𝜕

𝜕𝑧
[𝜎𝑟𝑟 − 2�̄� (

𝜕𝑢𝑟

𝜕𝑟
−

𝜕𝑢𝑧

𝜕𝑧
)] −

𝜎𝑟𝑧

𝑟

−
1

𝑟

𝜕

𝜕𝜙
�̃�, 

�̃� = 2�̄� [
𝜕𝑢𝑟

𝜕𝑟
−

1

𝑟
(

𝜕𝑢𝜙

𝜕𝜙
+ 𝑢𝑟)] ; 

�̃� = �̄� (
𝜕𝑢𝜙

𝜕𝑧
+

1

𝑟

𝜕𝑢𝑧

𝜕𝜙
) ,К𝜆 = �̄� + 2�̄�. 
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Where 𝜎𝑟𝑟 , 𝜎𝑟𝜙 , 𝜎𝑟𝑧, 𝜎𝜙𝜙 , 𝜎𝜙𝑧 , 𝜎𝑧𝑧- are the 

components of the stress tensor, respectively; 

휀𝑟𝑟 , 휀𝑟𝜙, 휀𝑟𝑧, 휀𝜙𝜙, 휀𝜙𝑧 , 휀𝑧𝑧 -respectively, the 

components of the strain tensor. the relationship 

between stress and strain is given in (1). The boundary 

conditions are set in the form: 

𝑟 = 𝑟0 → 0, 𝑅: 𝜎𝑟𝑧 = 𝜎𝑟𝑟 = 𝜎𝑟𝜙 = 0;              (5) 

𝜙 = 0,2𝜋: 𝑢𝜙 = 0; 𝜎𝜙𝑧 = 𝜎𝜙𝑟 = 0,                 (6) 

conditions (5) at r = 0, in the physical plane it can be 

interpreted as the result of the passage to the limit, from 

a hollow cylinder with a free inner surface to a solid, 

when the inner radius tends to zero. 

 

3. Solution Methods. 

In the case of traveling harmonic waves along the 

z axis, the solution of the boundary value problem (7), 

(8), (9) allows separation of variables [8] 

𝑢𝑟 = 𝑤(𝑟) 𝑐𝑜𝑠
𝜙

2
𝑐𝑜𝑠( 𝑘𝑧 − 𝜔𝑡); 

𝑢𝜙 = 𝑣(𝑟) 𝑠𝑖𝑛
𝜙

2
𝑐𝑜𝑠( 𝑘𝑧 − 𝜔𝑡); 

𝑢𝑧 = 𝑢(𝑟) 𝑐𝑜𝑠
𝜙

2
𝑠𝑖𝑛( 𝑘𝑧 − 𝜔𝑡); 

𝜎𝑟𝑟 = 𝜎(𝑟) 𝑐𝑜𝑠
𝜙

2
𝑐𝑜𝑠( 𝑘𝑧 − 𝜔𝑡); 

𝜎𝑟𝜙 = 𝜏𝜙(𝑟) 𝑠𝑖𝑛
𝜙

2
𝑐𝑜𝑠( 𝑘𝑧 − 𝜔𝑡); 

𝜎𝑟𝑧 = 𝜏𝑧(𝑟) 𝑐𝑜𝑠
𝜙

2
𝑠𝑖𝑛( 𝑘𝑧 − 𝜔𝑡),             (7) 

Where 𝑤(𝑟), 𝑣(𝑟), 𝑢(𝑟)- are the displacement 

amplitudes, 𝜎(𝑟), 𝜏𝜙(𝑟), 𝜏𝑧(𝑟) - are the stress 

amplitudes of the stress tensor components, 𝜔 = 𝜔𝑅 +
𝑖𝜔𝐼  - is the complex natural frequency, 𝜔𝑅-is the 

natural wave propagation frequency, 𝜔𝐼- is the 

damping coefficient, к – is the wave number, 𝐶 = 𝜔/𝑘 

-is the phase velocity. 

Substituting (7) into (4), (5), (6), we obtain the 

spectral boundary value problem. The problem is 

reduced to a system of ordinary differential equations 

with complex coefficients 

𝑤 ′ =
𝜎

К𝜆

−
�̄�

К𝜆

(𝑘𝑢 +
𝑣

𝑟
+

𝑤

𝑟
) ; 

𝑣 ′ =
𝜏𝜙

�̄�
+

𝜈

𝑟
+

𝑤

2𝑟
; 

𝑢′ =
𝜏𝑧

�̄�
+ 𝑘𝑤; 

𝜎 ′ = −𝜔2𝜌𝑤 +
�̃�

𝑟
−

𝜏𝜙

2𝑟
− 𝑘𝜏𝑧; 

𝜏𝜙
′ = −𝜔2𝜌𝑣 −

2𝜏𝜙

𝑟
+ (𝜎 + �̃�)

1

2𝑟
− 𝑘�̃�; 

𝜏𝑧
′ = −𝜔2𝜌𝑢 −

𝜏𝑧

𝑟
−

�̃�

2𝑟
+ 𝑘(𝜎 + 2�̄�(𝑘𝑢 −

𝑤 ′)),  (. . . )′ =
𝑑

𝑑𝑟
.  (8) 

 Here  

�̃� = 2𝜇 (
𝑣+𝑤

2𝑟
− 𝑤 ′) ; �̃� = 𝜇 (−

𝑢

2𝑟
− 𝑘𝑣), t 

he boundary conditions 

𝑟 = 𝑟0 → 0: 𝜎 = 𝜏𝜙 = 𝜏𝑧 = 0; 

𝑟 = 𝑅: 𝜎 = 𝜏𝜙 = 𝜏𝑧 = 0.          (9) 

 Thus, the spectral boundary-value problem (8), 

(9) is formulated that describes the propagation of 

harmonic waves in an infinite cylinder with a radial 

crack. We note that the choice of boundary conditions 

on the faces of the slit in the form of (6) was determined 

primarily by the possibility of separation of variables 

along the coordinates r and φ, which greatly simplifies 

the solution of the original problem. Separation of 

variables is also possible in the case of the following 

boundary conditions: 

𝜙 = 0:  𝜎𝜙𝜙 = 0; 𝑢𝑟 = 𝑢𝑧 = 0; 

𝜙 = 2𝜋: 𝜎𝜙𝜙 = 0; 𝑢𝑟 = 𝑢𝑧 = 0.                (10) 

Indeed, performing a change of variables in (7), 

(8) so that conditions (10) are satisfied 

𝑢𝑟 = �̃�(𝑟) 𝑠𝑖𝑛
𝜙

2
𝑐𝑜𝑠( 𝑘𝑧 − 𝜔𝑡); 

𝑢𝜙 = �̃�(𝑟) 𝑐𝑜𝑠
𝜙

2
𝑐𝑜𝑠( 𝑘𝑧 − 𝜔𝑡); 

𝑢𝑧 = �̃�(𝑟) 𝑠𝑖𝑛
𝜙

2
𝑠𝑖𝑛( 𝑘𝑧 − 𝜔𝑡); 

𝜎𝑟𝑟 = �̃�(𝑟) 𝑠𝑖𝑛
𝜙

2
𝑐𝑜𝑠( 𝑘𝑧 − 𝜔𝑡); 

𝜎𝑟𝜙 = �̃�𝜙(𝑟) 𝑐𝑜𝑠
𝜙

2
𝑐𝑜𝑠( 𝑘𝑧 − 𝜔𝑡); 

𝜎𝑟𝑧 = �̃�𝑧(𝑟) 𝑠𝑖𝑛
𝜙

2
𝑠𝑖𝑛( 𝑘𝑧 − 𝜔𝑡),            (11) 

we obtain a spectral boundary-value problem having 

complex coefficients and roots 

�̃� ′ =
�̃�

𝐾𝜆

−
𝜆

𝐾𝜆

(𝑘�̃� −
�̃�

2𝑟
+

�̃�

𝑟
) ; 

�̃�′ =
�̃�𝜙

𝜇
+

�̃�

𝑟
−

�̃�

2𝑟
; 

�̃� =
�̃�𝑧

𝜇
+ 𝑘�̃�;                  (12) 

𝜎
′̃
2̃2𝜇

𝑟
(−

�̃�

2𝑟
+

�̃�

𝑟
−�̃�′)

�̃�𝜙

2𝑟

̃

𝑧  

𝜏
′̃𝜙

2̃2�̃�𝜙

𝑟

1

2𝑟
(�̃�+2𝜇(−

�̃�

2𝑟
+

�̃�

𝑟
−�̃�)−𝑘(

�̃�

2𝑟
−𝑘�̃�))

 

�̃�𝑧
′ = −𝜌𝜔2�̃� −

�̃�𝑧

𝑟
+

𝜇

2𝑟
(

𝑢

2𝑟
− 𝑘�̃�)

+ 𝑘(�̃� + 2𝜇(𝑘�̃� − �̃� ′)). 

With boundary conditions 

𝑟 = 𝑟0 → 0: �̃� = �̃�𝜙 = �̃�𝑧 = 0; 

𝑟 = 𝑅: �̃� = �̃�𝜙 = �̃�𝑧 = 0            (13) 

It is easy to see that problem (12), (13) reduces to 

problem (8), (9) 

Using replacement 

�̃�𝑧 = 𝜏𝑧 , �̃�𝜙 = −𝜏𝜙 , �̃� = 𝜎, �̃� = 𝑤, �̃�𝜙 = −𝑢𝜙, �̃�𝑧 = 𝑢𝑧. 

The solution of problem (8), (9) was carried out 

by the orthogonal method Runs of Godunov, Muller 

and Gauss [9, 10]. 

At the cutoff frequency, the axial displacements 

are equal to zero and the oscillations of the cylinder 

occur in a plane deformed state. 

 In the second mode, cutoff frequencies are 

observed at 0 ≤ 𝑘 ≤ 0.075. Only real and part opinion 

axial displacements, annular and radial displacements 

are equal to zero. The curves are numbered in the order 

of growth of k. Note the strong dependence of the 
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forms on the wave number. With an increase in the 

wave number in the first mode, localization of 

oscillations near the outer surface of the cylinder takes 

place. It is characteristic that the second mode, which 

at small wavenumbers is a form of predominantly axial 

vibrations, gradually grows into a form of 

predominantly radial vibrations with increasing k. 

 

 

 
Fig. 1. Change the real and imaginary parts of the oscillation frequency depending on k. 

1.𝑪𝑹𝟏,𝑪𝑰𝟏,- real and imaginary parts of the first mode of the complex phase velocity of the cylinder by a radial 

crack; 

2. 𝑪𝑹𝟏,𝑪𝑰𝟏, - real and imaginary parts of the second mode of the complex phase velocity of the cylinder by a 

radial crack; 

3. 𝑪𝑹𝟑,𝑪𝑰𝟑 - real and imaginary parts of the first mode of the complex phase velocity of a continuous cylinder. 

 

Findings. 

1. It was found that in an elastic cylinder with a 

radial crack there are no waves having real parts of the 

phase velocity localized near the axis of the cylinder. 

2. Taking into account the viscoelastic properties 

of the wedge material reduces the real parts of the wave 

propagation velocity by 10-15%, and also allows you 

to evaluate the damping capabilities of the system as a 

whole. 
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